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Abstract

A general theory for coupled cell systems was formulated recently by I. Stewart,

M. Golubitsky and their collaborators. In their theory, a coupled cell system is a

network of interacting dynamical systems whose coupling architecture is expressed by

a directed graph called a coupled cell network. An equivalence relation on cells in

a regular network (a coupled cell network with identical nodes and identical edges)

determines a new network called quotient network by identifying cells in the same

equivalence class and determines a quotient system as well. In this paper we develop

an idea of reducibility of bifurcations in coupled cell systems associated with regular

networks. A bifurcation of equilibria from subspace where states of all cells are equal

is called a synchrony-breaking bifurcation. We say that a synchrony-breaking steady-

state bifurcation is reducible in a coupled cell system if any bifurcation branch for

the system is lifted from those for some quotient system. First, we give the complete

classification of codimension-one synchrony-breaking steady-state bifurcations in 1-

input regular networks (where each cell receives only one edge). Second, we show

that under a mild condition on the multiplicity of critical eigenvalues, codimension-one

synchrony-breaking steady-state bifurcations in generic coupled cell systems associated

with an n-cell coupled cell network with Dn symmetry, a regular network, is reducible

for n > 2.

Keywords: coupled cell network, coupled cell system, network symmetry, quo-
tient network, synchrony-breaking bifurcation.

1 Introduction

A general theory for coupled cell systems was introduced recently in I. Stewart,
et al. [1]. Since then the authors and their collaborators have been releasing
many papers related to the theory. By their formulation a coupled cell system
is a system of coupled ODEs whose coupling information is given by a coupled
cell network that is essentially a directed graph whose nodes (or cells) represent
states that evolve in time and whose edges (or couplings) represent interactions
between those states. See [1], [2], [4] for more precise formulation.
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In [6] the authors considered synchrony-breaking bifurcations in coupled cell
systems, which is an analogue of the symmetry-breaking bifurcations in systems
with symmetry. Such synchrony-breaking bifurcations are the main subject of
this paper. We shall recall them briefly in the following paragraphs based on
[6].

In this paper we study codimension-one synchrony-breaking bifurcations of
steady-state solutions in coupled cell systems. We focus on a special class of
coupled cell networks called regular networks, in which all cells are identical
and couplings are also identical, in particular each cell has the same number
of incoming edges called “inputs”. For a regular network, define an associated
ODE called an admissible vector field to the regular network as follows: Since
the total number of cells is finite, we can enumerate the cells and let name the
cells after its numbers. Let xj ∈ Rk be the state variable of the j-th cell (or
cell j), where k is the dimension of the internal dynamics in each cell, which
is assumed to be identical. Then the j-th component of the admissible vector
field has the form

ẋj = f(xj , xσj(1), . . . , xσj(v)) j = 1, . . . , n (1.1)

where the cell j receives inputs from the cells σj(1), . . . , σj(v). The σj(i)’s are
allowed to be equal to each other and even to j. The number v is called the
valency of the network and it is constant for any choice of the cell j because
each cell has the same number of inputs. The overbar indicates that the cou-
pling coordinates are invariant under permutations of the coupling cells. This
invariance is assumed, since we assume a unique type of coupling. Since there
is only one type of node, we assume that the function f : Rk × (Rk)v → Rk is
independent of j.

Example [n-cell bidirectional ring]: Consider the following n-cell regular net-
work with valency 2, called a bidirectional ring :
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Figure 1: n-cell bidirectional ring (BRn)

The corresponding admissible vector field takes the form

ẋ1 = f(x1, x2, xn)

ẋ2 = f(x2, x3, x1)

....

....

ẋn = f(xn, x1, xn−1)

(1.2)

where f : Rk × (Rk)2 → Rk satisfies f(a, b, c) = f(a, c, b).
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We say that a coupled cell system exhibits synchrony, if two or more cells
behave identically. A polydiagonal is a subspace ∆ of the phase space (Rk)n of
coupled cell system which is defined by equalities among some cell coordinates.
A synchrony subspace is a polydiagonal ∆ that is flow-invariant for every admis-
sible vector field associated with the coupled cell network. It is obvious that the
subspace ∆0 = {(x, . . . , x) ∈ (Rk)n} given by setting all coordinates equal in a
regular network yields a synchrony subspace. This ∆0 is called the completely
synchronous subspace.

We assume that an admissible vector field F has a completely synchronous
equilibrium X0 ∈ ∆0. Let Ec = EcF (X0) be the center subspace of (dF )X0 . We
say that the equilibrium X0 has a synchrony-breaking bifurcation, if Ec\∆0 6= ∅.

For a given coupled cell network and a polydiagonal ∆ of an associated ad-
missible vector field, we color cells so that any two cells i, j have the same color
when xi = xj in ∆. Theorem 4.3 of [4] states that ∆ is a synchrony subspace,
if and only if the coloring associated with ∆ is “balanced”. In the case of regu-
lar networks, a coloring of cells is called balanced, if cells with same color have
the same number of inputs in each color. Clearly, a balanced coloring is an
equivalence relation on cells, and therefore, for a coupled cell network, a bal-
anced coloring defines a new network called the quotient network by identifying
cells with the same color. Observe that a network can have different quotient
networks corresponding to different choices of balanced colorings.

Given a (regular) coupled cell network Γ and its quotient network Q, a
coupled cell system on the original network FΓ uniquely determines a coupled
cell system on the quotient network FQ, which we call the quotient system.
As noted above, the dynamics in the quotient system describes a synchronous
dynamics in the original system, and hence it is possible to lift a solution in
the quotient system to one in the original system. More explicitly, once we
have a solution in the quotient system, we can designate each variable in the
original system as the solution for its representative in the quotient system.
The solutions obtained in such way are called lifted solutions from the quotient
system.

The purpose of this paper is to study relations between bifurcations in cou-
pled cell systems and those in their quotient systems regarding network archi-
tectures. A related work on this subject is released in [6] in which the authors
showed that for two certain regular 5-cell coupled cell networks admitting 3-cell
bidirectional ring as a quotient network, generically there exists an additional
bifurcation branch of equilibrium in their associated coupled cell systems which
is not lifted from the quotient systems associated with the 3-cell bidirectional
ring. This result leads us to ask if those additional branches are lifted from any
of other quotient systems of the original ones. If this is true for all additional
branches, then we can conclude that generically all bifurcation branches in the
original system are lifted from its quotient systems. In fact there exist coupled
cell networks whose associated coupled cell systems satisfy such phenomenon. In
general we ask when and how much one can understand all bifurcating solutions
of original system only by studying its quotient systems and comparing these
to the original system. This question is our main motivation. Let us introduce
a notion of reducibility of bifurcations in coupled cell systems. Below we give a
definition of reducibility for bifurcations.

For steady-state bifurcations we define the notion of reducibility as follows:
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Definition 1.1. a) Let {Q1, . . . , Qm} be quotient networks of Γ . Then a
bifurcation in Γ is reduced to bifurcations in {Q1, . . . , Qm}, if for any bi-
furcation branch in FΓ there exists Qi such that it is lifted from FQi .

b) A bifurcation in a coupled cell network Γ is reducible, if the bifurcation in
Γ is reduced to bifurcations in the set of all quotient networks of Γ .

Otherwise, the bifurcation in a coupled cell network Γ is non-reducible.
That is, there exists a bifurcation branch which is not lifted from any of
its quotient.

Remark 1.2. We always consider that any bifurcation in the trivial coupled
cell network, which consists of just one cell, is non-reducible.

Remark 1.3. A similar definition to reducibility of steady-state bifurcations
can be given for other bifurcations such as the Hopf bifurcation with some
additional modifications, which will be a subject of future research.

Now our main motivation is to study reducibility of bifurcations in coupled
cell systems and to classify coupled cell networks in terms of reducibility. Here
we want to clarify that we study reducibility of bifurcations in coupled cell
systems concerning only the architecture of coupled cell networks. Thus, we
study how the network architecture affects the (non)reducibility of bifurcations
in associated coupled cell systems. From now on, we will understand bifurcations
in a coupled cell network as bifurcations in coupled cell systems associated with
the coupled cell network.

In this paper we study reducibility of steady-state bifurcations in 1-input
regular coupled cell networks in general and n-cell coupled cell networks with
Dn symmetry. First, for 1-input coupled cell networks, we show that any 1-
input regular coupled cell network is a loop with finite number of trees attached
to it. We classify all bifurcating solutions in the loop-chain networks and, as
a corollary, we can understand all bifurcating solutions in any 1-input regu-
lar coupled cell network for each critical real eigenvalue for the bifurcations.
Hence we conclude that steady-state bifurcations in 1-input regular coupled cell
network are non-reducible only if the loop in the network contains one or two
cells. Second, for n-cell coupled cell networks with Dn symmetry, we show that
steady-state bifurcations are reducible for n > 2 if the critical eigenvalues for
the bifurcations have multiplicity not more than two. Thus, we can investigate
all bifurcation branches in the n-cell coupled cell networks with Dn symmetry
only from its quotients.

We organize this article as follows: In Section 2 we formulate our main
results. In Theorem 2.5 we give the complete classification of codimension-one
synchrony-breaking steady-state bifurcations in 1-input regular networks. In
Theorem 2.8 we show that the codimension-one synchrony-breaking steady-state
bifurcations in generic coupled cell systems on the n-cell coupled cell network
with Dn symmetry (n > 2) are reducible if the critical eigenvalues for the
bifurcations have multiplicity one or two. The proofs of these results are given
in Section 3. In Section 4 we give concluding remarks with related works.

2 Main Results

First we consider 1-input regular coupled cell networks. Let xi ∈ Rk be the
state variable of i-th cell, where k is the dimension of the internal dynamics in

4



each cell. The i-th component of an admissible vector field of 1-input regular
network takes the form

ẋi = f(xi, xj),

when there is only one edge from a cell xj to the cell xi. Since there is only one
kind of cells and one kind of couplings, we assume that the function f : Rk ×
Rk → Rk is independent of i.

Let Γ = (C,E) be a coupled cell network. For cells u and v in C, a path
from u to v is a sequence of cells x0 = u, x1, x2, . . . , xn = v in C such that there
is an edge from cell xi to cell xi+1 for all i = 0, 1, . . . , n− 1.

Definition 2.1. We say Γ is connected, if for any two distinct cells u and v,
there is either a path from u to v, or one from v to u (not necessarily both).

We say Γ is strongly connected, if for any two distinct cells u and v, there is
a path from u to v, and also from v to u.

Proposition 2.2. Any connected coupled cell network can be uniquely decom-
posed into strongly connected coupled cell networks Γ1, Γ2, . . . , Γk such that, for
any i = 1, . . . , k and from each cell in Γi, there does not exist an edge to a cell
in Γj with j < i.

The proof of this proposition is straightforward, hence omitted. We call this
decomposition the Morse decomposition of Γ .

Proposition 2.3. Let Γ be a connected 1-input regular coupled cell network.
Suppose {Γ1, Γ2, . . . , Γk} is its Morse decomposition. Then Γ1 is a loop and each
Γi with i > 1 is a single cell.

Proof. (i) Since a given network is 1-input, every cell receives an edge from
only one cell. Choose an arbitrary cell j1. Let js+1 be the only cell such that js
receives an edge from it with s ≥ 1. That the number of cells is finite implies that
there exist s1, s2 with js1 = js2 , and hence the sequence {js}s≥1 forms a loop
with a chain attached to it. Therefore every cell is associated with a loop with a
chain attached to it. Consider any two distinct cells. If the corresponding loops
are different, then they do not have any common cell. As the connectivity of
the graph, there must exists a connection between these two loops, say between
a cell jl in the first loop and a cell jm in the second loop. Observe that one of
jl and jm receives at least 2 inputs, which is a contradiction. Therefore there
cannot exist two distinct loops. This shows what we want to prove. Q.E.D.

Definition 2.4. A 1-input coupled cell network consisting of a loop with a
chain attached to it is called a (1-input) loop-chain network.

Our first main result is as follows:

Theorem 2.5. For a 1-input regular coupled cell network Γ , assume that
there occur codimension-one synchrony-breaking steady-state bifurcations in FΓ .
Then, generically, the bifurcating steady-state solutions of FΓ restricted to every
loop-chain subnetwork of Γ can be classified into the following three types:

(i) a cascading solution of square-root type, that is, state of every cell in the
loop is zero and for any other cell, there are two possibilities of state solu-
tions. Once there is a nonzero state for some cell, for the rest of cells in
the chain, states are defined recurrently and the lowest order of the param-
eter of solutions at zero decreases twice in each step. See (3.14) for more
precise definition.
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(ii) a fully synchronous solution, that is, state of all cells are the same.

(iii) an alternately synchronous solution, that is, there are two types of states
for cells and any two cells which are connected to each other by an edge
have different states.

Corollary 2.6. The bifurcation corresponding to the solutions of type (i) in
the theorem is non-reducible only in networks where the containing loop has one
cell. Otherwise reducible.

The bifurcation corresponding to the solutions of type (ii) is reducible in all
networks, except the trivial one.

The bifurcation corresponding to the solutions of type (iii) is non-reducible
only in the network where itself is a loop consisting of two cells. Otherwise
reducible.

Remark 2.7. The precise formulation of non-degeneracy conditions is given in
the proof. See § 3.1.

For two or more input coupled cell networks, it is almost impossible to char-
acterize because the network structure would become more and more complex as
the number of cells increases. However, we try to understand dynamics on such
coupled cell networks by considering feed-forward networks since their Morse
decompositions can be represented as feed-forward networks.

On the other hand, it is also important to study the first component subnet-
work of the Morse decomposition, since it affects cells in all other components.
Therefore we are interested in strongly connected regular coupled cell networks.
In this paper we consider certain multiple input coupled cell networks, n-cell
coupled cell networks with Dn symmetry, which can be considered as one of the
natural and well-studied strongly connected coupled cell networks, and we have
the following result, which is our second main result:

Theorem 2.8. Generically, a codimension-one synchrony-breaking steady-state
bifurcation in a coupled cell system on the n-cell coupled cell network with Dn

symmetry (n > 2) is reducible if the critical eigenvalue for the bifurcation has
multiplicity one or two.

Remark 2.9. In case of n = 2 the bifurcation is non-reducible.
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Figure 2: 1-input loop-chain network
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3 Proof of Main Results

3.1 Proof of Theorem 2.5

Here we give a proof of Theorem 2.5.

First of all, let us recall the Lyapunov-Schmidt reduction briefly which plays
a main role in the proofs for theorems in this paper.

Consider a system of n equations

Fi(x, α) = 0, i = 1, . . . , n, (3.1)

where F = (F1, . . . , Fn) : Rn × R → Rn is a smooth mapping. We assume
that Fi(0, 0) = 0 for all i and we attempt to find solutions x = (x1, . . . , xn)
of the system as a function of α locally, near the origin. Let L = DxF (0, 0)
be the n × n Jacobian matrix. There are natural decompositions of Rn where
Rn = KerL⊕M, and Rn = N ⊕ RangeL. Let E be the projection of Rn onto
RangeL with KerE = N . Suppose that dim KerL = m. If m = 0 the system
can be solved uniquely by the Implicit Function Theorem. If m > 0 one can
obtain a system of m equations

gi(y, α) = 0, i = 1, . . . ,m (3.2)

where {y1, . . . , ym} ⊂ {x1, . . . , xn} and G = (g1, . . . , gm) : Rm × R → Rm is a
smooth mapping, and satisfies that whose solutions y = (y1(α), . . . , ym(α)) near
the origin can be put in one-to-one correspondence with solutions of the system
(3.1). This is the Lyapunov-Schmidt reduction for (3.1). For more detail, see
[5].

Lower order terms of the reduced system can be found as follows:

a)
∂gi
∂yj

= 0, (3.3)

b)
∂2gi
∂yj∂yk

= 〈v∗i , d2F (vj , vk)〉, (3.4)

c)
∂3gi

∂yj∂yk∂y`
= 〈v∗i , V 〉, (3.5)

d)
∂gi
∂α

= 〈v∗i , Fα〉, (3.6)

e)
∂2gi
∂yj∂α

= 〈v∗i , (dFα) · vj − d2F (vj , L
−1EFα)〉, (3.7)

where {vi}i=1,...,m is a basis for KerL, {v∗i }i=1,...,m is a basis for (RangeL)⊥,
and

V = d3F (vj , vk, v`)− d2F (vj , w`k)− d2F (vk, w`j)− d2F (v`, wkj), (3.8)

where wst = L−1Ed2F (vs, vt).
Also note that the procedure for obtaining a reduced system G by the

Lyapunov-Schmidt reduction in [5] clearly shows that if F (0, α) = 0 for all
α ∈ R, then G(0, α) = 0 for all α ∈ R.
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Proof of Theorem 2.5. Suppose we have a loop-chain network as illustrated
in Figure 2, embedded in Γ . A one-parameter family of admissible vector fields
F associated with the loop-chain network has the form

ẋ1 = f(x1, x`, λ)

ẋ2 = f(x2, x1, λ)

....

ẋ` = f(x`, x`−1, λ)

ẋ`+1 = f(x`+1, x`, λ)

....

ẋ`+m = f(x`+m, x`+m−1, λ),

(3.9)

where xi ∈ Rk, i = 1, . . . , `+m, and λ ∈ R is the bifurcation parameter.
We can write the equation (3.9) simply as Ẋ = F (X,λ), where X =

(x1, . . . , x`+m)T . In order to describe steady-state bifurcations we must solve
the equation

F (X,λ) = 0. (3.10)

As discussed in Section 2.3 in [6] there is no loss of generality in assuming
that the phase space of each cell is one-dimensional, that is k = 1.

The adjacency matrix associated with the loop-chain network is of the form

ALCN =

[
A 0`×m
C B

]
where A is an ` × ` matrix corresponding to the loop, B is an m ×m matrix
corresponding to the chain, and C is an m × ` matrix whose all entries are 0
except the upper right one. More precisely,

A =


0 1

1 0 0
1 0

0
. . .

. . .

1 0

 B =


0

1 0 0
1 0

0
. . .

. . .

1 0

 (3.11)

It follows that the characteristic polynomial of ALCN is

χ(ALCN) = ((−µ)` − 1)× (−µ)m. (3.12)

Since we study steady-state bifurcations in F , we look for only real eigenval-
ues. The possible real eigenvalues of ALCN are µ = {−1, 0, 1}. By Proposition
2.14 in [6] the critical real eigenvalues of the linearization of F at the origin are
fu(0) − fv(0), fu(0), fu(0) + fv(0), where fu(0), fv(0) denote the derivatives of
f with respect to the first and second variable, respectively, evaluated at the
origin. We also denote by fuu(0), fuv(0), fuuu(0), etc., the second and third
derivatives of f with respect to the first and the second variable at the origin,
and so on.

Observe that, in view of Proposition 2.14 in [6], fu(0)−fv(0), fu(0)+fv(0) are
the eigenvalues of DF (0) restricted to the loop part, since ±1 are the eigenvalues

8



of the adjacency matrix A. Similarly, the eigenvalue fu(0) corresponds to the
remaining tree part.

Assume that f(0, 0, λ) = 0 for all λ ∈ R. If we have a critical eigenvalue,
generically we have a codimension-one synchrony-breaking steady-state bifur-
cation from the trivial equilibrium.

(i) Assume that fu(0) = 0. Since the critical eigenvalue fu(0) does not
correspond to the loop, as explained above, there can not occur any bifurcation
in the loop, and hence xi = 0 for i = 1, 2 . . . , `. We then find x`+1, x`+2, . . .
successively as explained below.

The Taylor expansion of f at the origin is

f(u, v, λ) =fu(0)u+ fv(0)v +
1

2
fuu(0)u2 +

1

2
fvv(0)v2 + fuv(0)uv

+ fuλ(0)uλ+ fvλ(0)vλ+O(3).
(3.13)

In the equation f(x`+1, x`, λ) = 0, we set x` = 0 and obtain

x`+1 ×
{

1

2
fuu(0)x`+1 + fuλ(0)λ+O(2)

}
= 0.

It implies that x`+1 = 0 or x`+1 = h(λ). In case x`+1 = 0, the same holds for the
equation f(x`+2, x`+1, λ) = 0, and we conclude that x`+2 = 0 or x`+2 = h(λ).
As long as we choose x`+j = 0 for all j = 1, 2, . . . , we have the same conclusion
for f(x`+j+1, x`+j , λ) = 0. If we choose x`+j = h(λ) for some j, then the
solution at the next step depends on h(λ). This is the basic idea for finding all
the equilibrium solutions, and below we give a precise argument based on this
idea.

Lemma 3.1. For a natural number r, let y(λ) be a smooth function defined on

an open interval (0, λ0) for some λ0 > 0 which has the lowest order λ2−r
at 0.

Let φ(u, v, η) : R3 → R be a smooth function. Assume that φ(0, 0, η) ≡ 0 for all
η ∈ R and φu(0) = 0, φv(0)φuu(0) < 0 where φu(0), φv(0), φuu(0) are derivatives
of φ at 0. Then, for sufficiently small λ, the equation φ(x, y(λ), λ) = 0 has

exactly two solutions xi(λ) (i = 1, 2), both of which have the lowest order λ2−(r+1)

at 0.

Proof. From the Taylor expansion of φ at the origin we obtain

φ(x, y(λ), λ) =φv(0)y(λ) +
1

2
φuu(0)x2 +

1

2
φvv(0)y(λ)2 + φuv(0)xy(λ)

+ φuλ(0)xλ+ φvλ(0)y(λ)λ+O(3).

Let us change the coordinate as x = x, λ = µ2r (µ > 0) in φ(x, y(λ), λ) = 0,

and we get φ̃(x, µ) = 0. Since y(λ) has the lowest order λ2−r
at 0, it follows

that
∂φ̃(x, µ)

∂µ
(0, 0) = φv(0).

Since φv(0) 6= 0, the Implicit Function Theorem guarantees existence of a unique
solution µ = Λ(x) satisfying

φ̃(x,Λ(x)) ≡ 0
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with Λ(0) = 0, Λ′(0) = 0 and Λ′′(0) = −φuu(0)/2φv(0). Therefore there exist
x̃1(µ), x̃2(µ) with the lowest order µ1/2. Hence there exist x1(λ), x2(λ) with the

lowest order λ2−(r+1)

at 0 satisfying φ(x, y(λ), λ) = 0. Q.E.D.
Note that if φv(0)φuu(0) > 0 in the lemma, then there is no solution for x.

Let j be the smallest natural number such that x`+j 6= 0. Obviously

x`+j = h(λ) = −2fuλ(0)

fuu(0)
λ+O(2).

Here we assume that, as non-degeneracy conditions, fuu(0) 6= 0, fuλ(0) 6= 0 and
fv(0) 6= 0 as well. We can easily show that the equation

f(x`+j+1, x`+j , λ) = f(x`+j+1, h(λ), λ) = 0

has only two solutions for x`+j+1 with the lowest order |λ|1/2 at 0 and these
solutions are defined on either a positive or a negative sided neighborhood of
λ = 0 depending on the signs of the derivatives fv(0), fuλ(0). If the solutions for
x`+j+1 are defined on a negative sided neighborhood of λ = 0, we can replace
λ as −(−λ) in the system and consider −λ as λ. Therefore we can assume that
the solutions for x`+j+1 are defined on a positive sided neighborhood of λ = 0.

Once x`+j+1 is chosen as h1(λ), we use the Lemma 3.1 repeatedly to find
x`+j+s with s > 1. By setting h0(λ) = h(λ), we obtain a final solution of (3.10)
of the form

X(λ) = (0, . . . , 0︸ ︷︷ ︸
`

, 0, . . . , 0, h0(λ), h1(λ), . . . , hp(λ)) (3.14)

where hi(λ) has the lowest order λ2−i at 0.
Note that, from the above argument, we can conclude that the equation

(3.10) has exactly 2m solutions, each of which is of the form (3.14) for a suitable
choice of x`+j .

(ii) Assume that fu(0) +fv(0) = 0. This assumption leads to the occurrence
of a steady-state bifurcation in the loop. Now we assume the system restricted
to the loop, which is 

ẋ1 = f(x1, x`, λ)

ẋ2 = f(x2, x1, λ)

....

ẋ` = f(x`, x`−1, λ),

(3.15)

or simply we can write in the form Ẋ = FL(X,λ), where X = (x1, . . . , x`)
T .

We need to solve the equation

FL(X,λ) = 0. (3.16)

The linearization of FL at 0 is

DFL(0) = fu(0)I + fv(0)A (3.17)

where A is defined in (3.11) and I is the identity matrix of size `.
It is already known that the only critical eigenvalue of DFL(0) is fu(0) +

fv(0) = 0, so dim KerDFL(0) = 1. Now we use the Lyapunov-Schmidt reduction

10



and obtain a single reduced equation, say g(xj , λ) = 0 for some j. Let v =
v∗ = (1, . . . , 1). Then v and v∗ are bases for KerDFL(0) and (RangeDFL(0))⊥

respectively. Since we have the Taylor expansion (3.13), we can easily obtain:

∂g

∂xj
= 0,

∂2g

∂x2
j

= 〈v∗, d2FL(v, v)〉 = `(fuu(0) + fvv(0) + 2fuv(0)),

∂2g

∂xj∂λ
= 〈v∗, (dFLλ) · v − d2F (v, L−1EFLλ)〉 = `(fuλ(0) + fvλ(0)).

We have the assumption f(0, 0, λ) = 0 for all λ ∈ R. Hence, as noted before,
g(0, λ) = 0 for all λ ∈ R. This shows that g(xj , λ) = xj × g̃(xj , λ), where

∂g̃

∂xj
=

1

2
`(fuu(0) + fvv(0) + 2fuv(0)),

∂g̃

∂λ
= `(fuλ(0) + fvλ(0)).

As non-degeneracy conditions we assume that fuu(0) + fvv(0) + 2fuv(0) 6= 0
and fuλ(0) + fvλ(0) 6= 0. Then by the Implicit Function Theorem, we directly
conclude that there exists a unique non-trivial solution xj = Xj(λ), and hence
it shows that there exists a unique non-trivial solution X(λ) of FL(X,λ) = 0.

On the other hand, if we restrict the system to x1 = x2 = . . . = x` = x, then
we have the equation

f(x, x, λ) = 0.

By (3.13), we obtain

x×
(1

2

(
fuu(0) + fvv(0) + 2fuv(0)

)
x+

(
fuλ(0) + fvλ(0)

)
λ+O(2)

)
= 0.

From the above non-degeneracy conditions, the Implicit Function Theorem
guarantees the existence of a unique non-trivial transcritical solution x(λ) for
the equation f(x, x, λ) = 0. Since this certainly gives a solution of the orig-
inal equation FL(X,λ) = 0, by uniqueness, the only non-trivial solution of
FL(X,λ) = 0 is given by

X(λ) =
(
x(λ), . . . , x(λ)

)
.

(iii) Assume that fu(0)− fv(0) = 0 (and ` is even). The idea of the proof of
this part is almost the same as before.

Since fu(0)− fv(0) = 0 is the only critical eigenvalue of DFL(0), where FL
is the restricted system to the loop, again we obtain a single reduced equation
g(xj , λ) = 0 for some j by the Lyapunov-Schmidt reduction. Let v = v∗ =
(1,−1, . . . , 1,−1) be bases for KerDFL(0) and (RangeDFL(0))⊥ respectively.
Let us define the followings:

A = fuu(0) + fvv(0)− 2fuv(0), C = fuu(0)− fvv(0),

B = fuλ(0)− fvλ(0), D = fuuu(0)− 3fuuv(0) + 3fuvv(0)− fvvv(0).
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Easy observation shows that

d2FL(v, v) = (A, . . . , A),

d3FL(v, v, v) = (D,−D, . . . ,D,−D),

L−1Ed2FL(v, v) = (w1, w2, . . . , w1, w2)

where w1 + w2 = B/fu(0). Then we can obtain the following:

∂g

∂xj
= 0,

∂2g

∂x2
j

= 〈v∗, d2FL(v, v)〉 = 0,

∂2g

∂xj∂λ
= 〈v∗, (dFLλ) · v − d2FL(v, L−1EFLλ)〉 = `B,

∂3g

∂x3
j

= 〈v∗i , d3FL(v, v, v)− 3d2FL(v, L−1Ed2FL(v, v))〉 = `

(
D − 3AC

2fu(0)

)
.

Similarly to the previous case, the assumption that f(0, 0, λ) = 0 for all
λ ∈ R implies g(0, λ) = 0 for all λ ∈ R, which shows g(xj , λ) = xj × g̃(xj , λ).
Hence

∂g̃

∂xj
= 0,

∂g̃

∂λ
= `B,

∂2g̃

∂x2
j

= `

(
D − 3AC

2fu(0)

)
.

From the above, under the non-degeneracy conditions

B 6= 0, D − 3AC

2fu(0)
6= 0,

we can conclude that the steady-state bifurcation is of pitchfork type. Hence
there are two non-trivial solutions for FL(X,λ) = 0.

On the other hand, if we restrict the system to x1 = x3 = . . . = x`−1 = x
and x2 = x4 = . . . = x` = y, then we have equations{

f(x, y, λ) = 0

f(y, x, λ) = 0.

This is a special case of the case (iii) when ` = 2, and hence, just as above, we
obtain two non-trivial solutions, say (x(λ), y(λ)) = (xj(λ), yj(λ)) with j = 1, 2.
Therefore we have two non-trivial solutions of the original problem in the case
(iii) which take the form Xj(λ) = (xj(λ), yj(λ), . . . , xj(λ), yj(λ)) with j = 1, 2.
This means X1(λ) and X2(λ) are the only solutions for FL(X,λ) = 0. Q.E.D.

One can easily show the Corollary 2.6 of the Theorem 2.5 by using the
following Lemma 3.2.

Lemma 3.2. If, generically, coupled cell systems on a fixed coupled cell network
have a bifurcation branch of equilibrium for which some cells are synchronous,
then this steady-state bifurcation is reducible.

12



Proof. Let X0 = (x0
1(λ), . . . , x0

n(λ)) be a bifurcation branch of equilibrium
where λ is the bifurcation parameter defined on some interval [λ1, λ2]. Then{

(x0
1(λ), . . . , x0

n(λ)) | λ ∈ [λ1, λ2]
}

defines a sub-polydiagonal in which i-th and j-th coordinates are equal if x0
i (λ) =

x0
j (λ) on [λ1, λ2] for i 6= j. Then the sub-polydiagonal is invariant under every

vector field on the coupled cell network because of the genericity and contin-
uation. Hence, by Theorem 6.5 in [1], the coloring corresponding to the sub-
polydiagonal is balanced. By the assumption there exist two cells with same
color and hence the quotient network associated with the coloring is smaller than
the original network. This shows that the steady-state bifurcation is reducible.

Q.E.D.

3.2 Proof of Theorem 2.8

Let G be a coupled cell network with n identical nodes and one kind of couplings
(edges) between them. Assume that any edge is bidirectional, that is, if a cell i
interacts with a cell j then the cell j interacts with the cell i exactly in the same
way. Also we can always assume that the nodes form vertices of a convex regular
n-sided polygon. Then one can obtain a new regular coupled cell network Γ
with Dn symmetry whose nodes are those of G and edges are the union of all
edges of G rotated by the angles 2πk/n with k = 1, . . . , n. We call G a generator
of Γ .

Proposition 3.3. Any regular coupled cell network with Dn symmetry has a
generator.

Proof. For any two cells there is a reflection that switches the two cells.
Therefore any edge is bidirectional.

Let θ be the action of the Dn symmetry corresponding to the rotation. For
any edge e there are edges θe, . . . , θn−1e obtained by the rotation. Therefore
the set of edges of the coupled cell network is divided into subsets

Ei = {ei, θei, . . . , θn−1ei}.

It is obvious that a coupled cell subnetwork with the n nodes and edges chosen
only one from each Ei is a generator of the coupled cell network. Q.E.D.

From the Proposition 3.3 we can obtain that the adjacency matrix of the
coupled cell network Γ is

AΓ = AG +B−1AGB + · · ·+B−(n−1)AGB
n−1

where AG is the adjacency matrix of G and

B =


0 1 0

0
. . .

0
. . . 1

1 0

 .
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In order to find eigenvalues of AΓ let us complexify the original space, that
is AΓ acts on Cn. Let v` = (1, ζ`, . . . , ζ(n−1)`)T where ζ = exp(2πi/n) and
` ∈ {0, 1, . . . , n− 1}. Then easy computation shows that

AΓ v` = (v`
TAG v`) · v`.

Hence all eigenvalues of AΓ are v`
TAG v` with ` = 0, 1, . . . , n− 1.

Note that
i) AΓ is a symmetric matrix, i.e., ATΓ = AΓ . Hence its eigenvalues v`

TAG v`
are all real for ` = 0, 1, . . . , n− 1.
ii) Since v` = vn−`,

v`
TAG v` = vTn−`AG vn−`.

Hence when ` 6= 0, n/2 , every eigenvalue of AΓ is with multiplicity at least two
and the only possibilities for an eigenvalue being with multiplicity one are when
` = 0, n/2.

Proof of Theorem 2.8. Let an admissible vector field associated with an
n-cell coupled cell network with Dn symmetry be given by

Ẋ = F (X,λ), X = (x1, . . . , xn)T . (3.18)

Here λ ∈ R is a bifurcation parameter. As discussed in Section 2.3 in [6] there
is no loss of generality in assuming that the phase space of each cell is one-
dimensional. So we assume that xi ∈ R, i = 1, . . . , n.

Note that each component of F is of the form

ẋi = f(xi, xi1 , . . . , xik , λ) (3.19)

with an identical f : Rk+1 × R→ R for i = 1, . . . , n.

Suppose the linearization of F at 0, DxF (0), has a simple critical eigenvalue.
Then, by Proposition 2.14 in [6], the critical eigenvalue is fu(0) + fv(0) or
fu(0) − fv(0), when n is even. Observe that these are also eigenvalues of the
linearizations of the quotient systems of (3.18) with one cell and two cells, for
even n. If we consider synchrony-breaking steady-state bifurcation problem,
then there is no additional bifurcation branch in the original system other than
those in the quotient systems because the multiplicity of the critical eigenvalue
is one. Therefore the synchrony-breaking steady-state bifurcation is reducible.

Suppose now DxF (0) has a critical eigenvalue with multiplicity two. By
Proposition 2.14 in [6], we can consider that the eigenvalue is of the form fu(0)+
µfv(0) where µ is an eigenvalue of AΓ with multiplicity two. That is,

fu(0) + µfv(0) = 0 (bifurcation condition).

Here we assume that fv(0) 6= 0 as a non-degeneracy condition. Since we are
interested in synchrony-breaking steady-state bifurcations, we have to solve the
following equation:

F (X,λ) = 0 (3.20)

under the above bifurcation condition and F (0, λ) ≡ 0 for all λ ∈ R.

It is easy to check that dim KerDxF (0) = 2. By the Lyapunov-Schmidt
reduction and Theorem 1.28 in [3], we can obtain a reduced equation

g : R2 × R→ R2

14



which is Dn - equivariant and whose bifurcating solutions are in one-to-one cor-
respondence with those of F .

For the moment we ignore the parameter because of its irrelevance along the
proof.

We identify R2 ∼= C. By Theorem 2.24 in [3], if h : C→ C is Dn - equivariant
under the standard action, then there exists p, q : R2 → R such that

h(z) = p(u, v)z + q(u, v)zn−1 (3.21)

where u = zz and v = zn + zn. Here the standard action means{
θz = eiθz (θ = 2π

n )

κz = z.

The Theorem 2.24 in [3] also tells that if q(0) 6= 0, then there is no solution
other than those predicted by the Equivariant Branching Lemma (see [3] in
detail). Here, of course, we consider the eigenvalue crossing condition and it is
obviously a non-degeneracy condition for f .

We shall now prove that generically q(0) 6= 0. In order to prove this it is
enough to show that the condition holds only for one specific g, or equivalently
f . Let Υ be the set of all admissible functions f in the right hand side of (3.19),
namely, let

Υ = {f(u, v1, . . . , vk) : Rk+1 → R | f is smooth}.

For a non-negative integer vector i = (i0, i1, . . . , ik), define the i-th Taylor
coefficient of f at 0 as

ϕi(f) =
( ∂
∂u

)i0( ∂

∂v1

)i1
· · ·
( ∂

∂vk

)ik
f(0).

Note that ϕi can be considered as a map ϕi : Υ → R which is linear (see [5],
Chapter I, §3). Since q(0) is a coefficient of the reduced equation obtained by
the Lyapunov-Schmidt reduction it is expressed by a polynomial of some lower
degree Taylor coefficients of f . Thus,

[q(0)](f) =
∑
j:finite

aj · ϕj1(f) · · ·ϕj`(j)(f) (3.22)

for some aj ∈ R and `(j) ∈ N. Let us denote ψ(f) = [q(0)](f) : Υ → R. If
ψ(f) 6= 0 for some f , then there exists nonzero aj ∈ R.

Suppose ψ(f̃) = 0 for some f̃ . Then we can perturb f̃ by cf + (1 − c)f̃
and ψ(cf + (1 − c)f̃) 6= 0 for almost all c ∈ R, except finite number of points
in R, since the right hand side of the equation (3.22) will be a non-constant
polynomial of c. This shows denseness of the set ψ−1(R\{0}) in Υ. Since
ϕi(f) are continuous, so is ψ(f) and hence the set ψ−1(R\{0}) is open and
nonempty. Therefore the set Υ\ψ−1({0}) = ψ−1(R\{0}) is open and dense,
which is generic.

Now we give examples of f for which the non-degeneracy condition q(0) 6= 0
holds. Consider

f(u, v1, . . . , vk) = −µu+ v1 + · · ·+ vk + un−1.

15



Recall that (dF )0 has 0 as an eigenvalue with multiplicity two. Let

w1 :=
v + v

2
= (1, cosα, . . . , cos(n− 1)α)T ,

w2 :=
v − v

2i
= (0, sinα, . . . , sin(n− 1)α)T

be eigenvectors corresponding to the eigenvalue 0 where µ = 2 cosα. Since
(dF )0 is symmetric, the eigenvectors of (dF )T0 corresponding to the eigenvalue
0 are the same.

Suppose that the action of the Dn symmetry of the original system F is
defined as the following:{

γ(r1, . . . , rn)T = (rn, r1, . . . , rn−1)T

τ(r1, . . . , rn)T = (r1, rn, . . . , r3, r2)T

for (r1, . . . , rn)T ∈ Rn. Then it is easy to check that for any a, b ∈ R

γs(aw1 + bw2) = (a cosα− b sinα)γs−1w1 + (a sinα+ b cosα)γs−1w2

for s = 1, . . . , n where γs denotes s times iterated actions of γ and

τ(aw1 + bw2) = aw1 − bw2.

Hence we can conclude that if we choose w1, w2 as a basis for KerDxF (0), then

g(z) = g1(x, y) + ig2(x, y) (z = x+ iy and x, y ∈ R)

is Dn - equivariant under the standard action where g1(x, y), g2(x, y) are the
reduced equations of the equation F (X) = 0 after using the Lyapunov-Schmidt
reduction. So g(z) is of the form as in the equation (3.21).

Note that since all coefficients of f with degree between two and n − 2 are
0, we obtain that

an−1−` :=
∂n−1g1(x, y)

∂xn−1−` ∂y`
(0) = 〈w1, d

n−1F (w1, . . . , w1︸ ︷︷ ︸
n−1−`

, w2, . . . , w2︸ ︷︷ ︸
`

)〉,

bn−1−` :=
∂n−1g2(x, y)

∂xn−1−` ∂y`
(0) = 〈w2, d

n−1F (w1, . . . , w1︸ ︷︷ ︸
n−1−`

, w2, . . . , w2︸ ︷︷ ︸
`

)〉
(3.23)

for ` = 0, 1, . . . , n− 1. Then

g1(x, y) =

n−1∑
j=0

(
n

n− 1− `

)
an−1−jx

n−1−jyj +O(n)

g2(x, y) =

n−1∑
j=0

(
n

n− 1− `

)
bn−1−jx

n−1−jyj +O(n).

(3.24)

Denote that

R1(x, y) :=

n−1∑
j=0

(
n

n− 1− `

)
an−1−jx

n−1−jyj ,

R2(x, y) :=

n−1∑
j=0

(
n

n− 1− `

)
bn−1−jx

n−1−jyj .

(3.25)

16



Let us recall the Definition 1.15 and the Theorem 1.17 from [3] for fixed
point subspace. The fixed point subspace of Σ is

Fix(Σ) = {v ∈ Rn : σv = v for all σ ∈ Σ}

where Σ j Γ is a subgroup and Γ is a Lie group that acts on Rn. Then Fix(Σ) is
invariant under any Γ-equivariant φ : Rn → Rn. That is, φ(Fix(Σ)) j Fix(Σ).

Since fixed point subspace is invariant and is a projection of the original
space, q(0) 6= 0 on a fixed point subspace will directly imply q(0) 6= 0 on
the original space, which is our claim. Let us observe q(0) along fixed point
subspaces. Take z = x ∈ R\{0} in the equation (3.21) and we have

g(x) = p(x2, 0)x+ q(0)xn−1 (mod |x|n).

If n is odd, q(0) is precisely the coefficient of the (n− 1)-th degree term of g. If
n is even, the coefficient of the (n− 1)-th degree term of g is A+ q(0) for some
A ∈ R. If we take z = exp(πi/2m)x where x ∈ R\{0} and n = 2ms for some
odd integer s, we get that the coefficient of the (n − 1)-th degree term of g is
exp(πi/2m)(A− q(0)).

(i) Suppose n is odd. When y = 0 the coefficient of the (n− 1)-th term of g
is only (g1)xn−1 at zero. From (3.23) we obtain that

(g1)xn−1 = 〈w1, d
n−1F (w1, . . . , w1)〉.

Hence

(g1)xn−1 =
1

(n− 1)!

n−1∑
j=0

(cos jα)n =
1

(n− 1)!

n

2n−1

which is nonzero.

(ii) Suppose n is even. Let n = 2ms, s being odd. In order to prove that
q(0) 6= 0 it is enough to prove that the coefficient of the (n− 1)-th term of g(x)
and g(exp(πi/2m)x) divided by exp(πi/2m) are different for x ∈ R\{0}.

Set y = 0. Then the coefficient of the (n− 1)-th term of g(x) is

(g1)xn−1 =
1

(n− 1)!

n−1∑
j=0

(cos jα)n =
1

(n− 1)!

n

2n

(
2 +

(
n
n
2

))
.

On the other hand,

g(ei
π

2m x) = g(cos
π

2m
x+ i sin

π

2m
x)

=

(
R1(cos

π

2m
, sin

π

2m
) + iR2(cos

π

2m
, sin

π

2m
)

)
xn−1 +O(n).

To simplify the notation we write Ri(cos π
2m , sin

π
2m ) as Ri for i = 1, 2.

Note that

R1 + iR2

ei
π

2m
= (R1 cos

π

2m
+R2 sin

π

2m
) + i(R2 cos

π

2m
−R1 sin

π

2m
)

and it is real. Hence the coefficient of the (n − 1)-th term of g(exp(πi/2m)x)
divided by exp(πi/2m) is

R1 cos
π

2m
+R2 sin

π

2m
.
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We claim to prove that this is not equal to (g1)xn−1 which is found above. From
(3.23) we easily obtain that

(n− 1)!

(
R1 cos

π

2m
+R2 sin

π

2m

)
=

1

2

n−1∑
j=0

((
cos jα cos

π

2m
+ sin jα cos

π

2m
)n

+
(

cos jα cos
π

2m
− sin jα cos

π

2m
)n)

=

n−1∑
j=0

(
cos(jα+

π

2m
)

)n
=

n

2n

(
2 cos

π

2m
+

(
n
n
2

))
=

n

2n

(
− 2 +

(
n
n
2

))

which is not equal to (n−1)! ·(g1)xn−1 . The claim is proved. Therefore q(0) 6= 0.

We just have shown that all steady-state solutions of the system (3.18)
are predicted by the Equivariant Branching Lemma. Hence we conclude that
there must exist some synchronous cells for any bifurcation branch and by the
Lemma 3.2 the codimension-one synchrony-breaking steady-state bifurcation is
reducible. Q.E.D.

4 Discussion

The structure of a coupled cell network would become complex as the number of
cells and couplings increase in general. When we consider coupled cell systems
on a coupled cell network with complex structure, one of approaches to solutions
of the system is to look at its quotient systems because quotient systems are
simpler than the original one. Thus arises a natural question that how much
one can say about the solutions of the original systems by collecting information
from its quotient systems. Sometimes it may be possible to find all solutions
of the original system from those of its quotient systems, but sometimes not.
In this paper we try to give an idea of reducibility of bifurcations which is to
understand all bifurcation solutions of coupled cell systems on a fixed coupled
cell network by considering bifurcation solutions of all its quotient systems.
Our aim is to understand how the network structure affects the reducibility of
bifurcations in coupled cell systems on a given coupled cell network. That is,
we try to find some criterion for the network structure and classify coupled cell
networks by reducibility.

We begin by considering 1-input regular coupled cell networks. Our first
main result is the classification of codimension-one synchrony-breaking steady-
state bifurcations in 1-input regular coupled cell networks. As a corollary we
determined whether these bifurcations are reducible or non-reducible.

For multiple input regular coupled cell networks we consider regular cou-
pled cell networks with Dn symmetry. The second main result states that
codimension-one synchrony-breaking steady-state bifurcations in the n-cell cou-
pled cell networks withDn symmetry are generically reducible, if the multiplicity
of the critical eigenvalue for the bifurcation is one or two. We show that for
“most” of coupled cell networks with Dn symmetry and for a generic associ-
ated coupled cell system its linearization has eigenvalues with multiplicity one
or two. Also we explain the difficulty for the bifurcation problem in which the
multiplicity of the critical eigenvalue is greater than two.
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It is known in [6] that eigenvalues of the linearization of coupled cell systems
on a regular coupled cell network are in one-to-one relation with eigenvalues
of the adjacency matrix of the coupled cell network as long as each cell has
one-dimensional internal dynamics. Therefore below we show that for “most”
of regular coupled cell networks with Dn symmetry its adjacency matrices have
eigenvalues with multiplicity one or two.

Let Γ be a regular coupled cell network with Dn symmetry. Then we can
choose G as a generator of Γ so that every edge is connected to the first node
in G. Let the adjacency matrix of G be

AG = (aij)i,j=1,...,n (aij ∈ Z+).

Then aij = 0 if i, j > 1. Moreover we can assume that a1j = aj1 = 0 if
n/2 < j ≤ n and a1j = aj1 if 1 ≤ j < n/2. Hence eigenvalues of AΓ are:

µ` =
1

2

n−1∑
j=0

bj+1(ζj` + ζ−j`)

with ` = 0, 1, . . . , n − 1. Here ζ = exp(2πi/n) and bj+1 = bn+1−j = a1,j+1 for
1 ≤ j ≤ n/2. We know that µi = µn−i for all i = 1, . . . , n − 1. Hence, if there
exists an eigenvalue with multiplicity more than two then there should satisfy
µi = µk for some distinct i, k ∈ {0, . . . , n − 1} with i + k 6= n. Observe that
µi = µk if and only if

n∑
j=1

rjbj = 0 (4.1)

where rj = (ζ(j−1)i + ζ−(j−1)i)− (ζ(j−1)k + ζ−(j−1)k) ∈ R for j = 1, . . . , n. It is
easy to check that (r1, . . . , rn) 6= 0.

Unless the condition (4.1) is satisfied for some i and k with i+ k 6= n, every
eigenvalue of AΓ is with multiplicity one or two. Hence any such regular coupled
cell network with Dn symmetry has an adjacency matrix whose eigenvalues
being with multiplicity one or two. Below we show two examples when n = 6, 7.

Let Γ be a 6-cell regular coupled cell network withD6 symmetry and {µi}i=0,...,5

be eigenvalues of AΓ. We know that µ1 = µ5, µ2 = µ4. As discussed above we
have the following:

µ0 = µ1 ⇐⇒ b2 + 3b3 + 2b4 = 0

µ0 = µ2 ⇐⇒ 3b2 + 3b3 = 0

µ0 = µ3 ⇐⇒ 4b2 + 2b4 = 0

µ1 = µ2 ⇐⇒ 2b2 − 2b4 = 0

µ1 = µ3 ⇐⇒ 3b2 − 3b3 = 0

µ2 = µ3 ⇐⇒ b2 − 3b3 + 2b4 = 0

where b2, b3, b4 are shown in Figure 3. Hence we conclude that AΓ has no
eigenvalue with multiplicity more than two if the following holds:

b2 6= b3, b2 6= b4, b2 + 2b4 6= 3b3.

Let Γ be a 7-cell regular coupled cell network with D7 symmetry. Similarly,
we conclude that AΓ has no eigenvalue with multiplicity more than two if the
following holds:

b2 6= b3, b2 6= b4, b3 6= b4.
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Figure 3: A generator of n-cell regular coupled cell network with Dn symmetry
with n = 6, 7. [·] denotes the multiplicity of the corresponding arrow.

Furthermore, note that every eigenvalue of the adjacency matrix ABRn of
the n-cell bidirectional ring is with multiplicity one or two for any n ∈ N.

Now we show the difficulty of the synchrony-breaking steady-state bifurca-
tion problem

F (X,λ) = 0 (X ∈ Rn)

under the condition F (X,λ) ≡ 0 for all λ ∈ R, where F is a coupled cell
system on an n-cell coupled cell network with Dn symmetry and DxF (0) has
a critical eigenvalue with multiplicity m greater than two. It is easy to check
that dim KerDxF (0) = m. By the Lyapunov-Schmidt reduction and Theorem
1.28 in [3], we can obtain a reduced equation g : Rm × R → Rm which is Dn -
equivariant and whose bifurcating solutions are in one-to-one correspondence
with those of F . Because of its irrelevance we omit the bifurcation parameter
and we can identify Rm ∼= Cs if m = 2s or Rm ∼= R × Cs if m = 2s + 1. Let
m = 2s and

g(z1, . . . , zs)) =
(
g1(z1, . . . , zs), . . . , gs(z1, . . . , zs)

)
.

Then one can easily obtain the following from the Dn - equivariance of g:{
g(eiα1z1, . . . , e

iαszs) =
(
eiα1g1(z1, . . . , zs), . . . , e

iαsgs(z1, . . . , zs)
)

g(z1, . . . , zs) =
(
g1(z1, . . . , zs), . . . , gs(z1, . . . , zs)

)
for some 0 < α1 < · · · < αs < 2π where cosnαj = 1 for all j = 1, . . . , s and
for all (z1, . . . , zs) ∈ Cs. Note that we can obtain a similar representation of an
action of the Dn symmetry for the case m = 2s+1. When s > 1, even if there is
explicit representation of an action of the Dn symmetry for the reduced vector
field g, it is hard to express a general form or find a normal form of g because
of the higher dimension. Therefore it is hard to obtain all solutions of the
bifurcation problem and hence we can not define reducibility of the bifurcation.

The second result in this paper shows that the Dn symmetry impose a great
influence on the reducibility of synchrony-breaking steady-state bifurcations.
Further we would like to find another class of coupled cell networks such that
bifurcations in coupled cell systems on those are reducible, e.g., by considering
other symmetries. It would be interesting to study reducibility of bifurcations
in a coupled cell network in relation to the symmetry of the network in general.
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