I. INTRODUCTION

Because its neutron number 82 is magic, ^{140}Ce is an important nuclide for nuclear-structure study. Interplay between single-particle and collective degrees of freedom can be studied in low-lying levels in ^{140}Ce. From an electron-scattering experiment and a calculation based on the quasiparticle phonon model, its 2083 keV level having a nuclear spin of $I = 4$ was interpreted as a two-quasiparticle state, although with a substantial collective strength [1]. Moreover, this level is a useful nuclear probe for materials science, concerning the behavior of the 4f electron in particular [2]. The magnetic moment of the 2083 keV level of ^{140}Ce is one of key physical quantities reflecting the character of the nuclear wave function of this level. In Ref. [3] are listed four published values for the magnetic moment of the 2083 keV level of ^{140}Ce: (in units of nuclear magneton, μ_N) $+4.06(15)$ [4], $+3.8(4)$ [5], $+4.44(16)$ [6], and $+4.6(3)$ [7]. Although these four values are consistent within two times their uncertainties (2σ), the range of values in 2σ extends from $\mu = +3.0$ to $+5.2(2)\mu_N$, as shown in Fig. 1. It is desirable to improve this situation. These values were all obtained by applying an external magnetic field of less than 5 T to a liquid sample containing ^{140}La using the time-differential perturbed angular correlation (TDPAC) technique. Although these four values are consistent within two times their uncertainties (2σ), the range of values in 2σ extends from $\mu = +3.0$ to $+5.2(2)\mu_N$.

For the magnetic moment of the 2083 keV level of ^{140}Ce, there are four published data, all obtained by applying an external magnetic field of less than 5 T to a liquid sample containing ^{140}La using the time-differential perturbed angular correlation (TDPAC) technique. Although these four values are consistent within two times their uncertainties (2σ), the range of values in 2σ extends from $\mu = +3.0$ to $+5.2(2)\mu_N$. This time, the TDPAC technique was successfully applied to the 2083 keV level of ^{140}Ce implanted in a Fe foil. The magnetic moment of this level was determined to be $\mu = +4.00(2)\mu_N$, employing the known hyperfine field at ^{141}Ce in Fe, $-41(2)$ T, which agrees very well with one of the values, $\mu = +4.06(15)\mu_N$. The present value is compared with two shell-model calculations.

II. EXPERIMENTAL PROCEDURES

A. Sample preparation

Lanthanum does not form a solid solution with iron. The ion implantation was performed at the solid-state physics beam course of the online isotope separator at the Research Reactor Institute, Kyoto University (KUR-ISOL) [11]. ^{140}Cs producing ^{140}La were obtained by the fission reaction of a 50 mg ^{235}U target with thermal neutrons of 3×10^{12} cm$^{-2}$ s$^{-1}$ and were carried to the surface ionizer by a PbI$_2$ aerosol in a mixed-gas jet of He and N$_2$. The ionized fission products, mainly alkali-metal elements, were accelerated to 30 keV for mass analysis. Mass-separated ^{140}Cs ions were further accelerated to 100 keV by the postaccelerator to be implanted at room temperature in a 10 mm \times 10 mm \times 0.1 mm Fe foil of 99.995% purity, which had been annealed in a H$_2$ atmosphere at 700 °C for 2 h and then polished. The diameter of the ^{140}Cs beam size was about 5 mm. The implantation depth was estimated to be 20 ± 10 nm. The parent nuclei of ^{140}Ce, ^{140}La, were produced in the radiactive equilibrium of ^{140}Ba-^{140}La, followed by the β decay of ^{140}Cs. A relevant part of the decay scheme of the $A = 140$ mass chain is shown in Fig. 2.

B. Time-differential perturbed angular correlation measurements

The time dependence $N(\theta, t)$ of the coincidence counts of the 329–487 keV cascade γ rays for the Fe foil containing ^{140}La was taken at room temperature with a measurement system consisting of standard fast-slow electronic modules and four or three 1.5 inch $\phi \times 1.5$ inch BaF$_2$ scintillation detectors. Here, θ and t denote the angle and the time interval, respectively, between the cascade γ rays.

Using four detectors, the directional anisotropy $A_{22}G_{22}(t)$ was obtained according to

$$A_{22}G_{22}(t) = \frac{N(180^\circ, t) - N(90^\circ, t)}{N(180^\circ, t) + 2N(90^\circ, t)}. \quad (1)$$
FIG. 1. Reported values of the magnetic moment, μ, of the 2083 keV level in 140Ce in units of the nuclear magneton (μ_N) including the present value (Levy 1965 [4], Schmorak 1964 [5], Körner 1963 [6], and Kalan 1963 [7]). The dashed lines represent the upper and lower of the four reported values with 2σ.

The 10 mm \times 10 mm plane of the Fe foil was parallel to the detector plane. The distance between the source and each detector was 3.0 cm. With four detectors, a slight asymmetry in the detectors is eliminated in the operation of Eq. (1).\(^{1}\)

Using three detectors with an external magnetic field from a cage-type magnet of 0.3 T [12] applied perpendicularly to the detector plane, the directional anisotropy $R(t)$ was obtained according to

$$R(t) = \frac{4 N(-135^\circ, t) - N(+135^\circ, t)}{3 N(-135^\circ, t) + N(+135^\circ, t)}$$

(2)

in order to determine the sign of the magnetic moment. The 10 mm \times 10 mm plane of the Fe foil was perpendicular to the detector plane so that the demagnetization field was small; on the order of 0.01 T [13]. The distance between the source and each detector was 4.0 cm. We performed two sets of the TDPAC measurements by inverting the direction of the external magnetic field, leaving the detector arrangements untouched, and derived the following two quantities by subtracting or adding the two sets of $R(t)$ data:

$$R_s(t) = \frac{R_+(t)/\sigma_+(t)^2 - R_-(t)/\sigma_-(t)^2}{1/\sigma_+(t)^2 + 1/\sigma_-(t)^2},$$

(3)

and

$$R_A(t) = \frac{R_+(t)/\sigma_+(t)^2 + R_-(t)/\sigma_-(t)^2}{1/\sigma_+(t)^2 + 1/\sigma_-(t)^2}.$$

(4)

\(^1\)Let $s_i(j)$ denote the counting efficiency of detector i for the jth γ ray, i being 1, 2, 3, 4 and j being 1 (329 keV) and 2 (487 keV). In the present four-detector setup where the anode signals of detectors 1 and 2 are connected to the start input of a time-to-amplitude converter (TAC) module and those of detectors 3 and 4 to the stop input, both $N(90^\circ, t)$ and $N(180^\circ, t)$ are proportional to the same quantity, $|\Pi_{i\neq j}(j)|^{1/4}$. In the operation of Eq. (1), these quantities in the numerator and denominator cancel each other.

FIG. 2. Simplified decay scheme of relevant $A = 140$ mass chain.

Here the subscripts $+$ and $-$ refer to the normal and reversed directions of the magnetic field, respectively, i.e., $R_+(t)$ equals $R(t)$ defined in Eq. (2) and $R_-(t)$ equals $-R(t)$, and $\sigma(t)$ represents the statistical uncertainty attached to the corresponding $R(t)$. With $R_s(t)$, we can extract a pattern due to magnetic interactions. Using three detectors, a slight asymmetry in the two detectors at $\pm 135^\circ$ is cancelled in the R_A operation, but in the R_s operation it adds a constant term in the TDPAC spectrum.

The coefficient A_{22} depends only on the nuclear transitions and its value for 140Ce is reported to be -0.13 [14]. The perturbation factor $G_{22}(t)$ for an ensemble of randomly oriented microcrystals is a function of the Larmor frequency ω_L for a unique static magnetic interaction. The quantity ω_L is defined as usual: $\omega_L = -\mu B/(Ih)$, where B is the magnetic field at the nucleus. In the 180°--90° angular correlation case with no external magnetic field,

$$A_{22}G_{22}(t) = A_{22}[1 + 2\cos(\omega_L t) + 2\cos(2\omega_L t)]/5,$$

(5)

having the constant term (which we call the baseline in the text) of $A_{22}/5$.

In the $\pm 135^\circ$ angular correlation case with an external magnetic field,

$$R(t) = A_{22} \sin(2\omega_L t),$$

(6)

having zero baseline.

III. RESULTS AND COMPARISON WITH PREVIOUS RESULTS AND WITH SHELL-MODEL CALCULATIONS

The obtained $A_{22}G_{22}(t)$ time spectrum is shown in Fig. 3 and the $R_s(t)$ and $R_A(t)$ time spectra are shown in Figs. 4(a) and 4(b), respectively, all of which have been corrected for the finite solid angle. Figures 3 and 4(a) display clear oscillation patterns. As should be, essentially no oscillation pattern is seen in Fig. 4(b) and R_A is nearly zero, except in the time range between 0 and about 2 ns. We consider the oscillation in this time range due to the large prompt peaks in the $N(\theta, t)$ time spectra and therefore treat the other spectra in this time range as useless for the analysis. As described below Eq. (4), a slight
Asymmetry in the two detectors at ±135° is responsible for the nonzero baseline of the TDPAC spectrum in Fig. 4(a). The fact that there is an oscillation pattern in Fig. 4(a) signifies that the oscillation patterns seen in Figs. 3 and 4(a) are due to the magnetic hyperfine interaction. The observation that the apparent oscillation period in Fig. 3 is twice as large as that in Fig. 4(a) implies that we can see mainly the oscillation due to the second term in Eq. (5), which is in turn due to the finite time resolution of the present detection system, 1 ns, about 10 times larger than the time bin Δt of the time spectra. Residual lattice damage caused by ion implantation would lead to a distribution of hyperfine fields at the probe sites, which would cause a frequency distribution, resulting in a damping of the oscillation pattern of the TDPAC spectrum. Since the oscillations in Figs. 3 and 4(a) seem not to fade out in the present time range, the interaction involved is considered to be a unique static magnetic hyperfine interaction on 140Ce occupying the Fe substitutional site with no lattice defects nearby.

In addition to this component, other components contribute to the TDPAC spectrum in the time range between 0 and about 8 ns, as seen in Fig. 3 in particular. Noting that the baseline of the TDPAC spectrum in Fig. 3 is nearly equal to \(A_{22}/5 = -0.026 \), which is the first term of Eq. (5), these components could be due to static perturbations and we thus tentatively consider that these components arise from those 140Ce at interstitial sites or at the Fe sites having lattice defects nearby, feeling a variety of hyperfine magnetic fields and electric field gradients such that the oscillations arising from this variety of fields interfere among themselves and get dumped quickly in the \(A_{22}G_{22}(t) \) time spectrum.

In order to determine the magnetic moment of the 2083 keV level of 140Ce, we consider only the oscillation part of the TDPAC spectrum in Fig. 3 and assume that the corresponding 140Ce occupy the Fe substitutional sites with no lattice defects nearby. The solid line in Fig. 3 represents the fit of the expression using Eq. (5) corrected for the finite time resolution of the detection system to the data in the time range between 2.3 and 24.8 ns. The amplitude of the oscillation, i.e., the effective \(A_{22} \) value, is \(-0.042\), which is much smaller than the reported \(A_{22} \) value of \(-0.13\), indicating that only about 30% of the 140Ce implanted in Fe feel the unique static magnetic hyperfine interaction. This value agrees with the fraction of Ce considered to occupy the substitutional Fe site, 28.9(5)%.

FIG. 3. TDPAC spectrum, \(A_{22}G_{22}(t) \), of 140Ce in Fe at room temperature using four BaF2 scintillation detectors without external magnetic field. The solid curve represents the fit of Eq. (5) in the text taking into account the finite time resolution of the TDPAC measurement system.

![FIG. 3](image-url)

FIG. 4. TDPAC spectra, (a) \(R_5(t) \) and (b) \(R_3(t) \), of 140Ce in Fe at room temperature using three BaF2 scintillation detectors with an external magnetic field of 0.3 T. The curve in panel (a) was the result of the fit using Eq. (6) in the text with a constant term and the effective \(A_{22} \) value determined in the fit in Fig. 3.

![FIG. 4](image-url)

FIG. 5. (a) Magnetic moments (in \(\mu_N \)) of the first 2+ and 4+ levels of 136Xe, 138Ba, 140Ce, and 142Nd (there is no experimental value available of the magnetic moment of the 4+ level in 142Nd). The solid circles represent the experimental values taken form Ref. [3] except for the 4+ level of 140Ce, for which from the left to the right are displayed the values from Refs. [5–7], and the average of the value in Ref. [4] and the present value. The solid lines for the 2+ and 4+ levels signify the shell-model calculation with the CD-Bonn + G matrix (for brevity, SM/CD-Bonn), and the dashed lines signify the shell-model calculation with the P + QQ interaction (SM/P + QQ).

(b) Excitation energies (in MeV) of the first 2+ and 4+ levels of 136Xe, 138Ba, 140Ce, and 142Nd. For each nuclide, the left column denotes the experiment [3], the middle column denotes the SM/CD-Bonn calculation, and the right column denotes the SM/P + QQ calculation. In each column, the upper line stands for the 4+ level and the lower for the 2+ level.
obtained in a nuclear orientation measurement on 141Ce in Fe [15], although 141Ce ions were directly implanted into an Fe foil, while in our case 140Cs ions, the precursor of 140Ce, were implanted. The curve in Fig. 4(a) is the result of the fit using Eq. (6) with a constant term and the effective A_{22} value determined in the fit in Fig. 3. Determining the sign of ω_L to be positive from Fig. 4(a), the ω_L value thus obtained from the A_{22}/G_{22} spectrum is $+1927(7)$ Mrad/s and that obtained from the R_N spectrum is $+1910(8)$ Mrad/s. The observation that the ω_L value obtained under the external magnetic field is smaller than that without it shows that the direction of the hyperfine magnetic field is opposite to that of the external magnetic field. From the two ω_L values and the value of the external field, the hyperfine magnetic field may be estimated. However, it is $-34(21)$ T, which has a large uncertainty.

A much more reliable value of B_{hf} for 141Ce in Fe is available: $-41(2)$ T at a low temperature, which was obtained with the technique of nuclear magnetic resonance on oriented nuclei (NMR/ON) [8]. Assuming that B_{hf} scales with temperature according to the temperature dependence of the Fe magnetization [16], the value of B_{hf} at room temperature is about 2% reduced from that at a few mK. Using this value of B_{hf} and the ω_L value of $+1927(7)$ Mrad/s, the magnetic moment of the 2083 keV level of 140Ce was derived to be $+4.00(20)\mu_N$. For the case of the ω_L value of $+1910(8)$ Mrad/s, the magnetic moment was derived to be $+3.99(20)\mu_N$, taking into account the external magnetic field of 0.3 T. The uncertainties in the parentheses composed of the statistical ones in the ω_L values and the uncertainty in the B_{hf} value are due essentially to the latter uncertainty. The average becomes $+4.00(20)\mu_N$. Figure 1 also shows the present result. Our value agrees well with the value obtained by Levy and Shirley in Ref. [4]: $+4.06(15)\mu_N$. The average of these two is $+4.04(12)\mu_N$ and is referred to hereafter as the LS-Oh value.

Shell-model calculations were performed on the first 2^+ and 4^+ levels of 136Xe, 138Ba, 140Ce, and 142Nd ($N = 82$ isotones), using two interactions, CD-Bonn $+ G$ matrix [9] and pairing + quadrupole-quadrupole (P + QQ) [10]. The model space consisted of $s_{1/2}, d_{5/2}, d_{3/2}, g_{7/2},$ and $h_{11/2}$ proton orbits outside the closed 132Sn core (the neutrons form a closed shell with $N = 82$). Throughout these calculations, the same effective proton orbital and spin g factors, g_p, and g_s, were used: $g_p = 1.0$ and $g_s = 0.7g_{free}$ (free proton) $= 3.91$, where the value of 0.7 is a standard spin-quenching factor. The results for the magnetic moments and excitation energies are summarized in Fig. 5, together with the corresponding experimental values taken from Ref. [3] and the LS-Oh value of $+4.04(12)\mu_N$ for the 4^+ level of 140Ce. The agreement between each calculation and the experiment is basically good. To be more precise, however, for the magnetic moment of the 2083 keV level of 140Ce, the shell-model calculation with the CD-Bonn $+ G$ matrix appears to be closer to the LS-Oh value than that with the P + QQ interaction. On the other hand, the situation is opposite for the 2^+ magnetic moment of 138Ba. Thus, the present experiment indicates that one needs further theoretical developments for a unified description with a sufficiently high precision.

IV. CONCLUSIONS

We implanted 140Cs into an Fe foil and successfully observed oscillation patterns due to a unique magnetic hyperfine interaction in the TDPAC spectra. Using the known value of B_{hf} at 141Ce in Fe, we derived the value of the magnetic moment of the 2083 keV level in 140Ce to be $+4.00(20)\mu_N$, which is in excellent agreement with $+4.06(15)\mu_N$ obtained by Levy and Shirley. The average of these two (the LS-Oh value) is $+4.04(12)\mu_N$. Two shell-model calculations, one with the CD-Bonn $+ G$ matrix and the other with the P + QQ interaction, reproduce fairly well the LS-Oh value, although the former calculation seems better. The present study thus provides a clear case that reliable experimental magnetic-moment values are useful to evaluate various calculations.