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Numerical verification of the random-phase-and-amplitude formalism of weak turbulence
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The random-phase-and-amplitude-formalism (RPA) has significantly extended the scope of weak turbulence
studies. Because the RPA does not assume any proximity to the Gaussianity in the wave number space, it can
predict, for example, how the fluctuation of the complex amplitude of each wave mode grows through nonlinear
interactions with other modes and how it approaches the Gaussianity. Thus, the RPA has a great potential
capability, but its validity has been assessed neither numerically nor experimentally. We compare the theoretical
predictions given by the RPA with the results of direct numerical simulations (DNS) for a three-wave Hamiltonian
system, thereby assessing the validity of the RPA. The predictions of the RPA agree quite well with the results
of DNS in all the aspects of the statistical characteristics of the mode amplitudes studied here.
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I. INTRODUCTION

In weak turbulence, wave trains which have different
directions of the propagation, wavelengths, and frequencies
weakly interact with each other owing to the nonlinearity in
the governing equation and/or the boundary conditions. Many
papers on weak turbulence have been devoted to the derivation
of the kinetic equation [1–3], which governs the statistical
evolution of the wave action spectrum, the physical and math-
ematical properties of the kinetic equation and resulting spectra
[4–8], the statistically steady nonequilibrium spectra when the
external forces and the dissipation balances [9,10], and so on.
Thus, research on weak turbulence has been conventionally
focused on the wave action spectrum, which is the ensemble
average of the squared norm of the complex amplitude of
each mode [11]. On the other hand, the spectra which are
observed in the direct numerical simulations (DNS) and field
observations have large fluctuations. In DNS, the amplitude of
each wave mode is often determined by a prescribed spectrum
and initially has no fluctuations at all. Even in such DNS, the
amplitude fluctuations spontaneously grow as time elapses.
The generation mechanism of the fluctuations, the time scales
of their growths, and the possibility of the approach to the
Gaussianity had little been studied.

The random-phase-and-amplitude formalism (RPA) which
has recently been developed has changed the situation and
drastically extended the scope of weak turbulence research
[12–15]. Similar to the conventional weak turbulence theory,
the RPA is the statistical theory for the complex amplitude
ak. Let ak be expressed as ak = |ak|ψk with the positive
amplitude |ak| and the phase factor ψk = eiφk . In the random
phase approximation (RP) in the strict sense, it is assumed
that ψk for all k are independent random variables and are
uniformly distributed over the unit circle in the complex plane.
In the RPA it is assumed, in addition to the assumptions of the
RP, that the amplitudes |ak| also are mutually independent
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random variables for all k. It is important to note that in the
RPA |ak| are allowed to have any distribution and can be far
from the Gaussianity. Although it is only recently that the
RPA has been defined unambiguously, it has implicitly been
used for a rather long time under the name of “the random
phase approximation,” without even realizing the important
assumption about the amplitude statistics. For example,
Zakharov et al. ( [11], p. 65) calls their approximation “the
random phase approximation,” but they implicitly assume the
statistical independence of the amplitude |ak| for different k.

The equations which describe the time evolution of the
moments of |ak|2 for arbitrary orders as well as the probability
density function (PDF) of |ak|2 have been derived. Thus, the
RPA is expected to describe the statistical characteristics of
the amplitude fluctuations, which have little been studied.
Although the RPA seems to have a great potential capability,
its validity has been assessed neither numerically nor exper-
imentally. In this study, we perform a series of large-scale
DNS for a model Hamiltonian system, which allows three-
wave resonance, and compare the results with the theoretical
predictions of the RPA. Here we confine our attention to
the single-mode statistics of the amplitude fluctuations. In
every aspect studied here, we have obtained good quantitative
agreement between the RPA and the DNS.

Benney and Newell [16] investigated the nth order cumulant
R(n) of a wave turbulence field in the physical space and
derived an equation which governs the temporal evolution of
the Fourier transform of R(n). They assumed that the wave field
is weak nonlinear and that the medium is dispersive, but did
not assume that the wave field is close to a Gaussian state in the
physical space. Prior to Ref. [16], Benney and Saffman [17]
derived the kinetic equation for the action spectrum based on
the same assumptions. In the present paper, we compare our
numerical results with the predictions of the RPA only and
do not make any comparison with the predictions of Ref. [16]
mainly for the following two reasons. First, [16] is described
in terms of the Fourier transform of a real-valued physical
variable, and it is not expressed in terms of the complex
amplitude of wave modes which we want to handle. Second,
Ref. [16] does not introduce the discretization of the k space
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and the Fourier transform is a generalized function. On the
other hand, the RPA treats the discretized k space from the
outset, hence the comparison with the DNS is straightforward
and much easier than the case of Ref. [16]. There is also
an essential difference between the RPA and the analysis in
Refs. [16] and [17] with regard to the speed of decay of the
correlations in the physical space as functions of the separation
of points. (See, for example, Ref. [12].)

This paper is organized as follows. The numerical scheme
is presented in Sec. II. In Sec. III, numerical results of the
evolution of the amplitude fluctuations and the approach to
the Gaussianity are reported. The discussion and the summary
are given in Sec. IV.

II. NUMERICAL SCHEME

A. Numerical model

In this study we employ the following three-wave Hamil-
tonian system:

H = H2 + H3, (1a)

H2 =
∫

ω(k)|a(k)|2dk, (1b)

H3 = 1

2

∫
[V (k,k1,k2)a∗(k)a(k1)a(k2) + c.c.]

× δ(k − k1 − k2)dk123; (1c)

da(k)

dt
= −i

δH
δa∗(k)

= −iω(k)a(k)

− i

2

∫
V (k,k1,k2)a(k1)a(k2)δ(k − k1 − k2)dk12

− i

∫
V ∗(k1,k,k2)a(k1)a∗(k2)δ(k1 − k − k2)dk12,

(2a)

ω(k) = kα, V (k,k1,k2) = (kk1k2)β, α = 3/2, β = 1/4.

(2b)

Here, k is a two-dimensional wave-number vector, a∗
expresses the complex conjugate of a, and c.c. also expresses
the complex conjugate of the preceding term. The linear
frequency and the complex amplitude of the mode of the
wave number k are, respectively, expressed by ω(k) and
a(k). The shorthand notations k = |k| and dk12 = dk1dk2 are
used. When we derive the dynamic equations for the complex
amplitude in weak turbulence systems, we often obtain a
dynamic equation like Eq. (2a) when the three-wave resonant
interactions are allowed like in the surface capillary waves
[11]. In fact, the difference between the dynamic equation
for surface capillary waves and that for our model appears
only in the interaction kernel V (k,k1,k2). For our objective to
generally compare the DNS with the RPA, we select the simple
interaction kernel that allows the evaluation of the convolution
in the nonlinear terms to be performed fast by fast Fourier
transforms (FFT).

In numerical studies of weak turbulence, one sometimes
adds artificial energy input and/or output to the conservative
system (2a). If we were to investigate weak turbulence
characteristics in a statistically steady state, such as the
Kolmogorov-Zakharov spectrum, it would be necessary to add
such nonconservative effects. On the other hand, the purpose
of the present study is to assess the validity of the prediction of
the RPA on the temporal evolution of various statistics of ak.
Therefore, we need statistical unsteadiness of the wave field,
and in this respect the conservative system without input or
output is in accordance with our purpose as it stands.

B. Correspondence between continuous system
and discrete system

Some cautions should be exercised when we compare the
theoretical description where the wave numbers are continuous
with numerical results where the wave numbers are discrete.
To connect the wave-number space and the real space, we
select the definition of the Fourier transform as follows:

f (x) = 1

2π

∫
F (k)eik·xdk, F (k) = 1

2π

∫
f (x)e−ik·xdx,

(3)

where x is a two-dimensional vector in the real space. We also
select the Fourier series which connects the rectangular domain
R = Lx × Ly in the real space under the doubly periodic
boundary conditions to the discrete wave number k:

f (x) =
∑
k∈Sk

Fke
ik·x, Fk = 1

LxLy

∫
R

f (x)e−ik·xdx, (4)

where Sk is a set of k allowed in the discrete wave-number
space, i.e.,

Sk = {k | k = (m	kx,n	ky),(m,n) ∈ Z2}. (5)

The grid intervals in the discrete wave numbers 	kx and 	ky

are connected to the periods in the real space Lx and Ly as

	kx = 2π

Lx

, 	ky = 2π

Ly

. (6)

Because of the properties of the δ function,

δ(k) = 1

(2π )2

∫
eik·xdx, (7)

and of the Kronecker’s δ for k ∈ Sk,

δk,0 = 1

LxLy

∫
R

eik·xdx = 	kx	ky

(2π )2

∫
R

eik·xdx, (8)

the correspondence

δ(k) ←→ 1

	kx	ky

δk,0 (9)

is found for sufficiently small 	kx and 	ky .
Because of the relation between F (k) and Fk which

generally holds,

F (k) =
∑
k′∈Sk

2πFk′δ(k − k′), (10)
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and the correspondence (9), the following correspondence is
found:

a(k) ←→ 2π

	kx	ky

ak, (11)

for k ∈ Sk.
The wave actions, n(k) for the continuous system and nk

for the discrete system, are respectively defined as

n(k)δ(k − k′) = 〈a(k)a∗(k′)〉 and nkδk,k′ = 〈aka
∗
k′ 〉, (12)

where 〈· · ·〉 represents the ensemble average. The correspon-
dences (9) and (11) give the correspondence of the wave
actions:

n(k) ←→ (2π )2

	kx	ky

nk. (13)

The governing equation in the discretized wave numbers
corresponding to Eq. (2a) is written as

dak

dt
= −iωkak − i

2
(2π )

∑
k1,k2

V k
k1 k2

ak1ak2δ
k
k1 k2

− i(2π )
∑
k1,k2

V
k1

kk2
ak1a

∗
k2

δ
k1
kk2

, (14)

where ωk = ω(k), V k
k1 k2

= V (k,k1,k2), and δk
k1 k2

expresses the
Kronecker’s δ, δk,k1+k2 . Note that, in addition to the fact that
the integration and the δ function are, respectively, replaced
by the summation and the Kronecker’s δ, the coefficients of
the quadratic nonlinear terms are multiplied by 2π .

C. Configuration of numerical simulations

In our numerical simulations the wave-number space k =
(kx,ky) is discretized by the equally distributed grids with
the interval 	k = 1/42 in both kx and ky directions and
is truncated along |kx | = kmax and |ky | = kmax, with kmax =
512	k ≈ 12. The convolutions in the nonlinear terms are
obtained by the pseudospectral transform method. In this
method we first use inverse FFT of size nx = ny = 1024 to
transform ak to its inverse transform in the physical x space,
perform there suitable multiplications, and then use the FFT
to obtain the convolution sums. Although this pseudospectral
transform method contains the aliasing error, the region
|kx |,|ky | � 341	k ≈ 8 in the k space is free from this aliasing
error due to the 3/2 rule. (For the 3/2 rule, see, for example,
Ref. [18].) We trace the temporal evolutions of ak only for
those k’s which are within this alias-free region.

By reference to the Pierson-Moskowitz spectrum that is
typical in the ocean waves, we employ an isotropic spectrum
as follows for the initial wave field:

H2 =
∑

k

ωk|ak|2, (15a)

|ak|2 = Ak−6.5 exp(−1/k4)D(k), (15b)

D(k) =
{

1, (0 < k < 7),

exp (−10(k − 7)2), (7 � k � 8),
(15c)

where H2 is the discrete counterpart of the lowest-order
Hamiltonian H2 of Eq. (1b). The exponential function and the
power-law function in Eq. (15b), respectively, give the increase

in the small wave numbers and the decrease in the large wave
numbers. The function D(k) gives the exponential tail near
the end of the alias-free wave numbers so that the truncation
in the k space does not affect the numerical results. For the
purpose of this study the choice of the spectrum is arbitrary,
and this spectrum (15) does not have any special significance
for the system at all. Here, the coefficient A is a parameter to
control the value of H2. In this study, we performed four series
of simulations which have H2 = 1.25 × 10−6, 2.5 × 10−6,
5 × 10−6, and 1 × 10−5. The initial phases of each component
wave are given by uniform random numbers in the range
[0,2π ]. The ratio |H3/H2| can be a measure of the degree
of nonlinearity of the wave field as a whole, where H3 is
the discrete counterpart of the interaction Hamiltonian H3

of Eq. (1c). |H3/H2| is an increasing function of H2 and
takes values around 5.0 × 10−5, when H2 = 1.25 × 10−6, and
3.5 × 10−4, when H2 = 1 × 10−5. Our selection of the values
of H2 as above is made to keep |H3/H2| and hence the
nonlinearity of the wave field sufficiently small. To make
the ensemble average, 256 independent simulations which
have different initial phases are performed for each H2. The
time integration is made until t = 100Tp. Here, Tp = 2π is
the period given by the linear dispersion relation for k = 1,
at which the one-dimensional energy spectrum defined below
has its maximum. The fourth-order Runge-Kutta method with
a time interval of 	t = Tp/50 is employed for the time
integration. The linear term is implicitly solved to improve
the numerical stability. Because the system and the initial
spectrum are isotropic, ak for k > 8 is set to 0 at each
time step.

The total Hamiltonian that is the sum of the linear part
H2 and the nonlinear part H3 is numerically conserved within
the relative error 2.6 × 10−4 for H2 = 1 × 10−5, where the
nonlinearity is the largest and the conservation is the worst. In
this case, the average of H3 during 100Tp is −3.5 × 10−9.

All the numerical simulations are performed on the FU-
JITSU FX1 at the Information Technology Center, Nagoya
University. The CPU time for one realization takes 12 h.

III. NUMERICAL RESULTS

A. Time evolution of spectra

Figure 1 shows the azimuthally-integrated one-dimensional
energy spectra E(k)

E(k) = 1

	bin

∑
k−	bin/2<|k′|<k+	bin/2

〈ωk′ |ak′ |2〉, (16)

obtained from DNS at t = 100Tp. The initial spectra are also
shown for reference. Here, 	bin denotes the width of the bins
that is used to evaluate E(k) from the complex amplitudes
defined on the discrete wave numbers, and we set 	bin = 0.05.
Figures 1(a), 1(b), 1(c), and 1(d) show the energy spectra
for H2 = 1.25 × 10−6, H2 = 2.5 × 10−6, H2 = 5 × 10−6, and
H2 = 1 × 10−5, respectively.

Small irregularities around k = 1.1 are due to the numerical
procedures to obtain E(k) in the discrete k space. While the
variation of the spectrum during 100Tp for H2 = 1.25 × 10−6

is quite small, that for H2 = 1 × 10−5 is large during the
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FIG. 1. (Color online) Variations of one-dimensional energy spectra E(k) from t = 0 to t = 100Tp . The spectra are shown with the double
logarithmic scales in the insets. (a) H2 = 1.25 × 10−6, (b) H2 = 2.5 × 10−6, (c) H2 = 5 × 10−6, and (d) H2 = 1 × 10−5.

time. Most of the weak turbulence theories, including the RPA
studied here, have been developed for weak turbulence, where
the linear time scale determined by the linear frequency and the
nonlinear time scale, i.e., the time scale of spectral change, are
largely separated. Therefore, the weakly nonlinear assumption

might be slightly violated for H2 = 1 × 10−5, although the
assumption is evidently valid for H2 = 1.25 × 10−6.

The wave action n(k) of the three-wave system (2) is known
to evolve according to the following kinetic equation (see, for
example, Refs. [11,13]):

dn(k)

dt
= −γ (k)n(k) + η(k), (17a)

η(k) = π

∫
{|V (k,k1,k2)|2δ(k − k1 − k2)δ(ω(k) − ω(k1) − ω(k2))

+ 2|V (k2,k,k1)|2δ(k2 − k − k1)δ(ω(k2) − ω(k) − ω(k1))}nk1nk2dk12, (17b)

γ (k) = 2π

∫
{|V (k,k1,k2)|2δ(k − k1 − k2)δ(ω(k) − ω(k1) − ω(k2))n(k2)

+ |V (k2,k,k1)|2δ(k2 − k − k1)δ(ω(k2) − ω(k) − ω(k1))[n(k2) − n(k1)]}dk12. (17c)

Since the energy spectrum for H2 = 1.25 × 10−6 varies very little during the time 100Tp as shown in Fig. 1(a), the right-hand
side of Eq. (17a) is almost constant in time and the wave action is expected to be a linear function of time. Figure 2 shows the
time rates of change of E(k) for H2 = 1.25 × 10−6. One is obtained for the initial spectrum (15) according to Eq. (17). The other
is obtained from DNS as the difference between the energy spectrum at t = 50Tp and that at t = 0 divided by 50Tp. Both time
rates of change agree quite well.
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FIG. 2. (Color online) Comparison of the time rates of change of
E(k) between the DNS and the kinetic equation. H2 = 1.25 × 10−6.

The same procedure of the comparison cannot be used for
H2 = 1 × 10−5, since the variation of E(k) is large. Then,
the energy spectrum at 100Tp is obtained by the numerical
integration of Eq. (17) in time, and it is compared with the
energy spectrum at t = 100Tp obtained by DNS, which is
already shown in Fig. 1(d). The comparison is shown in
Fig. 3. Also for H2 = 1 × 10−5, both spectra agree quite well.
It clearly shows that the spectrum in DNS evolves in time
according to the prediction of the kinetic equation (17).

B. Importance of resonant interaction
for evolution of fluctuation

In our DNS, the initial value of the amplitude of each wave
mode |ak(0)| is determined by the initial spectrum; hence no
amplitude fluctuation exists at t = 0. The fluctuation grows as
time elapses through nonlinear interactions with other modes.
Examples of the evolution of |ak|2 are shown in Fig. 4.
The five curves show the variations of |ak|2 for k = (3,0)
in five independent realizations for H2 = 5 × 10−6. Since the
simulations are started without the amplitude fluctuations, all
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Initial

k

E
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FIG. 3. (Color online) Comparison of the variations of E(k) from
t = 0 to t = 100Tp between the DNS and the kinetic equation. H2 =
1 × 10−5.

FIG. 4. (Color online) Evolution of |ak|2 in five independent
realizations. H2 = 5 × 10−6, k = (3,0).

|ak|2 has the same value at t = 0. The fluctuations grow as
time elapses, and each |ak|2 evolves differently.

Figure 5 shows the time evolutions of the mean nk and the
standard deviation σk of |ak|2 obtained from DNS for H2 =
5 × 10−6. Figures 5(a), 5(b), 5(c), and 5(d), respectively, show
the evolution of nk and σk of k = 1, k = 1.5, k = 3, and k = 6.
Throughout this paper, to evaluate the statistical quantities at
k such as nk, the quantity is averaged over the modes of k′
in the annular domain |k − k′| < 	bin/2 (=0.025). It can be
seen that σk, that is, the amplitude fluctuation, grows in time at
each k, although the growth rates are wave number dependent.
In particular, at the larger wave numbers k = 3 and k = 6, it
is clearly observed that the fluctuations are approaching the
Gaussianity of ak, i.e., nk = σk.

For comparison, we performed another series of DNS where
the power-law exponent α of the linear dispersion relation in
Eq. (2b) is changed to α = 1/2 while all the other aspects of the
model remain intact. In this case, the dispersion relation ω =
k1/2 is of nondecay type, which is similar to the surface gravity
waves in water, and the three-wave resonant interactions are
prohibited. The results are shown in Fig. 6 where we draw
the same quantities shown in Figs. 4 and 5(c). By comparing
Fig. 6 with Figs. 4 and 5(c), we observe that the growth of
the fluctuations is much slower when the three-wave resonant
interactions are prohibited by the dispersion relation. Similarly,
the slower growths are observed for other wave numbers.

The kinetic equation (17) derived by the weak turbulence
theory represents that only the resonant interactions play a
role in the evolution of the wave action nk. It can simply be
understood since the secular energy transfer persistent against
the time average is necessary for nk, which is the mean of
|ak|2, to evolve and only the resonant interactions can provide
it. On the other hand, the fluctuations of |ak|2 around its mean
could grow owing to the nonresonant nonlinear interactions as
well as the resonant ones, because the nonresonant interactions
seem to work as the stochastic driving forces in random
walk processes. However, comparison between Figs. 4 and 5
and Fig. 6 clearly shows that the resonant interactions are
essential for the evolution of the fluctuations. Even though
the three-wave resonances are prohibited when α = 1/2 and
our model (2a) contains only quadratic nonlinear terms, the
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FIG. 5. (Color online) Evolution of the means nk and the standard deviations σk of |ak|2. H2 = 5 × 10−6. (a) k = 1, (b) k = 1.5, (c) k = 3,
and (d) k = 6.

fluctuations do grow as shown in Fig. 6(b) albeit very slowly.
This is because two nonresonant three-wave interactions
can make a resonant four-wave interaction, and hence the
fluctuations grow due to this four-wave resonant interaction
with a much slower time scale.

C. Approach to Gaussianity

The pth-order moment is defined as

M (p)(k) =
〈( |a(k)|2

δ(0)

)p
〉

, (18)

where δ(0) is defined in the large-box limit as

δ(0) = lim
Lx,Ly→∞

LxLy

(2π )2
= lim

	kx,	ky→0

1

	kx	ky

, (19)

according to the correspondence (9). The RPA predicts that
M (p)(k) evolves according to the following equation [14]:

dM (p)(k)

dt
= −pγ (k)M (p)(k) + p2η(k)M (p−1)(k), (20)

where η(k) and γ (k) are, respectively, given in Eqs. (17b)
and (17c). Equation (20) for p = 1 is identical to the kinetic
equation (17) for the wave action n(k).

When the real and imaginary parts of a(k) are independent
and obey the same Gaussian distribution,

M (p)(k) = p! np(k). (21)

Then,

F (p)(k) = M (p)(k) − p! np(k)

p! np(k)
, (22)

is an index which expresses the deviation from the Gaussianity
of a(k). Equation (20) can be written for F (p)(k) as

dF (p)(k)

dt
= pη(k)

n(k)
[F (p−1)(k) − F (p)(k)]. (23)

Because F (1)(k) = 0 by the definition that M (1)(k) = n(k), the
equation for the evolution of F (2)(k) can be obtained as

dF (2)(k)

dt
= −2η(k)

n(k)
F (2)(k). (24)

When |a(k)| is deterministically given and no fluctuation is
allowed like in the initial conditions of our DNS, F (2)(k) =
−1/2. Equation (23) represents that the deviation from the
Gaussianity of a(k) for all p decays after an elapse of sufficient
time, because η(k) > 0. The homogeneous term in Eq. (23)
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FIG. 6. (Color online) Evolution of the fluctuations of |ak|2. ω =
k1/2 and H2 = 5 × 10−6. (a) |ak|2 in five independent realizations.
k = (3,0). (b) The mean nk and the standard deviation σk of |ak|2.
k = 3.

indicates that F (p)(k) for large p decays fast, and then the
nonhomogeneous term of the order p − 1 can be dominant in
the evolution of F (p)(k). Therefore, the evolution of F (p)(k)
for all p is determined by the slowest F (2)(k).

According to Eqs. (23) and (24), the speed at which a(k)
approaches the Gaussianity depends on the value of η(k)/n(k).
Figure 7(a) shows the evolution of η(k)/n(k) for k = 1, 1.5, 3,

and 6 for H2 = 5 × 10−6, and Fig. 7(b) shows the time average,
the maximum and the minimum of η(k)/n(k) at each k during
100Tp. These results are obtained by the numerical integration
of the kinetic equation (17). For the initial spectrum (15c),
η(k)/n(k) is large, in the range 2 � k � 3. The wave-number
dependence of η(k)/n(k) is consistent with the rapid growth
of the fluctuation at k = 3 compared with those at the other
wave numbers observed in Fig. 5.

As shown in Fig. 1, the spectral variation for H2 = 5 ×
10−6 during 100Tp is not small. However, Fig. 7(b) indicates
that the variation of the value of η(k)/n(k) during 100Tp

is almost constant in time except 1.5 < k < 3, because the
differences between the maximums and the minimums are
small. Then, Eq. (24) suggests that F (2)(k) shows exponential
decay in time. Figure 8 shows the evolution of F (2) of k = 3
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)

FIG. 7. (Color online) Value of η(k)/n(k) for each wave number.
H2 = 5 × 10−6. (a) Evolution. (b) Time average, maximum and
minimum during 0 � t � 100Tp .

for H2 = 5 × 10−6 in DNS. It is found that the absolute value
of F (2) exponentially decays as expected. When F (2) is fitted
by an exponential function −1/2 exp(−λ(k)t), the decay rate
λ(k) obtained by the method of least squares is 2.58 × 10−3.
On the other hand, the decay rate predicted by the RPA is

–0.5

–0.4

–0.3

–0.2
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0

0  20  40  60  80  100
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F
(2

)
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FIG. 8. (Color online) Evolution of F (2) in DNS. H2 = 5 × 10−6,
k = 3. The evolution is shown with the single logarithmic scale in
the inset.
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FIG. 9. (Color online) Dependence of the decay rate λ(k) of
F (2)(k) in DNS on H2.

2η(k)/n(k). The time average of 2η(k)/n(k) during 100Tp

is 2.57 × 10−3 for k = 3. Thus the quantitative agreement
between the RPA and the DNS is quite good.

Figure 9 shows the decay rate λ(k) for k = 1, 1.5, 3, and
6 obtained by the least-square fit of the exponential function
to F (2)(k) in DNS as a function of H2. It is observed that λ(k)
for each wave number is proportional to H2. As shown by
Eqs. (17) and (24), the RPA predicts that the time scales of
the growth of the fluctuations as well as those of the evolution
of the spectra are inversely proportional to the value of the
Hamiltonian. It is consistent with the results shown in Fig. 9.

D. Moments for p > 2

The solution of Eq. (23) is given as

F (p)(k,t) =
p∑

j=2

C
(p)
j e−jθ(k),

(25)

θ (k) =
∫ t

0

η(k,t ′)
n(k,t ′)

dt ′.

The coefficient C
(p)
j is determined by the recurrence formula

C
(p)
j =

(
p

j

)
C

(j )
j (j = 2, . . . ,p − 1),

(26)

C
(2)
2 = F (2)(k,0), C(p)

p = F (p)(k,0) −
p−1∑
j=2

C
(p)
j ,

where ( p
j ) is the binomial coefficient.1

The deviations from the Gaussianity F (p) at k = 7 at every
20Tp from t = 0 to t = 100Tp for H2 = 5 × 10−6 obtained
by Eq. (25) and DNS are shown in Fig. 10 as functions of the
order p of the moments. A large number of ak are required to
obtain reliable high-order moments. As explained before, to
evaluate statistical quantities such as the moments of ak at k, we
use the values of ak′ in the annular domain |k′ − k| < 0.025;

1The explicit expression of the solution of Eq. (23) in Ref. [12] is
incorrect.
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–0.8

–0.6

–0.4
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F
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)

FIG. 10. (Color online) Comparison of F (p) between the DNS
and the RPA for each p. t = 0,20Tp, . . . ,100Tp from bottom to top.
H2 = 5 × 10−6 and k = 7.

hence the number of modes used in the statistical evaluation
increases in proportion to k. This gives the reason to choose the
large wave number k = 7 to evaluate the high-order moments.
We confirmed that the tail of the probability density function
of |ak|2 defined below decays faster than the negative nineth
power of |ak|2. Therefore, the moments up to the eighth order
are reliable. To obtain the deviation F (p) by Eq. (25) in the
RPA, θ (k) is approximated by θ (k) ≈ (η/n)t , where (η/n) is
the time-averaged value of η(k)/n(k) during 100Tp. Similarly,
the evolution of the deviations F (p) at k = 7 obtained by the
DNS and the RPA are compared in Fig. 11. Even though the
value of θ (k) is approximated by (η/n)t and the high-order
moments such as those of the eighth-order are treated, the
RPA and the DNS show another good agreement.

E. Evolution of distribution of amplitude fluctuations

The RPA also gives the evolution of the PDF P(s(k))
of s(k), which is a stochastic variable defined by
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RPA
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F
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)

FIG. 11. (Color online) Evolution of F (p) in the DNS and the
RPA. p = 2,3, . . . ,8 from top to bottom. H2 = 5 × 10−6, k = 7.
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FIG. 12. (Color online) Comparison of P(x) in the DNS and the
RPA. k = 3 and t = 100Tp .

s(k) = |a(k)|2/δ(0), as follows [14]:

∂P(s(k))
∂t

= ∂F(k)

∂s(k)
,

(27)
F(k) = s(k)

{
γ (k)P(s(k)) + η(k)

∂P(s(k))
∂s(k)

}
,

where η(k) and γ (k) are the coefficients (17b) and (17c) in
the kinetic equation (17). The PDF P(s) at k = 3 for four
values of H2 is shown in Fig. 12. The PDF is obtained by the
numerical integration of Eq. (27) until 100Tp. Figure 12 has
s normalized by its initial value n(0), i.e., x = s/n(0) on the
abscissa. The variation ofP(x) is faster for larger H2. For H2 =
1.25 × 10−6, P(x) has a narrow distribution with a remnant
of the initial distribution δ(x − 1) even at = 100Tp, while for
H2 = 1 × 10−5, it has almost reached the χ2 distribution with
2 degrees of freedom corresponding to the Gaussianity of a(k)
by the same time. The PDF obtained in DNS at 100Tp is also
shown in Fig. 12. For all H2, the theoretical predictions of the
RPA and the results of the DNS agree quite well. The RPA
does not reply on any proximity to the Gaussianity of ak [12].
Figures 10, 11, and 12 confirm the validity of the RPA even
when the Gaussianity of ak has not been established at all.

The coefficients η(k) and γ (k) in Eq. (27) vary as the wave
action n(k) evolves. Then, in the calculation of Eq. (27), the
calculation of the kinetic equation (17a) is first performed to
obtain γ (k,t) and η(k,t) as functions of time. Moreover, since
s(k) does not have fluctuations initially in this study, P(x,0) =
δ(x − 1) should be employed for the initial condition to
numerically obtain P(s) at a later time according to Eq. (27).
However, it causes numerical difficulty. If P(x) is very narrow,
the diffusion term is dominant in the right-hand side of
Eq. (27). Then, in the very early stage of the evolution, Eq. (27)
can be approximated by the diffusion equation

∂P(x)

∂t
= μ

∂2P(x)

∂x2
, μ = x0η0

n0
, x0 = 1, (28)

where η0 is η at t = 0. This makes it possible that the original
initial condition P(x,0) = δ(x − 1) is replaced by the state
after the PDF evolves according to Eq. (28) for small time t0,

i.e., the normal distribution with small standard deviation σ0,

P(x,t0) = 1√
2πσ0

exp

(
− (x − 1)2

2σ0
2

) (
t0 = σ 2

0 /2μ
)
,

(29)

to numerically solve the initial-value problem of Eq. (27).
For the result in Fig. 12, σ0 = 0.1 is used. Even if σ0 = 0.05
is used, a perceptible change in Fig. 12 is not produced. To
obtain P(x) at k = 3 in DNS, sk of 1680 modes in the annular
domain |k − 3| < 0.025 are used. Since 256 realizations in
DNS are independently performed, 430 080(=1680 × 256)
data are used to draw P(x) in Fig. 12.

IV. CONCLUDING REMARKS

In this work, DNS for a three-wave resonant Hamiltonian
system are performed, and the validity of the RPA recently
proposed in the weak turbulence theory is evaluated by
quantitative comparison with DNS. It is confirmed that the
theoretical predictions of the RPA and the results of the DNS
agree quite well in all the statistical aspects of the amplitude
fluctuations such as the high-order moments and the evolution
of the PDF of s(k) = |a(k)|2/δ(0) of each mode, the asymp-
totic approach of a(k) to Gaussianity and its time scales, and
so on. We have performed the comparison between the RPA
and the DNS for the same three-wave model, but in the case of
an anisotropic initial spectrum, and obtained the same level of
agreement between the RPA and the DNS (not shown here).

The comparison is restricted to the three-wave resonant
system in this work. In the RPA for four-wave systems,
there exist some characteristics which the three-wave systems
do not have such as the renormalization of the nonlinear
frequency. Hence, the comparison for four-wave systems
is still necessary. The authors numerically investigated the
growth of the amplitude fluctuations in a four-wave system
[19]. It was found that the time scales of the growth of
the fluctuations are much shorter than those of the spectral
variations in the large wave numbers away from the spectral
peak. Although we did not attempt quantitative comparison
with the RPA at that time, we felt suspicion about the validity of
the RPA because the RPA predicts that both time scales should
be of the same order in terms of the amplitude expansion or
in terms of the Hamiltonian H . This suspicion was actually
one of the motivations behind the present work. Judging
from the complete agreement between the RPA and the DNS
regarding the three-wave system reported here, we expect that
this suspicion which we previously felt about the validity of
the RPA would be cleared up when we have finished the same
kind of comparison between the RPA and the DNS for some
four-wave systems as well. In Ref. [19], we also investigated
the statistical nature of ds(k)/dt by DNS. We numerically
showed that the fluctuation of ds(k)/dt approaches a quasi-
steady state faster than s(k) and analytically showed that the
PDF of ds(k)/dt has the Laplace distribution. No work for
ds(k)/dt was found in the framework of the RPA. This is also
part of our future work.

The RPA gives theoretical predictions for the multimode
statistics, such as the joint probability density P (N) of
|ak1 |2, . . . ,|akN

|2, as well as for the single-mode statistics [20],
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but we have restricted our attention in the present study to the
single-mode statistics only and have not treated the multimode
statistics at all. With regard to the multimode statistics, it
is pointed out that the original results of the RPA are not
correct [15]. Then, numerical investigation of the multimode
statistics remains to be done.

Our present numerical results also prompt a new question
of the time scales which is required by the weak turbulence
theory. Janssen [21] derived a kinetic equation in a form
different than that of Hasselmann [1] and that of Zakharov et al.
[11]. He pointed out that the conventional kinetic equation is
recovered by replacing the “resonance function”

Ri(	ω,t) = sin(	ωt)

	ω
(30)

by the δ function which is the asymptotic of Ri in the limit
t → ∞. He claimed that nonresonant interactions as well as
resonant interactions contribute the spectral evolution until
the time when the replacement is validated. In the RPA
investigated here, the important equations, such as for the
moments, Eq. (20), and for the PDF, Eq. (27), are derived. It is
based on the premise that the linear time scale, τl = O(2π/ω),
and the nonlinear time scale, i.e., the time scale of the
spectral evolution, τn = O(1/(ε2ω)), are well separated, and
the intermediate time scale,

τl � τi � τn, (31)

should exist. Based on their derivation, the equations in the
RPA are supposed to describe the time rate of change of the
moments and the PDF in the time scale of τi .

In Fig. 13, the time rates of spectral changes dE(k)/dt

during Tp from t = 0 to t = Tp and from t = Tp to t = 2Tp

for H2 = 5 × 10−6 are compared with those obtained by the
kinetic equation (17) for the initial spectrum. Although the
time rate of the spectral change for the first Tp is slightly
different from the prediction of the kinetic equation, the rate
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–5×10–10

0

5×10–10

10–9

1.5×10–9
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k
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E

(k
)/

d
t

0 ≤ t ≤ Tp (DNS)
Tp ≤ t ≤ 2Tp (DNS)

FIG. 13. (Color online) Comparison of dE(k)/dt obtained from
the spectral variation during one period in the DNS and from the
kinetic equation.

during the period Tp from t = Tp to t = 2Tp almost perfectly
coincides with the prediction of the kinetic equation. The
time rates of change of the higher-order moments during
Tp also show similar agreements between the DNS and the
RPA. These agreements between the DNS and the RPA in
the short-time evolution appear to contradict the procedure
of the derivation of the statistical equations in the RPA. This
short-time agreement has already been pointed out previously
[22]. This might affect the basis of the weak turbulence theory,
including the RPA, and must be investigated further.
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