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Abstract

Quantum many-body problem is one of the grand challenges in the condensed matter physics.

The most striking consequence of interactions among many particles is the appearance of

new phases whose collective dynamics is very different from that of a few particles. The

important clue to know how the order changes during the phase transition is the elucida-

tion of the order parameter in the system. Especially, for second-order phase transitions,

the nature of the transition is most fundamentally characterized by spontaneous symmetry

breaking and the degree of symmetry breaking can be described by an order parameter with

a reduced symmetry in the low-temperature ordered phase. In the ferromagnetic transi-

tion, for instance, the order parameter is the magnetization and breaks the spin rotation

symmetry, whereas in the superconducting transition a gauge symmetry is broken.

In this thesis, we will focus on the unusual properties of the heavy fermion compound

URu2Si2. This compound undergoes at 17.5 K a phase transition accompanying a huge

amount of entropy loss, but no magnetic and structural ordering have been observed. De-

spite considerable experimental and theoretical efforts for more than a quarter century, the

order parameter is not yet totally understood and therefore the phase is called “hidden or-

der phase” In general, a second-order phase transition causes a change in various types of

symmetries, such as crystal, rotational, gauge and time reversal symmetries. Therefore the

key to the nature of hidden order lies in understanding which symmetry is being broken.

Recent magnetic torque measurements reveal the in-plane anisotropy of magnetic suscep-

tibility, which suggests that the crystal C4 rotational symmetry in the tetragonal URu2Si2

is broken below the hidden order phase transition. This newly suggested rotational sym-

metry breaking has raised several theoretical proposals, and calls for further experimental

verifications by using other techniques.

The experimental determination of broken symmetries is the most essential step toward

elucidating the nature of the hidden order phase transition. One of the most direct ways of

observing such symmetry breaking is to use X-ray diffraction, which sensitively probes the

lattice symmetries. In solids we always have finite electron-lattice coupling, and when the

electronic system breaks one of the symmetries of the crystal structure at the transition, then

the same symmetry should also be broken in the lattice at the same time. If the electron-

lattice coupling constant is small, the amount of lattice change (or distortion) may also

be small, and experiments focusing on particular Bragg points may be required to achieve

the highest resolution. In the previous crystal-structure studies on URu2Si2, no symmetry
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change has been detected for [h00] and [00l] directions. We therefore perform high-resolution

synchrotron X-ray crystal-structure analysis for a high-angle (880) Bragg diffraction by four-

circle diffractometer. These results reveal tiny but finite orthorhombic distortion of the order

of 10−5 (or lattice constant change less than 100 fm), which is discussed in Chapter 3.

The nature of electronic orders in metals and semiconductors is, in general, closely related

to the electronic structure, and the most essential information is the structure of Fermi

surface. In the case of URu2Si2, the large loss of entropy below THO signifies that a large

portion of the Fermi surface is gapped in the hidden order phase, which has also been

supported by the transport and tunneling measurements. For the understanding of the

nature of hidden order, it is indispensable to determine how the electronic structure changes

with the gap formation, and in particular it is important to clarify how this is related to

the rotational symmetry breaking suggested by the torque measurements. We therefore

perform cyclotron resonance measurements in the hidden order phase, which allows the full

determination of angle-dependent electron-mass structure of the main Fermi-surface sheets.

Furthermore, we find an anomalous splitting of the sharpest resonance line under in-plane

magnetic-field rotation. This is most naturally explained by the domain formation, which

breaks the fourfold rotational symmetry of the underlying tetragonal lattice. The results

reveal the emergence of an in-plane mass anisotropy with hot spots along the [110] direction,

which can account for the anisotropic in-plane magnetic susceptibility reported recently.

These results are shown in Chapter 4.

Another important aspect of URu2Si2 is that the hidden order phase hosts the uncon-

ventional superconducting phase below the transition temperature TSC = 1.4 K at ambient

pressure. The cyclotron mass mCR in the superconducting state has also been a subject of

theoretical debate. By considering the ac dynamics of superconducting vortices, a theory

predicts the violation of the Kohn’s theorem and a peculiar temperature dependence of the

resonance frequency in clean type-II superconductors. Experimentally, however, this point

has not yet studied mainly because the observation of cyclotron resonance in the super-

conducting state is difficult due to the limitation of microwave penetration depth which is

usually short. By using a 3He microwave cavity we are able to observe cyclotron resonance in

the superconducting phase of URu2Si2. Contrary to the proposed temperature dependence,

we find that the mass does not show any significant change below TSC . We rather find that

the scattering rate at low temperatures exhibits characteristic temperature dependence; it

shows non-Fermi liquid-like quasi T -linear dependence followed by a sudden decrease below

the vortex-lattice melting transition temperature, which has been determined by the resis-

tivity measurements. This supports the formation of a coherent quasiparticle Bloch state in

the vortex lattice phase. These results are shown in Chapter 5.

Finally we will summarize and conclude the our study in Chapter 6.
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Chapter 1

Introduction

The heavy-fermion systems which contain the lanthanide or actinide compounds have been

studied extensively for almost two decades. In heavy-fermion compounds, the magnetic

moment of localized f electrons are present in every Ce(4f) or U(5f) atoms. The f electrons

behave like diluted magnetic moments in spite of their periodicity just above the Kondo-

temperature. On the other hand, at a still lower temperature Tcoh Kondo coherence effects

start to play a role and the correlations between spins of conduction electrons and the

moment of f electrons become important. Below this temperature Bloch waves develop and

a band of quasiparticles is formed. In these Kondo lattices the resistivity drops strongly due

to coherent scattering and the effective electron mass m∗ is renormalized, which can be up to

1000 times larger than that of free electron (that is a origin of a name “heavy-fermion”). In

spite of the strong renormalization, the low temperature behavior of macroscopic properties

in heavy fermion systems can first be analyzed by Fermi-liquid picture. In this theory

strongly interacting fermions are substituted by weakly interacting quasiparticles with an

enhanced effective mass. This theory results large specific heat C, susceptibility χ and A

value of the resistivity (ρ(T ) = ρ0 +AT 2) at low temperature and crudes proportionality of

C/T , χ and A to m∗ and m∗2 is roughly valid. By contrast in 3d itinerant magnetism this

proportionality is not observed.

The simpler examples of heavy-fermion metals are well understood within theoretical

frameworks based on the Kondo lattice, where the f electrons which localize at high temper-

ature become itinerant at low temperature through Kondo hybridization with the conduction

electrons. On the other hand, the local moments interact indirectly via the conduction elec-

trons by the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction, which favors parallel as

well as antiparallel orientation of the moments at neighboring sites. Kondo interaction and

RKKY interaction both depend on the exchange J between the conduction electrons and

the f electrons. The system will take the ground state with the lower energy. If the RKKY

interaction is stronger, this will be a magnetic ground state but if the Kondo interaction is

stronger it will be a non-magnetic one. The competition of those two interactions has been

studied by Doniach diagram [1]. The competition between the RKKY interaction which

favors long range magnetic order and the moment screening of Kondo effect leads to differ-
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ent ground states in heavy fermion systems. At zero temperature the system can be driven

from a magnetically ordered ground state to an non-magnetic state by changing a parameter

other than temperature. Moreover, the characteristic energy scales of heavy fermions are

comparably low, which indicates the strength of the two competing forces can be tuned by

conveniently accessible values of pressure, magnetic field or chemical substitution. Such a

phase transition happens at a quantum critical point. In the vicinity of this point usually

the typical properties of a Fermi liquid are violated at least down to a rather low temper-

ature and so-called Non-Fermi-liquid behavior is found. In addition to quantum criticality

and non-Fermi liquid behavior, the competition of various interactions arising from Kondo

physics in heavy-fermion materials makes a wide variety of characteristic phenomena such

as multipolar ordering, unconventional superconductivity, Kondo insulator and metamag-

netism, etc. Furthermore, heavy fermion compounds usually have complicated 3D Fermi

surfaces, which makes their unusual properties more complicated. For these reasons, the

elucidation of fundamental electronic properties in heavy-fermion materials is challenging

and continuously draws the attention of experimental and theoretical physicists.

In the 5f electrons U-based systems the effective radial charge density of the U atom

are less localized than than that of 4f electrons Ce-based systems. This indicates f -state in

U-based compounds has a duality, that is to say, itinerant and localized characters. In the

dual model, the itinerant electrons hybridize with the conduction states and form energy

bands while the localized ones form multiplets to reduce the local Coulomb repulsion. The

two subsystems interact, leading to a mass enhancement of the delocalized quasiparticles.

This dual picture gives a natural description of heavy-fermion superconductivity coexisting

with 5f -derived magnetism. For example, UPt3, UPd2Al3 and UNi2Al3 superconductors

coexists antiferromagnetism [2–4] and UGe2, URhGe, UIr and UCoGe superconductors co-

exists ferromagnetism [5–8]. The coexistence of magnetism and superconductivity indicates

that the Cooper pairs are formed magnetically mediated interactions in these systems, al-

though the superconducting gap structures of these materials have not yet been clarified. In

particular, a highly unusual superconducting state is expected in URu2Si2, since it coexists

with a mysterious “hidden order”, whose order parameter has not been clarified.
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Chapter 2

Heavy fermion compound URu2Si2

2.1 Crystal structure & Phase diagram

After the discovery of the heavy-fermion compound URu2Si2 [9–11], it has been attracted

much attention for its mysterious phase, the so called hidden-order phase, whose order

parameter is not yet identified despite intense experimental and theoretical efforts more

than a quarter century. In the high-temperature disordered phase, URu2Si2 has a body-

centered tetragonal ThCr2Si2-type structure(see Fig. 2.1a) belonging to the I4/mmm sym-

metry group (No. 139 in the international tables for crystallgraphy). The lattice constants

are a = 4.1327(3) Å and c = 9.5839(6) Å at 300 K and atomic coordinates are summarized

in the Table 2.1.

U

Ru

Si

a

I4/mmm (No. 139) P4/mmm (No. 123)

U

a
T

b
T

U

Ru

Si

b

Figure 2.1: a. The body-center tetragonal crystals structure of URu2Si2 in the paramagnetic
phase and a schematic picture of U-site configuration. b. The same body-center tetragonal
crystal structure of URu2Si2 with known long-range magnetic order in the antiferromagnetic
state. The arrows represent the magnetic moment of U atoms aligned antiferromagnetically
along c-axis.
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Table 2.1: Atomic coordinates of URu2Si2 at 300 K from X-ray measurements [12,13].

I4/mmm Atom Position

(No. 139) (site) x y z

a = 4.1327(3) Å U (2a) 0 0 0

c = 9.5839(6) Å Ru (4d) 0 1/2 1/4

V = 163.685(17) Si (4e) 0 0 0.3724(5)

Some pressure induced experiments have been revealed the relation between hidden order

and the antiferromagnetic (AFM) state [14–20]. In this pressure-induced antiferromagnetic

phase URu2Si2 has type-I AFM with ferrmagnetic a-a planes, alternating antiferromagnet-

ically along the c-direction, whose space group is P4/mmm as shown in Fig. 2.1b. The

AFM ordering vector of QAF = (0, 0, 1) indicates the zone folding associated with the lattice

doubling and such a zone folding has also been suggested by the recent angle-resolved pho-

toemission [21–23] study in the hidden-order phase when compared with the Fermi surface

above THO [24–26], which further supports the similarity between AFM and the hidden order

states. The electronic structure in AFM state is discussed in more detail later.

Figure 2.2: Pressure-temperature phase diagram of URu2Si2 [14]. The some phase bound-
aries between hidden order and AFM phase revealed various experiments [15–20] are dis-
played and show the almost same behavior.
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Crystal structure with broken rotational symmetry

Recent magnetic torque measurements [27] and NMR experiments [28], discussed in detail

later, reveal that the tetragonal rotational symmetry is broken below the hidden order phase

transition. The I4/mmm symmetry group (No. 139) has seven maximal non-isomorphic t

subgroups, eight maximal non-isomorphic k subgroups. Among them, the only two Immm

and Fmmm space groups break the in-plane rotational symmetry (Fig. 2.3). In the Immm-

type orthorhombic structure, the U atom arrangements are in a rectangle shape (Fig. 2.3b).

On the other hand, the Fmmm-type orthorhombic distortion demands the unit cell axes are

rotated π/4 about the c-axis and a and b lattice parameters are multiplied by about
√
2,

respectively (Fig. 2.3a).

Fmmm (No. 69)

Immm (No. 71)

a

b

a
O

b
O

U

U

a
O

b
O

Figure 2.3: Crystals structure with the broken rotational symmetry in I4/mmm symmetry
group: a. Fmmm (No. 69), b. Immm (No. 71). The right figure is a schematic picture of
U-site. The unit vector aO, bO is shown on it (aO > bO).
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2.2 Transport experiments in the hidden order phaase

The heavy-fermion compound URu2Si2 has attracted much attention for its mysterious

phase, the so called hidden-order (HO) phase, whose order parameter is not identified de-

spite intense experimental and theoretical efforts for more than a quarter century. Various

thermodynamic and transport properties show a large anomaly at the HO transition at

THO = 17.5K.

(a) (b)

Figure 2.4: (a) Specific heat plotted as C/T as function of T . (b) Temperature dependence
of the electrical resistivity ρ for current along a- and c-axis. ρ exhibits a distinct peak
immediately below THO [12, 13].

Figure 2.4 (a) show the temperature dependence of the specific heat [12, 13]. Sharp

specific heat anomalies are observed at THO = 17.5K and at TSC = 1.4K, which is linked to

the second order phase transition. At THO = 17.5K, the specific heat reduces its magnitude

from ' 180mJ/molK2 to ' 70mJ/molK2 with a concomitant reduction of carrier density

due to the gap opening at the HO transition. The distinct reduction of entropy in this HO

transition reach ∆S ' 0.2kBln2 per formula unit. The specific heat jump at TSC = 1.4K

suggests the superconducting transition. Figure 2.4 (b) depicts the temperature dependence

of the resistivity [12, 13]. At the HO transition, the resistivity shows a jump due to the

opening gap and in the HO state the experimental data is well fitted by using a simple

formula: ρ(T ) = ρ0 + AT x + B exp(−∆/T ), where ρ0 is the residual resistivity and ∆ is

energy gap. By fitting, The gap size shows ∆ ' 90K for J ‖ a and ∆ ' 70K for J ‖ c,

which are closet to the gap estimated from the specific heat. The temperature dependence

of resistivity follow T 1.5 behavior which is not different from x = 2 expected from Fermi

liquid.
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Figure 2.5: The temperature dependence of resistivity ρ (solid lines) in zero and finite
magnetic fields (H ‖ c) and the Hall coefficient RH (solid circles). Inset shows the magne-
toresistance at T → 0K as a function of H2 [29].

Figure 2.5 depicts the temperature dependence of the resistivity in several magnetic fields

and the Hall coefficient RH, where RH ≡ dρxy/dH at H → 0 for H ‖ c [29]. At high

magnetic fields, ρ increases with decreasing temperatures, but then saturates at the lowest

temperatures. The magnetoresistance ∆ρ/ρ at T → 0K represents a nearly perfect H2-

dependence up to 10 T, which suggests URu2Si2 is a nearly compensated metal such as

bismuth and graphite. In a compensated metal, the magnetoresistance ∆ρ/ρ is described as

∆ρ/ρ ' (ωe
cτ

e)(ωh
c τ

h), (2.1)

where ωc and τ are the cyclotron frequency and the scattering time, respectively. The Hall

coefficient is given by

RH =
1

ne
× σh − σe

σh + σe

, (2.2)

where n denotes the carrier number and the suffixes e and h denote“electron” and “hole”,

respectively. At the upper critical field Hc
c2 = 2.8T, (ωe

cτ
e)(ωh

c τ
h) is about 25, which is

currently the maximum value among the type-II superconductors. The fact that the Hall

coefficient RH is positive indicates that the hole band dominates transport properties (σh >

σe). Also, an about fivefold increase of RH suggests that most carriers disappears below

THO. The number of holes nh, estimated from RH as nh = 1/RHe using a single band

model, gives an upper limit of nh ' 2.6 × 1026m−3, corresponding to 0.021 holes per U-

atom. Consequently, these magneto-transport measurements have revealed a “semimetallic”

electronic state is realized below THO in URu2Si2, characterized by the carrier compensation

with small carrier density.
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2.3 Electronic structure in the hidden order phase

Various experiments such as specific heat, thermal conductivity and Hall effect, show the

gap opening in a large portion of Fermi surface (FS) below THO = 17.5K, leading to a large

reduction of carrier density. This implies a drastic reconstruction of the electronic state at

THO = 17.5K. For the understanding of the nature of hidden order, it is indispensable to

determine how the Fermi surface topology changes with the gap formation. Experimental

information on the Fermi surface topology in the hidden order state has been gained from

nesting vectors revealed by neutron inelastic scattering experiments [30–32], and through

extremal Fermi surface orbits, obtained from quantum oscillation measurements [33,34].

Figure 2.6: Inelastic neutron scattering of URu2Si2 in the [H, 0, 0] plane at T = 1.5 K. The
inset shows how the incommensurate excitations become gapped through the transition by
counting at the point (0.6, 0, 0) at 0.25 meV [30].

Figure 2.6 shows the excitation spectrum of URu2Si2 revealed by Neutron inelastic exper-

iments [30]. The gap is formed in the magnetic excitations characterized by two wave vectors:

QC = (1, 0, 0) = (0, 0, 1) with an energy gap of E0
∼= 1.9meV and QIC = (1± 0.4, 0, 0) with

an energy gap of E1
∼= 4 − 5.7meV. These inelastic magnetic responses for paramagnetic,

HO and AFM phases are revealed by the inelastic neutron scattering experiments under

hydrostatic pressure. The sharp low energy magnetic excitation at QC in the HO phase is

strongly damped in the paramagnetic and AFM phase. On the other hand, the observed

signal at QIC in the HO state persists on entering the antiferromagnetic phase. These results

indicate that the low-energy resonance at QC plays an important role for the reconstruction

of the Fermi surface in the HO phase.
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2.3.1 Fermi surface of URu2Si2

Electronic band-structure is calculated in two steps [35]. First, the ab initio calculations are

performed for the paramagnetic state of URu2Si2 by using the Wien2k package [36], in which

the relativistic full-potential (linearized) augmented plane-wave (FLAPW) + local orbitals

method is implemented. The crystallographical parameters are the space group No. 139,

I4/mmm, the lattice constants, a = 4.126 Å, c = 9.568 Å, and Si internal position, z =

0.371 [37]. Then the Fermi surface in the antiferromagnetic state was obtained by applying

several values of effective field, and the Brillouin zone is folded to the space group No. 123,

P4/mmm. The obtained Fermi surface is essentially consistent with the previous density

functional band-structure calculations [38].

Fermi surface in the Paramagnetic phase

Figure 2.7 shows a side view of the paramagnetic Fermi surface and the band structure

near the Fermi energy. The drawn Fermi surface is essentially consistent with the previous

calculations. The outer Fermi surface around Z point and the outer Fermi surface around Γ

point reveal the existence of a nesting vector QC , as indicated by the arrow in Fig. 2.7. These

two Fermi surface have a similar round curvature, favorable for nesting, with the exception

that close to Z/2 where the Γ-centered sheet has a more pointed part. This nesting vector

coincides accurately with the antiferromagnetic wave vector QAF = (0, 0, 1) indicated by the

inelastic neutron experiments [30–32].

Figure 2.7: Schematic picture of the Fermi surface and enegy band dispersion of param-
agnetic URu2Si2. The color indicates the weight of the jz component: red, green and blue
color gauges correspond to jz = ±5/2,±3/2 and ±1/2 components, respectively. The arrow
indicates the antiferromagnetic nesting vector connecting the two Fermi surface sheets [35].
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Fermi surface in the Antiferromagnetic phase

Figure 2.8: Two-dimensional cut of antiferromagnetic Fermi surface at kz = 0. The effective
field of 40 meV is used which corresponds to antiferromagnetic gap of ∼ 4 meV. High-
symmetry points are indicated [35].

The antiferomagnetic Fermi surface sheets of URu2Si2 due to the band folding by the ordering

vector QAF = (0, 0, 1) is displayed in Fig. 2.8 [35]. The results in Fig. 2.8 are obtained with

the effective field of 40 meV, which corresponds to an antiferromagnetic gap of ∼ 4 meV

when the renormalization of ∼ 1/10 is taken into account.

There are six kinds of Fermi surfaces in the Brillouin zone:

(i) an outer large hole pocket at Γ point,

(ii) a small ellipsoidal electron pocket at Γ point,

(iii) four electron pocket around Γ in the shape of rounded half sphere,

(iv) a cross-shaped outer electron pocket at M point,

(v) a inner small electron pocket at M point,

(vi) the Fermi surface with a cage-like structure around Γ point.

Recent quantum oscillation experiments under pressure implies a similar electronic structure

in both the hidden order and antiferrmagnetic state, which is discussed in the latter section.
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2.3.2 Quantum oscillation experiments

(a) (b)

Figure 2.9: Field angular dependence of the FFT frequencies obtained from (a) dHvA [33]
and (b) SdH [34] measurements in URu2Si2, reflecting the cross sectional areas of the different
Fermi surface branches perpendicular to the magnetic field. The dHvA results are also
plotted in (b) SdH results and are in excellent agreement.

The studies of quantum oscillations in the de Haas-van Alphen (dHvA) frequencies [33]

and Shubnikov-de Haas (SdH) frequencies [34] can yield direct information on the Fermi sur-

face. We compare quantum oscillation results with the band structure calculations assuming

the antiferromagnetism in Fig. 2.8 and discuss the Fermi surface structure in the hidden-

order phase. The angular dependences of the dHvA and SdH frequencies in the hidden order

phase are shown in Fig. 2.9. The fundamental branches revealed in both experiments are

named α, β and γ. The angular dependences of the SdH frequency of α, β and γ branches

are coincident with the dHvA results.

The α branch is almost constant as a function of the field angle indicating that the

Fermi surface is spherical in shape. Moreover, α branch has the largest dHvA frequency

and large dHvA oscillation amplitude, which indicates α pocket has the largest volume in

the Brillouin zone. For the above reasons, α branch corresponds to the outer hole pocket

located around the center of the folded Brillouin zone (Γ point). The Fermi wavelength of

α branch estimated from dHvA frequency is kF ' 1.8 × 109m−1 which corresponds 0.017

holes/U. Hall coefficient analysis using a single band model gives an upper limit ' 0.021

holes/U [29], which agree well with the quantum oscillation experiments.
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The further branches labeled β′ and η in addition to the three branches are observed

by the recent SdH experiments (Fig. 2.9 (b)). The splitting of β branch indicates that the

corresponding Fermi surface have two different orbits for H//[100], but these two merge

towards for H//[001]. For the topology reason, the β branch corresponds to non-central four

pockets in the shape of half spheres in the z = 0 plane. The assigns of γ and η branches are

discussed later with our cyclotron resonance results.

Table 2.2 summarizes the SdH frequencies and effective masses obtained by the SdH

experiments [34]. The Sommerfeld coefficient γ is estimated by the Fermi wave length and

the effective mass m∗, as shown by

γ '
∑
i

k2
BV m∗kF
3~2

, (2.3)

assuming spherical isotropic Fermi surface, where V = 49 cm2/mol is the molar volume

and i is theindex of the branch. However, the calculated Sommerfeld coefficient γ '
37.5mJ/molK2 account for 55% of γ ' 65mJ/molK2 determined by the specific heat

measurements. This result indicates there must be some Fermi surface sheets with heavy

mass missing in these experiments.

Table 2.2: SdH frequencies and effective masses for the magnetic field parallel to a-axis and
c-axis [34].

branch FH//c(T) FH//a(T) m∗
H//c (m0) m∗

H//a (m0)

α 1070 1230 12.4 11

β 422 219 23.8 13.5

β′ 422 751 25

γ 195 73 10 2.9

η 93 93 20.5 20.5
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SdH experiments under pressure

The α, β and η branches are observed by the SdH experiments under pressure [34], as shown

in the Fig. 2.10(a). Fig. 2.10(b) shows the pressure dependence of the FFT frequencies. All

observed branches indicate tiny change of the FFT frequencies at Px, which is the transition

presuure from HO to AFM phase. Consequently, no significant change of the band structure

between the HO and the AFM phase is observed. These experiments indicate that the HO

phase have the similar electronic structure proposed in the AFM phase, where tha band

folding appears due to the ordering vector QAFM = (0, 0, 1). Fig. 2.10(c) show that all

the masses decrease as increasing pressure. This decrease of the masses are related to the

decrease of the A coefficient of the T 2 behavior of ρ− ρ0 with pressure.

Figure 2.10: (a) FFT spectra of SdH measurements in URu2Si2 for H ‖ c at the lowest
temperature of T ' 35 mK for P = 0.05 GPa and T ' 35 mK for P = 0.05 GPa. (b)
Pressure dependence of the FFT frequencies. (c) Pressure dependence of the effective masses
determined in afield range of 8-13 T [34].
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2.3.3 Nematic state

A Second order phase transition is characterized by spontaneous symmetry breaking. How-

ever, despite more than 25 years intensive research, the fundamental question “which sym-

metry is broken in the hidden order phase?” has been unresolved. In order to elucidate the

order parameter of the hidden order phase in URu2Si2, it is the most important to clar-

ify the symmetry breaking at THO = 17.5K. Recently, magnetic torque measurements [27]

and NMR experiments [28] show the in-plane anisotropic state in the hidden order, called

“nematic state”. The results of these experiments are detailed below.

Magnetic torque experiments

The in-plane magnetic torque is measured by a micro-tip cantilever, whose method has a

high sensitivity for detecting magnetic anisotropy. In Fig. 2.11(a), a schematic picture of the

magnetic torque measurement system is shown [27]. The magnetic field H rotates within the

ab plane, where the azimuthal angle formed by H and a-axis is defined as φ. The magnetic

torque is expressed as

τ = µ0MV ×H, (2.4)

where M is the induced magnetization, H is the magnetic field, V is the sample volume, and

µ0 is the permeability of vacuum. The crystal structure of URu2Si2 in the paramagnetic state

has four-fold symmetry, so that the in-plane magnetic torque in the paramagnetic phase also

preserves C4 symmetry. If the magnetic torque has the component of the two-fold oscillation

in the HO phase, the rotational symmetry is broken in the HO phase (Fig. 2.11(b)).

π/2

Preserved C
4
 symmetry

Broken C
4
 symmetry

π

(a) (b)

τ

φ

φ

Figure 2.11: (a) A schematic picture of the magnetic torque system. (b) Expected magnetic
torque signal [27].
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Figure 2.12 shows the temperature evolution of the in-plane torque τ(φ) at µ0|H| = 4T

in the paramagnetic and the hidden-order phases. The raw torque curves are shown in the

upper panels of Fig. 2.12 and the two-fold and four-fold components obtained from Fourier

analysis are displayed in the middle and lower panels of Fig. 2.12. These results indicate

that the two-fold oscillation, which should be zero in a crystal with tetragonal symmetry,

emerges below THO = 17.5K. The two-fold component is expressed as

τ2φ =
1

2
µ0H

2V [(χaa − χbb) sin 2φ− 2χab cos 2φ], (2.5)

where the susceptibility tensor χij is given by Mi = ΣjχijHj. The presence of the two-

fold oscillation, which follows the functional form τ2φ = A2φ cos 2φ, clearly demonstrates

that χab 6= 0, whereas χaa = χbb. This indicates the intrinsic in-plane anisotropy of the

susceptibility:

χ[110] = χaa + χbb 6= χ[1̄10] = χaa − χbb (2.6)

Figure 2.12: In-plane magnetic torque curves measured at µ0|H| = 4 T. Upper panels show
raw torque signals τ(φ) as a function of the azimuthal angle φ at several temperatures. In the
middle and lower panels, the two-fold cos 2φ and four-fold sin 4φ components of the torque
curves are shown, respectively. These curves are obtained from Fourier analysis of the raw
torque curves in the upper panels [27].
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The results of magnetic torque study is summarized in Fig. 2.13. In the paramagnetic

phase of URu2Si2, the four-fold rotational symmetry is preserved (χaa = χbb and χab = 0), as

shown in Fig. 2.13(b). In the hidden order phase, on the other hand, the four-fold rotational

symmetry is broken (χaa = χbb but χab 6= 0).

(a) (b) (c)

χ
ab

 = 0 (T > T
HO

) χ
ab

 ≠ 0 (T < T
HO

)

Figure 2.13: (a) Uranium atm arrangement in the [100]-[010] plane of URu2Si2. (b) The
schematic picture of four-fold rotational symmetry (χab = 0). (c) The schematic picture of
the two-fold rotational symmetry (χab 6= 0) [27].

Figure 2.14 depicts the temperature dependence of the two-fold amplitude for three sam-

ples with different sizes. In large millimeter-sized crystals, no difference between χ[110] and

χ[1̄10], but in samples with a smaller volume, 2χab ∝ |A2φ|/V is finite below THO = 17.5K.

This indicates that the domains with different preferred directions in the ab plane are formed.

From these results, a domain size is estimated the order of tens of micrometers, which signifies

the difficulties to observe the in-plane anisotropy.
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Figure 2.14: Temperature dependence of two-fold oscillation amplitude divided by the sam-
ple volume |A2φ|/V . The normalized in-plane susceptibility anisotropy |2χab(T )|/χaa(T =
20K) = (C− χ[11̄0])/χ[100] is evaluated in the right axis [27].
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NMR experiments

Recently, the two-fold intrinsic susceptibility anisotropy in the ab plane below THO was

reported by 29Si NMR experiments [28]. In the magnetic torque experiments, the two-fold

amplitude of the millimeter-sized sample is absent due to the domain formation. On the

other hand, NMR microscopy exploits the magnetic properties at each atomic nuclei, so

the signals obtained from domains with different directions are separated from one another.

According to the two-fold nematicity proposed by the magnetic torque results, there are two

domains with [110] direction and [11̄0] direction (A and B). In such a case, the magnetic

susceptibility with in-plane anisotropy reflects the anisotropic 29Si Knight shift K defined

as K(θ) ≡ (fres − f0)/f0, where fres is the resonance peak frequency and f0 ≡ γ29H/2π.

Expected the angular dependences of the Knight shifts of domain A and B are expressed by,

KA(θ) = K‖ cos
2 θ +K⊥ sin2 θ = Kiso −

1

2
∆Knem, (2.7)

KB(θ) = KA(θ +
π

2
) = Kiso +

1

2
∆Knem,

where Kiso ≡ (1/2)(K‖ +K⊥) is the isotropic shift, K‖,⊥ is the Knight shift for the domain

parallel and perpendicular to the magnetic field, and ∆Knem ≡ K⊥ −K‖ is the anisotropic

shift (Fig. 2.15(b)).

Figure 2.15: (a) The angular dependence of Knight shifts KA(θ) and KB(θ). (b) Angular
dependence expected for 29Si NMR line broadening in the two-fold ordered domain state.
Solid lines and broken lines represent spectra for domains A and B, respectively [28].
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In the two-fold domain state, the NMR linewidth at half maximum (FWHM) Lnem(θ) is

given by

Lnem(θ) = H∆Knem| cos(2θ)|+ Lpara(θ) + const., (2.8)

where Lpara(θ) has the four-fold symmetry reflected the tetragonal crystal structure. As-

suming the nematic component ∆Knem is finite, the angular dependence of the linewidth

exhibits a characteristic sharp minimum (Fig. 2.15(a)).

Figure 2.16: (a) Angle dependence of fitted Lorentzian linewidths L(θ) and calculated
results. (b) Field dependence of the four-fold amplitudeWpara at 25 K and two-fold amplitude
Wnem at 5 K. (c) Temperature dependence of Wnem [28].

The 29Si linewidth at H = 5.19T is displayed in the Fig. 2.16. In the paramagnetic state,

L(θ) presents a small four-fold oscillation expected from the tetragonal crystal structure.

Below THO = 17.5K, the oscillation amplitude increases and the two-fold amplitude Wnem =

H∆Knem becomes finite (Fig. 2.16 (c)). Moreover, the peak at θ = 45◦ forms a cusp-like

structure at low temperature. These results show the proposed nematically ordered domain

state where two domains with [110] direction and [11̄0] direction are formed in the URu2Si2

sample below the hidden order transition.
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2.4 Proposed theory in the hidden order phase

To clarify the order parameter of the hidden order phase, a large number of microscope

scenarios have been theoretically proposed, but it still remains controversial. These theories

can be roughly divided into three groups, in which th 5f electrons are considered to be

localized [39–49,57, 58, 62–64], itinerant [35, 50, 52–54,59–61, 65–67], or both simultaneously

(dual model) [51,55,56]. Table 2.3 shows various theoretical models proposed for the hidden

order phase. Nevertheless, the origin of the phase transition at T0 in URu2Si2 is still puzzling

and the nature of hidden order phase has became a issue of great interest in heavy-fermion

physics.

Table 2.3: Various theoretical models proposed for the hidden order phase in URu2Si2.

references

Multipole quadrupole [39–42]

octupole [43–46]

hexadecapole [47–49,62]

dotriacontapole [35,50]

Spin density waves SDW [51]

unconventional SDW [52]

d-density wave [53]

dynamical order [54]

Others Duality [55,56]

Mixed valence [57]

2-channnel Kondo [58]

Orbital anitiferromagnetism [59]

Helicity order [60]

Hybridization wave [61]

Modulated spin liquid [62]

Nematic/hastatic model [35,44,63–67]

· · ·
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2.5 Unconventional superconductivity in URu2Si2

Another important aspect of URu2Si2 is that the hidden order phase hosts the unconventional

superconducting (SC) phase below transition temperature TSC = 1.4K.

2.5.1 Superconducting gap structure

An important question about the superconductivity of URu2Si2 is the nature of the micro-

scopic pairing interaction responsible for the superconductivity. In order to clarify the pairing

mechanism, the identification of the symmetry of the superconducting order parameter is of

primary importance. Several measurements including NMR [68,69] and the specific heat [70]

and the thermal conductivity [29] have revealed that the superconducting gap function of

URu2Si2 is anisotropic.

NMR experiments

Figure 2.17 shows (a) the NMR relaxation rate1/T1 of
29Si and (b) the NQR relaxation rate

of 1/T1
101Ru [68, 69]. These results indicate T 3-dependence down to T/TSC ' 0.2 without

the Hebel-Slichter coherence peak immediately below TSC, suggesting the existence of line

nodes in the gap function.

(a) (b)

Figure 2.17: (a) Temperature dependence of 1/T1 of 29Si obtained by 29Si NMR [68]. (b)
Temperature dependence of 1/T1 of 101Ru obtained by 101Ru NMR [69].
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Specific heat experiments

Figure 2.18: (a) Field dependence of the specific heat C(H) of URu2Si2 at T =0.34 K
for H ‖ a and H ‖ c. (b) The specific heat C(H) as a function of the normalized field
H/Hc2 [70].

The specific heat, which is a bulk probe sensitive to the low-energy quasiparticle exci-

tations, yields useful information on the superconducting gap structure. In the supercon-

ducting state, the specific heat detects all quasiparticle states. Therefore, in the full gap

superconductors, the localized quasiparticle states bound in the vortex cores can contribute

to the specific heat, which exhibits H-linear dependence. In nodal superconductors, the

specific heat contains contributions from both localized and delocalized quasiparticles, and

shows
√
H-dependence because of the dominance of the contribution from the delocalized

quasiparticle state.

Figure 2.18 (a) displays the field dependence of the specific heat C(H) of URu2Si2 at

T =0.34 K for H ‖ a and H ‖ c [70]. C(H) for H ‖ c has a peak structure at Hc
c2 (∼ 2.5T)

and reaches the normal-state value at higher H. C(H) for H ‖ a continues to increase at 7

T because Ha
c2 (∼ 12.5T) is much higher in this direction. Figure 2.18 (b) shows the specific

heat C(H) as a function of the normalized field H/Hc2. At low H, C(H) for H ‖ c shows a

linear field dependence, suggesting a full gap structure. On the other hand, C(H) for H ‖ a

shows the rapid increase, indicating a nodal gap structure. This distinctive C(H) behavior

for two directions is consistent with the gap structure with the point nodes locating at the

north and south poles on the Fermi surface.
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Thermal conductivity experiments

The thermal conductivity, which is a bulk probe sensitive to the low-energy quasiparticle

excitations, also yields valuable information on the superconducting gap structure. The

localized quasiparticles cannot contribute to the heat transport, in contrast to the specific

heat. Therefore, the thermal conductivity can probe the response purely originating from

the delocalized quasiparticles, which directly reflects the Doppler shifted density of states.

As a result, in the full-gap superconductors, the thermal conductivity is almost zero and it

exhibits an exponential behavior at low fields. In a d-wave superconductor with line nodes

where the density of states has a linear energy dependence N(E) ∝ |E|, N(H) increases

steeply in proportion to H1/2 because of the Doppler shift of the quasiparticle energy, which

leads to a H1/2 dependence of κ/T .

Figure 2.19: (a) The thermal conductivity divided by temperature κ/T (T → 0) as a function
of H/Hc2. The dashed and dotted lines represent the expected κ/T by the Wiedemann-Franz
law for H ‖ c and H ‖ a, respectively. (b) κ/T as function of

√
H at low fields. (c) The

field derivative of κ/T for H ‖ c plotted as a function of H. (d) H − T phase diagram for
H ‖ c [29].
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Figure 2.19 (a) shows the field dependence of the thermal conductivity κ(H)/T at T → 0

K limit [29]. κ(H)/T shows anomalous field dependence different from typical s-wave and

nodal superconductors for two field directions. The two-fold increase in κ(H)/T for H ‖ a

with a plateaulike behavior following an initial steep increase is very similar to that of

κ(H)/T in MgB2 [71] and PrOs4Sb12 [72], which are well known multiband superconductors

having two distinct gap. In the multiband system, it is natural to assume that the smaller

(larger) gap, which contributes to the low (high) field part of κ(H)/T , originates from the

hole (electron) band having a light (heavy) effective mass. The end point of the initial steep

Hs ' 0.4 T is regarded as a virtual upper critical field of the light hole band. For both field

directions, κ(H)/T show
√
H dependence below Hs in Fig. 2.19 (b) indicates a presence of

line nodes in the light hole band.

Above Hs, on the other hand, κ(H)/T is highly anisotropic. For H ‖ a, exhibits a steep

increase with increasing H, which is implies the presence of the Doppler shifted the density

of states due to nodes. For H ‖ c, on the other hand, κ(H)/T is almost flat up to Hc2,

indicating that the quasiparticle excitation is negligibly small. This anisotropic excitation

behaviors above Hs strongly suggest the presence of point nodes along the c axis in the heavy

electron band.

Consequently, thermal conductivity measurements indicate that nodal topologies in the

SC gap of the spherical light hole and the elliptical heavy electron band are line and point

nodes, respectively. From the symmetry analysis, the superconducting paring function is

most likely to be a “chiral” d-wave symmetry with the superconducting gap function given

by

∆ = ∆0 sin
kz
2
c

(
sin

kx + ky
2

a+ i sin
kx − ky

2
a

)
. (2.9)

The NMR and specific heat experiments are consistent with this gap symmetry.

Figure 2.20: The schematic figure of the Fermi surface and superconducting gap structure
inferred from thermal conductivity measurements. Thick points and lines at the Fermi
surface denote the nodal part [29].
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2.5.2 Voltex lattice melting transition

In conventional type II superconductors, Abrikosov vortex lattice is formed in the mixed

state. On the other hand, in high-TSC superconductors various vortex phases, such as a

vortex-glass, a vortex-liquid have been observed by many experimental work. In the vortex

liquid state, Abrikosov lattice with periodic pinning arrays for a system melts due to the

thermal fluctuation, namely the thermal displacement of the vortices is an appreciable frac-

tion of the distance between vortices. However, despite low TSC superconductor, the giant

thermal fluctuation, which is due to a very small number of carriers and heavy mass, is

shown in URu2Si2 [73].

Figure 2.21: Temperature dependence of κ/T (left axis) and ρ (right axis) measured in
several magnetic fields for H ‖ a. The dotted arrow indicates a cusp at TSC(H). The solid
arrows denote the melting temperature Tm [73].
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The temperature dependence of the thermal conductivity divided by the temperature

κ/T is displayed in Fig. 2.21 [73]. In zero field, κ/T exhibits a notable enhancement below

TSC. The electronic thermal conductivity is described by κ/T ' N(0)vF l, where N(0) is

quasiparticle density of states, vF is Fermi velocity and l is mean free path. The enhancement

of κ/T below TSC is caused by a striking enhancement of l due to the gap formation, which

overcomes the reduction N(0) in the superconducting state. On the other hand, the κ/T

behavior begins to decrease with a distinct cusp under a magnetic field as temperature is

lowered. According to recent theories, thermal conductivity has no fluctuation correction,

in contrast to other transport and thermodynamic properties such as resistivity and specific

heat which are subject to the fluctuations. Therefore, it is natural to consider that the

cusp temperature of κ/T corresponds to the mean-field transition temperature TSC(H). The

decrease of κ/T below TSC(H) immediately indicates that l is not enhanced and the reduction

of N(0) becomes dominantly. Further lowering temperature brings a second anomaly below

which κ/T increase from that extrapolated from high temperature. This second anomaly

is located very close to Tm but far from TSC indicating that the quasiparticle scattering is

dramatically changed.

In Fig. 2.21, ρ(T ) shows only a gradual decrease near TSC(H) and a sudden drop at

Tm. The difference between TSC(H) and Tm(H) becomes more pronounced at higher fields.

Here, the feature of the resistive transition in clean YBa2Cu3O7, where the sharp drop of the

resistivity is observed in a linear scale at the melting temperature without clear anomaly at

TSC(H). These results indicate that the vortex lattice melting transition takes place at Tm

in URu2Si2.

The H-T phase diagram is shown in Fig. 2.22 [73]. The open symbols denote the mean-

field Hc2 lines and the solid square shows the melting transition temperature Tm determined

by the clear peak of dρ/dT . The most remarkable feature in this phase diagram is that the

melting transition occurs even at very low temperatures and the vortex liquid phase occupies

a large portion of the phase diagram compared to conventional low-TSC superconductors.

The fundamental parameter that governs the strength of thermal fluctuation is known as

the Ginzburg number Gi,

Gi =
1

2

(
εkBTSC

Hc(0)2ξa(0)3

)2

=
1

2

(
8π2εkBTSCλa(0)

2

φ2
0ξa(0)

)2

∼ 3× 10−4, (2.10)

where λa(0) and ξa(0) are penetration and coherence lengths in the basal plane at T = 0 K

and ε ≡ (mc/mab)
1/2 is the anisotropy parameter [74]. Using Ginzburg number,the melting

temperature is calculated by Larkin and Varlamov [75]. They determined Tm by the equality

of the free energies of lattice and liquid phases as

Tm − TSC(H) = 2y

(
H

Hc2(0)

)2/3(
Gi

ε2

)1/3

TSC(H), (2.11)

where y ∼ −7 for the 3D case and y ∼ −10 for the 2D case.
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In conventional low-TSC superconductors, Gi ranges from 10−11 to 10−7, while in YBa2Cu3O7

Gi is as large as ∼ 10−2 [74]. Large Gi leads to the reduction of Tm, extending a vortex

liquid region. These results indicate that the exceptionally large thermal fluctuations due

to unique electronic state, i.e. very small number of carriers with large effective mass in

URu2Si2, play an important role even at very low temperatures.

Figure 2.22: H-T phase diagram of URu2Si2 for (a) H ‖ c and (b) H ‖ a. The inset of (b)
shows an expanded view of Hm(T ) near TSC(0) for H ‖ a. The dash-dotted line is a fit to
Hm(T ) ∝ (TSC − T )β with β = 1.4 which is consistent with that in YBa2Cu3O7 [73].
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2.5.3 dHvA in superconducting state

Abrikosov vortex lattice below the mean field Hc2, dramatically enhance the scattering of

quasiparticles by the fluctuating pair potential, thus leading to damping of the dHvA oscil-

lations in the liquid mixed state. However, the dHvA oscillations have been reported even

in the SC mixed state for NbSe2 and the high-TSC cuprates YBa2Cu3O7−δ [76] and the f

electron superconductors CeRu2 [77] and UPd2Al3 [78] etc.

Fig. 2.23(a) shows the quantum oscillation in the mixed state for URu2Si2 at T = 35

mK [33]. The only observed branch α of the dHvA frequency does not change in magnitude

between the HO and SC state. On the other hand, the effective mass decreases and the

Dingle time (defined as TD = ~/2πkBτ , where ~ is Plank constant, kB is Boltzmann constant

and τ is quasiparticle scattering time) increases at the superconducting transition as shown

in Fig. 2.23(c),(d) respectively. In Maki’s theory [79], the change in the mass and Dingle

temperature can be explained by the quasiparticle correlation due to the pair breaking.

Figure 2.23: dHvA experiments in the mixed state for URu2Si2 [33]. (a) dHvA oscillation
at 35 mK for θ = 8.5◦, where θ is a tilted angle from [100] to [001]. (b) The FFT spectra
for branch α in the normal and mixed state. (c) Field dependence of the effective mass. (d)
Field dependence of the Dingle temperature.
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Chapter 3

Direct observation of lattice

symmetry breaking at the

hidden-order transition

3.1 Introduction

In this chapter, we show the high resolution X-ray study on the hidden order phase of

URu2Si2. X-ray diffraction yield a wealth of structural information of a crystal, including

atomic arrangement, crystallite size, and imperfections. The X-ray scattering, that is to say,

interaction between charge density of electrons in materials and X-ray is explained by Bragg’s

law. Bragg’s law is summarized in the relation nλ = 2d sin θ where n is an integer, λ is the

wavelength of X-ray, d is the interplanar distance, θ is the scattering angle. When a material

undergoes a structural change under a condition of temperature change, pressure change,

etc, the structural symmetry of a material is lowered. As a result of lowering symmetry, the

interplanar distance d changes and domains are formed in the material due to the orientation

degeneracy of the distortion. This domain formation results in changes in different or new

peaks, or Bragg reflections. In this case, observing the appearance of additional peaks and/or

shifts of peaks at/to new scattering angles, one realizes a structural change in a material.

High resolution X-ray diffraction measurements is one of the most direct ways of observing

lattice symmetry breaking.
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3.1.1 Bragg equation

We consider a crystal having a set of atomic planes of spacing d and a X-ray wave falling on

it, as shown by Fig. 3.1. In view of the assumption of elastic scattering, the wavevector ki

of an incident X-ray and the wavevector kf of an scattered X-ray will be identical shown by

|ki| = |kf | =
2π

λ
, (3.1)

where λ is the wavelength of the X-ray. For the most part, the waves reflected from neigh-

boring planes will cancel each other out due to the phase difference. If, however, the phase

difference thorough the all the reflected waves is zero, the maximum constructive interfer-

ence of the scattered X-ray occurs. To clarify this condition, it is sufficient to consider two

microscopic scatterers related by translation through a lattice vector R = ua + vb + wc

because of the periodicity of the crystal lattice.

k
i

k
f

R

Figure 3.1: A schematic picture of X-ray reflection. The wavevector of the incident beam
is ki and the wavevector of the scattered beam is kf . The atomic length is related by
translation vector R = ua+ vb+ wc.
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The difference of optical path between the incident and the diffracted beam is given by

Path difference = R · kf

|kf |
−R · ki

|ki|

=
λ

2π
R · (kf − ki)

=
λ

2π
R ·Q (3.2)

where Q ≡ kf − ki is called the diffraction vector. The maximum constructive interference

happens if the difference of optical path is an integer multiple of λ;

2πn = R ·Q, (3.3)

where n is integer. This condition can be rewritten as

eiR·Q = 1. (3.4)

The definition of reciprocal lattice vector g is given by

eiR·g = 1 (3.5)

g = 2πh
b× c

V
+ 2πk

c× a

V
+ 2πl

a× b

V
, (3.6)

where V is the volume of the unit cell and h, k, l are the Miller indices for planes and direc-

tions. By comparing between eqn (3.4) and eqn (3.5), we find that the diffraction condition

is satisfied when the scattering vector equals a reciprocal lattice vector,

Q = g. (3.7)

O

X

Y

Z

c

l

a

h

b

k

G

Figure 3.2: The reciprocal lattice vector g and the interplanar distance d.

36



If we now denote the angle between ki and kf by 2θ, and construct the isosceles triangle

such that |ki| = |kf | and g = kf − ki, we have

|g| = |kf | sin θ + |ki| sin θ

= 2π
2 sin θ

λ
. (3.8)

From the definition of the reciprocal lattice vector g, the interplanar distance d is shown by

1

d
≡ |g|

2π
=

√(
h

a

)2

+

(
k

b

)2

+

(
l

c

)2

, (3.9)

where |a| = a, |b| = b and |c| = c. From eqns (3.8) and (3.9), we have

2d sin θ = λ. (3.10)

If h, k, l are of the form nh′, nk′, nl′, where h′, k′, l′ are relatively prime and d′ = nd, we

have

2d′ sin θ = nλ. (3.11)

This equation is the original version of the Bragg equation which gives the angles for co-

herent scattering from a crystal lattice and eqn (3.10) is the version most often encountered

in practical applications. In conclusion, the maximum amplitude of the reflected wave is

obtained for angles θ such that

2 sin θ = λ

√(
h

a

)2

+

(
k

b

)2

+

(
l

c

)2

. (3.12)
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Figure 3.3: Geometrical interpretation of the Bragg equation.
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3.1.2 The energy of the X-ray

When an photon has the energy E, the highest frequency or its lowest wavelength is given

by

E = hνmax =
hc

λmin

, (3.13)

where h is Planck’s constant, ν is the photon’s frequency and λ is the photon’s wave length.

This also can be rewritten by

λ (Å) =
hc

E
=

12.3984

E (keV)
. (3.14)

3.1.3 Imaging plate camera

There are various kinds of X-ray detectors. We used the image-plate camera to select the

high quality sample and studied whether the lattice distortion occurs in the hidden order

state by the four-circle diffractometer. The former is described in this section and the latter

is explained in the next section.

The image-plate camera is an wide area detector, qualitatively similar to the photo-

graphic film but operating on entirely different principles. When a photon strikes the imag-

ing plate, the “detached” electrons are raised to the conduction band. The excited electrons

are trapped at the vacancies of the emulsion coating the imaging plate and thereby produce

temporary color centers. Hence, the imaging plate changes color at the sites on which scat-

tered radiation is falling. When the exposure has been completed, the diffraction pattern

has been temporarily recorded on the imaging plate. The plate is then scanned by a laser

and the trapped electrons are released, fall down to the valence a band. This transition is

accompanied by a release of energy, which corresponds to the emission of light. The intensity

of this luminescence, measured with a photomultiplier, is proportional to the intensity of the

X-rays which gave rise to the color centers. The coordinates of the diffraction spots and the

intensity of the luminescence are recorded in a computer. When the scanning process has

been completed, the imaging plate is exposed to visible light, which erases all the remaining

traces of color centers and the plate is suitable for future use.

The imaging plate camera has a very large linearity range by which you can observe the

wide area with high angle 2θ by one scan. Therefore the imaging plate camera is known to

a convenient and very fast detector of X-ray diffraction patterns.
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3.1.4 Four-circle diffractometer

Geometrical consideration

Different from other area detecotor, the four circle diffractometer allows us to detect a

specific Bragg peak. This instrument is equipped with a mechanical system which can bring

the sample into an orientation in which the wavevector of the incident X-ray forms the

Bragg angle θ with the desired hkl plane, and bring the slit of detector to a proper position

to detect the scattered radiation. A schematic drawing of a four-circle diffractometer is

shown in Fig. 3.4 [80].

Figure 3.4: A schematic picture of four-circle diffractometer [80].(a) The definition of each
axis and angle. (b) The instrument with all angles set to zero.
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For the X-ray analysis by four-circle diffractometer, it is the most important to control

the geometrical configuration. The diffraction plane is defined by three points: (i) the center

of the source of the radiation (I), (ii) the center of the crystal (O), and (iii) the center of the

receiving slit of the detector (F ). The axis passing through the crystal and perpendicular to

the diffraction plane is called the principal axis of the instrument. Its direction remains fixed

throughout the experiments, so the detector is constrained to rotate about the principal axis

only. The angle IOF equals 180◦ − 2θ, where 2θ is the angle between the incident and the

diffracted beam. The diffraction vector corresponding to the Bragg angle θ is parallel to the

bisector of the angle IOF . The detail of the other axes of rotation is below.

(A) χ-axis

This is an axis passing through the crystal and lying in the diffraction plane. In a con-

ventional diffractometer, this is the symmetry axis of a ring on whose internal cylindrical

surface of the device to which the crystal is rigidly attached can be displaced by a predeter-

mined angle, called the χ angle. The center of the crystal must coincide with the center of

the χ ring. The plane of the χ ring is perpendicular to the diffraction plane throughout the

experiment.

(B) φ-axis

This is an axis about which the crystal, together with the device to which the crystal is

rigidly attached, can be rotated through a predetermined angel, called the φ angle. During

the rotation about φ-axis the center of the crystal must remain at the center of the χ ring

and the orientation of the axis of rotation of the crystal within the plane of the ring is

determined by the χ angle.

(C) Ω-axis

This axis passes through the crystal and through the plane of the χ ring, and is perpen-

dicular to the diffraction plane. By definition, the Ω-axis coincides with the principal axis

of the instrument. Physically, however, there are two independent rotations associated with

this axis: the Ω motor rotates the χ ring (with everything it carries) and does not affect

the position of the detector, and the 2θ motor rotates the detector without affecting the

orientation of the crystal with respect to the incident beam.
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Geometric coordinate transformation

The equations necessary to calculate the diffractometer setting angles for a expected reflec-

tion were presented by Busing and Levy (1967). In a diffraction experiments performed by

a four circle diffractometer, the diffraction vector is represented in terms of several sets of

basis vectors.

(i) The reciprocal lattice basis.

The reciprocal lattice vector can be written as

g = ha∗ + kb∗ + lc∗ ≡ hr∗, (3.15)

where h = (h k l) are Miller indices and r∗ = (a∗ b∗ c∗) are reciprocal lattice basis vectors.

(ii) The crystal Cartesian basis.

gc is defined as the description in terms of the crystal Cartesian axes. In this system, if

we choose the x axis parallel to a∗, the y-axis in the plane of a∗ and b∗, and the z-axis

perpendicular to that plane, then

gc = Bg (3.16)

where the B matrix is calculated from the unit-cell parameter of the crystal:

B =

 a∗ b∗ cos γ∗ c∗ cos β∗

0 b∗ sin γ∗ −c∗ sin β∗ cosα

0 0 1/c

 . (3.17)

Here the a, b, c and α, β, γ are the direct lattice parameters respectively and the asterisked

parameters are reciprocal-space quantities. Note that the B matrix depends on the choice

of a Cartesian reference system for the unit-cell and the choice is arbitrary.

(iii) The φ-axis Cartesian coordinate system.

The U matrix defines the orientation of the crystal axes with respect to the φ-axis Cartesian

coordinate system so that

gφ = Ugc. (3.18)

U depends on the way in which the crystal has been mounted on the goniometer head. If

we define that the basis vectors eφ = (e1φ e2φ e3φ) form a right-handed set of orthonormal

unit vectors, the vector e3φ coincides with the φ axis (the axis about which the goniometer

head rotates).

(iv) The 2θ-axis Cartesian coordinate system.

An orthonormal basis attached to the diffraction vector and the diffractometer. Such a basis

is needed for the construction of the laboratory working system. Here, the basis vectors
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eθ = (e1θ e2θ e3θ) form a right-handed set of orthonormal unit vectors. The vector e2θ is

parallel to the diffraction vector and therefore bisects the complementary angle 180◦ − 2θ

between the incident and diffracted beams. The vector e1θ lies in the diffraction plane, is

perpendicular to e2θ and points to the source of radiation when θ = 0. The vector e3θ

coincides with the principal axis of the instrument and is directed so as to make the system

of basis vectors right handed. For any values of the angles χ, φ and Ω, the 2θ-axis and φ-

axis Cartesian coordinate system are related by a rotation matrix depending on these three

angles. This rotation matrix is obtained as a product of three rotation matrices about the

corresponding axes as shown by

gθ = Rgφ (3.19)

R = ΦχΩ

=

 cosφ sinφ 0

− sinφ cosφ 0

0 0 0


 1 0 0

0 cosχ sinχ

0 − sinχ cosχ


 cosΩ sinΩ 0

− sinΩ cosΩ 0

0 0 0


=

 cosφ cosΩ− sinφ sinΩ cosχ cosφ sinΩ− sinφ cosΩ cosχ sinφ sinχ

− sinφ cosΩ− cosφ sinΩ cosχ − sinφ sinω + cosφ cosΩ cosχ cosφ sinχ

sinχ sinΩ − sinχ cosΩ cosχ


(3.20)

Note that when χ = φ = Ω = 0, gθ = gφ.

Basic diffractometer equations

To observe a reflection in the ideal diffractometer setting it is necessary for θ to satisfy the

Bragg equation and for the plane normal to lie along the y-axis of the 2θ-axis coordinate

system. If h, k, and l are the indices of the reflecting plane then the corresponding column

vector in the reciprocal lattice system is

h =

 h

k

l

 (3.21)

The length q of this vector which is the reciprocal of the interplanar spacing is readily found

from its components in any one of our Cartesian systems. The plane normal will have the

desired direction if

hθ = RUBh (3.22)

has the form

hθ =

 0

q

0

 . (3.23)
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The Bragg equation is then

2 sin θ = λq (3.24)

Evaluating the orientation matrix

Angular calculations on a diffractometer use the UB matrix which is called orientation

matrix. The UB matrix transforms a set of reflection indices h = (h k l) to a set of

diffractometer coordinates denoted as the vector hφ. The components of the vector hφ

contain the positions of the diffractometer axes by which the plane normal h is brought into

coincidence with the diffraction vector:

hφ = UBh = UB

 h

k

l


hφ = R−1hθ = R−1

 0

q

0

 =
2 sin θ

λ

 sinφ cosΩ cosχ+ cosφ sinΩ

cosφ cosΩ cosχ− sinΩ sinφ

− sinφ cosΩ



In principal, we can calculate the orientation matrix from three non-coplanar indices of the

Bragg reflection or two Bragg peaks and lattice constant using the below equation,

UB

 h

k

l

 =
2 sin θ

λ

 sinφ cosΩ cosχ+ cosφ sinΩ

cosφ cosΩ cosχ− sinΩ sinφ

− sinφ cosΩ

 (3.25)
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3.2 Purpose of the X-ray study in the hidden order

phase

Interactions of electrons in solids can cause a variety of second-order phase transitions, the

nature of which is most fundamentally characterised by spontaneous symmetry breaking.

Since the 1985 discovery [9–11] of the phase transition at THO = 17.5K in a heavy-fermion

metal URu2Si2, tremendous efforts have been made to understand its properties [81], but the

nature of this “hidden order” has been a central enigma in condensed-matter physics. Neither

symmetry change in the crystal structure [18, 82, 83] nor magnetic ordering [32, 84, 85] had

been clarified experimentally, which leads to dozens of theoretical proposals of different order

parameters [81]. Quite recently, rotational symmetry breaking has been newly suggested by

several experiments [27, 28, 86, 87], but these measurements have been done under in-plane

magnetic fields, which may induce a different order from the original (hidden) order at the

ground state. On the other hand, the X-ray experiment provides a stringent test of whether

the four-fold symmetry is broken in the hidden order state under no magnetic field. In

this study we have performed high-accuracy X-ray experiments by the four-circle diffraction

which has specify geometrical setting with the higher resolution than previous experiments.

44



3.3 Experiments

3.3.1 Samples

High-quality single crystals of URu2Si2 were provided by Prof. Yoshinori Haga, Prof. Tat-

suma Matsuda, and Prof. Yoshichika Onuki at Advanced Research Center, Japan Atomic

Energy Agency (JAEA). The single crystals grown by the Czochralski method in a tetra-

arc furnace under argon gas atmosphere and subsequently purified by using the solid state

electro-transport method under ultrahigh vacuum [12,13]. The URu2Si2 ingot was also sub-

sequently annealed using the electro-transport method under ultrahigh vacuum. The quality

of the sample depends on the position in the ingot.

Figure 3.5: (a) URu2Si2 ingot annealed using the electro transport method and (b), (c) a
part of the ingot [13].

Figure 3.6(a),(b) show the temperature dependence of the electrical resistivity for five

samples cut from URu2Si2 ingot [13]. The electrical resistivity ρ is normalized by the resis-

tivity at room temperature ρRT, namely ρ/ρRT. The resistivity of five kinds of samples behave

in similar temperature dependence in the high-temperature region, but low-temperature be-

havior strongly depends on the position in the ingot. The sample No.1 which is cut from

the surface region in the ingot has a very small residual resistivity. The residual resistivity

ratio RRR reach up to 1000. The superconducting transition temperature TSC also depends

on the the position in the ingot. The highest TSC= 1.45 K is shown by the No.1 sample.
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(c)

Figure 3.6: (a) Temperature dependence of the electrical resistivity ρ normalized by the
value obtained at room temperature ρRT. (b) Expanded view in the low-temperature region.
The five kinds of the sample is cut from the different region of URu2Si2 ingot. (c) Temper-
ature dependence of the specific heat C/T . Upper data is a specific heat of single crystal
after the annealing before cutting. Lower one is a specific heat of single crystal after taking
a small piece of the crystal after taking a small piece of the crystal by cutting the annealed
ingot [13].

Figure 3.6(c) shows the temperature dependence of the specific heat C/T measured with the

single-crystal ingot named as ”bulk”and a No.1 sample [13]. The specific heat of the bulk

sample shows the double jump at the superconducting transition, which indicates the bulk

sample has inhomogeneity of the sample quality. However, the sample No.1 exhibits a single

transition jump at TSC = 1.45 K.

The de Haas-van Alphen(dHvA) measurements were also carried out in the sample No.1.

A single oscillation of α branch is observed in the field range from 4.5 to 8 T at 69 mK.

The dHvA frequency F = 1.21× 107 Oe coincides with the previous dHvA and SdH results.

On the other hand, the Dingle plot analysis show the large scattering time τ = 2.4× 10−14.

This large τ value is equivalent to the very large mean free path l = 11000 Å, which is larger

than the previous value of l = 5500 Å for the RRR = 256 sample. The electrical resistivity,

specific heat and dHvA measurements show the sample cut from the surface region in the

ingot has high quality.
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Sample quality in this study

We use two single crystals from two different batches evaluated by residual resistivity ratios

RRR. One is an ordinary crystal with a typical value of RRR ∼ 10 and the other is

a new-generation ultraclean crystal with RRR ∼ 670. Figure 3.7 shows the temperature

dependence of the resistivity ρ along the a-axis in zero magnetic field with RRR ∼ 670.

ρ exhibits a tiny peak following a kink at THO, as previously reported. A well-defined

superconducting transition at TSC ∼ 1.4 K was observed, which was confirmed by the specific

heat measurements.
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Figure 3.7: (a) Resistivity ρ as a function of T . (b) Expanded view of the resistivity ρ near
the hidden order transition. (c) Magnified view of the resistivity ρ near the superconducting
transition.
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3.3.2 Methods

Guide for higher resolution

The condition for maximum intensity of X-ray diffraction is given by Bragg’s law;

2d sin θ = λ, (3.26)

where

1

d
=

√(
h

a

)2

+

(
k

b

)2

+

(
l

c

)2

. (3.27)

At room temperature URu2Si2 has a body-centered tetragonal crystal structure which has

unit cell vectors a = b 6= c and interaxial angles α = β = γ = 90◦. Here, our purpose is to

determine whether the distortion along the [1 1 0]T direction occurs in the hidden order, so

we need to obtain Bragg diffraction spot at the tetragonal (hh 0)T. In this case, we rewrite

the above Bragg condition: √
2a sin θ = λh. (3.28)

The uncertainty of the measured lattice spacing is given by the total derivative ∆a, which

leads to
∆a

a
= − ∆θ

tan θ
+

∆λ

λ
. (3.29)

When a crystal has inhomogeneity or crack, the macroscopic strain occurs in the crystal

which gives a distribution of lattice length δa. If the resolution ∆a is smaller than the

distribution of lattice length δa, we can’t detect the Bragg peaks profile accurately. The

resolution of the X-ray diffraction is affected by two factors: (i) the diffraction angle term

and (ii) the finite spread wavelength of the incident beam.

The finite spread wavelength of the incident beam is determined by the Bragg reflection

monochromators for synchrotron X-radiation:

∆λ

λ
= −∆E

E
=

∆θc
tan θc

, (3.30)

where θc is the diffraction angle of the analyzer crystal. The distribution δθc is given by

∆θc =
√
(∆ω)2 + (∆τ)2, (3.31)

where δω is intrinsic angular width of diffraction and δτ angular divergence of X-ray beam.

The intrinsic angular range over which total reflection occurs in a perfect crystal such as Si

and Ge when absorption effects are neglected is given by

∆ω =
−2e2

πmc2
λ2

V

|Fhkl|
sin 2θB

, (3.32)

where V is the volume of the unit cell of the crystal and |Fhkl| is structure factor. If we
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assume δτ = 0 simply, the resolution of incident beam is shown by

∆λ

λ
=

−4e2

πmc2
d2

V
|Fhkl|. (3.33)

For the Si(311) reflection which we use in this study the energy resolution calculated using

above equation is 1.9 ×10−5.

The diffraction angle width ∆θ depends on the receiving slit in front of the detector. To

achieve ∆θ/ tan θ is small, we use narrow slit (0.1 mm× 0.1 mm) and set the diffraction angle

as high as possible without interference between machines. Figure 3.8 show the estimated

lattice constant resolution for the imaging plate and the four-axis diffractometer. Here, we

set the energy of the incident beam E = 18.8 keV (λ = 0.659 Å) for imaging plate and

E = 17.15 keV (λ = 0.723 Å) for four-axis diffractometer. The imaging plate is an X-ray

area detector, so the diffraction angle is limited by the edge of imaging plate (2θ ≤ 138◦).

On the other hand, four-axis diffractometer sets the diffraction angle as high as possible

unless the machines interfere with each other. The resolution of the lattice constant ∆a/a

is expected to be higher for higher 2θ (Fig. 3.8), so we focus on the high angle Bragg peak.
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Figure 3.8: Comparison between the estimated lattice constant resolutions ∆a/a for the
imaging plate and the four-axis diffractometer (with the scattering angle resolutions ∆2θ
of 0.03◦ and 0.0008◦, respectively). Dashed lines mark the limits for the available 2θ angle
spaces for each experimental apparatus.
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Determination of X-ray energy

Figure 3.9 shows the temperature dependence of X-ray attenuation length. X-ray can pen-

etrate much deeper into the sample below the absorption edge nearly at 17 keV or 20 keV.

Energy dependences of the scattering angle 2θ for (6 6 0)T, (8 8 0)T, (10 10 0)T and (12 12 0)T

are also displayed in the Fig. 3.9. To get bulk information and higher angle as possible, we

tune the synchrotron X-ray energy to the peak position associated with the uranium L-edge

absorption at 17.15 keV. At this energy 2θ for (8 8 0)T can be as large as 165◦ at which we

can reach the lattice constant resolution is about 2 × 10−5 which is ten times higher than

imaging plate value (Fig. 3.8).
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Figure 3.9: Energy dependence of X-ray attenuation length (black) and the scattering angle
2θ (red) for several (hh0) peaks of URu2Si2. Inset is an expanded view near the peak in the
attenuation length around 17.15 keV.
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Setup for four-circle diffractometer

The crystal structure analysis was performed by synchrotron X-ray at SPring-8 (BL02B1).

There is four-circle diffractometer produced by HUBER at downstream side in experimental

hatch. This diffractometer is operated by SPEC software (Certified Scientific Software),

therefore, it is possible for resonant scattering experiment to collect X-ray energy scan on

constant Q-value, which almost keep the position of X-ray beam during X-ray energy scan.

NaI scintillation detector is equipped for this multi-axis diffractometer. The temperature of

the sample is controlled between room temperature and 10 K by the closed-cycle cryocooler

equipped in the four-axis diffractometer.

Beam

Cryocooler

Detector

Figure 3.10: A schematic picture of the four-circle diffractometer for the setup (2 2 0)T.

To calculate the orientation matrix, we detected some low-angle Bragg diffractions such

as (2 2 0)T, (0 0 2)T and (1 0 3)T, etc. Figure 3.10 and 3.11(a) show the schematic picture

of the four-circle diffractometer for the setup (2 2 0)T and (8 8 0)T, respectively. When we

measure (8 8 0)T Bragg peak, we need to lay the detector sideways. In that case we extended

the top of the cryostat by thin Ag wire and put the sample on its edge for fear that the

copper rod cut off the beam(Fig. 3.11(b)). To improve thermal contact, Apiezon Grease is

used between the sample and Ag wire and the thermal grease is used between the Ag wire

and cold finger of a cryotstat.
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Figure 3.11: (a) A schematic picture of the four-circle diffractometer for the setup (8 8 0)T.
(b) Expanded view of the top of the cryostat.
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3.4 Results

3.4.1 The best sample selected by Imaging plate experiments

The sample was cut or crushed into small pieces and the crystal quality was checked by

using the imaging plate. Figure 3.12 show the (8 8 0)T Bragg peak profile at E = 18.8 keV

and T = 300 K. We have selected a crystal with the sharpest Bragg peaks out of more than

∼ 30 ultraclean crystals (with the residual resistivity ratio close to 670) [12, 13, 29]. This is

extremely important to resolve tiny distortion associated with the hidden-order transition.

The selected best crystal used in this study has dimensions of ∼ 70× 50× 30µm3.
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Figure 3.12: (a) Bragg peak profile at (8 8 0)T. (b)-(e) for (8 8 0)T, (8 8̄ 0)T, (8̄ 8 0)T and
(8̄ 8̄ 0)T.
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3.4.2 Precise structural investigation by 4-circle diffractometer

High angle X-ray diffraction experiments for (8 8 0)T Bragg peak were performed at E =

17.15 keV and T = 300 K (Fig. 3.13a). Fig. 3.13b shows the tetragonal crystal structure of

URu2Si2 (space group I4/mmm) above THO = 17.5 K. When aT = bT, the lattice length aT

is calculated by eqn (3.28):

aT(300K) =
4
√
2

sin θ

12.3984

E (keV)
∼ 4.127 Å. (3.34)

The diffraction angle deviation ∆2θ ∼ 0.1 deg corresponds to the lattice length deviation

∆aT ∼ 0.0005 Å. This value is about four times smaller than the deviation ∆aT ∼ 0.002 Å

estimated from IP experiments.
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Figure 3.13: a. (880) Bragg peak of a high-quality crystal measured with 17.15 keV X-ray

(0.723 Å wave length) by a four-axis diffractometer at room temperature. b. Schematic U
atom arrangements in the basal plane for the tetragonal I4/mmm. This system has a single
domain. c. Bragg points in the l = 0 plane for h, k ≥ 0.

Figure 3.13c shows the X-ray diffraction pattern for I4/mmm symmetry. In the Bravais

lattice with I4/mmm symmetry, the diffraction from a plane where the sum of h+ k + l is

odd gives rise to destructive interference, which is called extinction rule. For instance, the

diffractions from (1 0 0)T and (2 1 0)T plane are forbidden and of zero intensity. The arrow

in Fig. 3.13c shows the direction for 2θ/θ scan.
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3.4.3 The orthorhombic lattice distortion in the hidden order phase

In Fig. 3.14, we show the temperature dependence of the (8 8 0)T Bragg intensity plotted

against the scattering vector q, which is measured by the 2θ/θ mode corresponding to scans

along the radial direction from the origin in the reciprocal space. At high temperatures above

THO, in both crystals we have a single peak with a narrow width. From the full width at half

maximum, the distribution of lattice constant is estimated as ∆a/a ∼ 1.3 × 10−4, which is

more than a factor of 3 smaller than that in the previous studies [18,83,88], indicating very

high crystal quality of our samples. Upon entering the hidden ordered state below THO, the

data for RRR ∼ 10 sample shows no significant change in its shape, but for much cleaner

sample with RRR ∼ 670 the single peak above THO suddenly splits at 17K. We will discuss

the implications of the crystal-purity dependence later, and now we focus on the data of

the ultraclean sample. With decreasing temperature the peak position shifts to the higher

angle. At 10.5K and 9.5K, broadened peak shows clear splitting. The fact that the peak is

split below THO means that the domains are formed in the low-temperature phase.
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Figure 3.14: Normalized intensity as a function of scattering angle 2θ at several tempera-
tures above (black) and below THO (red). Each curve is shifted vertically for clarity. The
angle resolution roughly corresponds to each data point (circles).
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The symmetry of the low-temperature ordered phase should be lower than but belong

to a subgroup of the symmetry above the transition temperature. In the high-temperature

disordered phase the system has a body-centered tetragonal crystal structure belonging

to the I4/mmm symmetry group, which has 15 maximal non-isomorphic subgroups. The

only two Immm and Fmmm space groups break the in-plane rotational symmetry in these

subgroups (Fig. 2.3). As schematically shown in Fig 3.15a,b, four types of domains are formed

in the both Immm and Fmmm structures due to orientational degeneracy of the direction

of orthorhombic distortion [89, 90]. Figure 3.15c,d show the expected transformation of the

X-ray Diffraction pattern as a consequence of the existence of four domains for Immm

and Fmmm, respectively. Immm-type diffraction patterns indicates that the 2θ/θ scan

along [110]T direction shows the single peak integrated four signal. On the other hand, four

spots split two Bragg peaks for the the 2θ/θ scan along [110]T direction in the Fmmm-

type structure. Our experiments show the two splitting below THO, which indicates the

Fmmm-type orthorhombic lattice distortion occurs in the hidden order phase.

a b
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Immm (No. 71)Fmmm (No. 69)

O

bO

a
bO

O

(2h 0 0)
O

(h h 0)
O

d

b
O

a
O

a

Figure 3.15: a,b, Schematic U atom arrangements in the basal plane for orthorhombic
Fmmm structure and orthorhombic Immm structure, respectively. c,d, The orthorhombic
structure forms degenerate domains for Fmmm structure and Immm structure, respectively.
Fmmm domains split the Bragg (hh 0)T points into four (2h 0 0)O points [89,90].
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3.4.4 Temperature dependence of the orthorhombicity

The split peak can be reasonably fitted to two Gaussian peaks (Fig. 3.16), from which or-

thorhombicity δ is estimated, where 2θ1 and 2θ2 are the two peak angles.

δ =
aO − bO
aO + bO

=
sin θ2 − sin θ1
sin θ2 + sin θ1

(3.35)
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Figure 3.16: The data at 9.5K below THO (circles) can be fitted to a sum (solid line) of two

Gaussian functions with different lattice constants aO ∼ 5.8290 Åand bO ∼ 5.8281 Å(dashed
lines).

The change in the lattice constant a for RRR ∼ 10 sample is consistent with the previous

high-resolution Larmor diffraction measurements of (400)T Bragg peak for a similar RRR ∼
10 sample [18] at ambient pressure (Fig. 3.17a). In sharp contrast, our new data on the

ultraclean sample clearly shows a splitting into two different lattice constants aO and bO

below THO, evidencing the transition to the orthorhombic state. We note that these lattice

constants do not track the data for the antiferromagnetic phase under pressure and rather

show an opposite trend that the averaged constant increases just below THO. This clearly

indicates that our splitting cannot be explained by some inclusion of impurity phase having

antiferromagnetism.

The temperature dependence of the orthorhombicity δ is demonstrated in Fig. 3.17b.

The orthorhombicity sets in just below THO, indicating that the lattice symmetry change

is clearly associated with the hidden-order transition. Remarkably, unlike the continuous

change expected in the usual order parameter at a second-order phase transition, δ(T ) shows

a sudden jump at THO followed by a gradual decrease at lower temperatures, which rather
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mimics a first-order transition. The fact that the latent heat has not been reported [9–12]

indicates that the first-order nature is very weak; at THO the discontinuity of the order

parameter that characterises the low-temperature phase may be too small to be detected

thermodynamically. These results lead us to conclude that the hidden order transition

is a weakly first-order phase transition accompanied by lattice symmetry breaking from

tetragonal to orthorhombic structure. We note that the present result is consistent with

the 29Si NMR width measured under in-plane magnetic fields [28], which shows very similar

temperature dependence with a clear jump at THO (Fig. 3.17b). It has been suggested in

a recent theory that the hyperfine fields at the Si site for an antiferroic E−-type order,

which has an in-plane anisotropy, can lead to the NMR broadening below the transition [44].

Thus this naturally implies a close correspondence between the orthorhombicity and NMR

broadening as found in experiments. The first order behavior cant’ be explained by domain

scenario, because volume imbalance of the domains only varies with the intensity ratio of the

Bragg peaks. In addition, domain boundaries which is not periodical along [110] direction

are not responsible for sudden jump of the orthorhombicity. The first order behavior of the

orthorhombicity may be directly related to the order parameter of the hidden order phase,

but demands for further experimental studies.
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Figure 3.17: a, Temperature dependence of lattice constants ∆a(T ) = a(T ) − a(25K)
(circles) compared with the previous report at ambient pressure (hidden order phase) and
at high pressure (antiferromagnetic phase) [18]. Dashed lines are guides for the eyes. b, The
orthorhombicity δ = (aO−bO)/(aO+bO) estimated from the two-peak fitting as a function of
temperature (red circles). The orthorhombicity estimated from the two-dimensional mapping
at 10K (see Fig. 4) is also plotted (red square). The temperature dependence of the NMR
line width for in-plane field [28] is plotted for comparison (blue triangles, right axis). The
dashed line marks the transition temperature THO = 17.5K.
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3.4.5 Two-dimensional (h k 0) scans near the (8 8 0)T Bragg peak

To verify that the peak split originates from the lattice symmetry change to orthorhom-

bic Fmmm structure, we performed the two-dimensional (2D) (h k 0) scans near the (8 8 0)T

Bragg peak (Fig. 3.18). At 10K below THO, the data reveals a twin-peak structure (Fig. 3.18b)

in clear contrast to the single peak above THO (Fig. 3.18a). Here the integrated intensity keeps

the same above and below the transition, demonstrating unambiguously that the twin peaks

originate from splitting of the (8 8 0)T Bragg peak.

8.002

8.001

8.000

7.999

7.998

k

8.0028.0018.0007.9997.998

h

10 K 

8.002

8.001

8.000

7.999

7.998

k

8.0028.0018.0007.9997.998

h

19 K 

a b

8.002

8.001

8.000

7.999

7.998

k

8.0028.0018.0007.9997.998

h

calculated

6000

4000

2000

0

I (cps)

c

Figure 3.18: Two-dimensional mapping of the (880))T Bragg peak. a, Data of (hk0)
scan for 7.998 ≤ h, k ≤ 8.002 at 10K below THO. b, Data taken for the same range at
19K above THO. c, Calculated results by using the 19-K data for the orthorhombic Fmmm
structure with assumptions of δ = 6.2× 10−5 and equal volumes of four domains. The color
bar indicates the intensity.
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The elongated deformation along [h h̄ 0] direction is due to the finite mosaicness inevitably

present in the crystal. However, the peak split along [hh 0] direction only found below THO

(Fig. 3.19a) cannot come from the mosaicness, but from two distinct lattice-plane spacings

inside the crystal (reflecting the domain formation). We also find that along [h h̄ 0] direction

the peak does not show a clear split but does exhibit some broadening (Fig. 3.19b), which

indicates that the split occurs on two directions in the (h k 0) plane. To demonstrate the

consistency with the split into four peaks expected in the orthorhombic Fmmm structure

[89,90] (Fig. 3.15c), we shift the high-temperature data at 19K to four directions as sketched

in the inset of Fig. 3.18c and add them with the same weight. The calculated result shown in

Fig. 3.18c is remarkably consistent with the measured data at 10K (Fig. 3.18b). The line cuts

of this result also reproduce the salient features of the 10 K data; the clear split along [hh 0]

and broadened peak along [h h̄ 0]. The amount of the shifts in the calculation corresponds

to the orthorhombicity δ = 6.2× 10−5, which is quantitatively consistent with the 2θ/θ scan

data in Fig. 3.17b within experimental errors. These results provide direct evidence that the

lattice symmetry is lowered from the tetragonal I4/mmm to orthorhombic F/mmm, and

the fourfold rotational symmetry is broken at the hidden order transition.

The in-plane electronic anisotropy elongated along the [110] direction reported in the

in-plane field rotation experiments [27, 28, 86, 87] is fully compatible with this symmetry.

It should be emphasized that the present results are obtained at zero field, demonstrating

that such electronic nematicity is not field induced. The formation of micro-domains evident

from the multi-peak structure is also consistent with the above reports. We note that the

intensity ratio of the two peaks is temperature dependent (Fig. 3.14) with the integrated

intensity unchanged (Figs. 3.18a,b). This suggests that the domain size and the position of

domain walls change with temperature in the very clean crystal. This opens the possibility

of ‘detwinning’ by an external force, which may be related to the recent report that the

thermal expansion anomaly at THO increases rapidly with application of extremely small

in-plane uniaxial pressure [91].
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Figure 3.19: a, Line cuts along the [hh 0] direction at 10 (red circles) and 19K (blue
circles), which are compared with the calculated one in Fig 3.18c (green line). The intensity
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3.4.6 The symmetry of the hidden order in URu2Si2

The present results clarify the space symmetry of the hidden order phase, which breaks four-

fold rotational symmetry. This, along with the first-order nature revealed in this study, places

very tight constraints on the genuine hidden order parameter. Among the allowed irreducible

representations for the hidden order (four non-degenerate A1, A2, B1, B2, and degenerate E

symmetries) [66], the orthorhombic Fmmm-type space group symmetry pins down that the

hidden order belongs to the E-type, more specifically E(ηa, ηb) with ηa, ηb = ±1, in which the

sign of ηaηb determines the nematic direction of the domain [66]. This establishes a solid base

for the recently proposed nematic/hastatic order with in-plane anisotropy [35,44,63–67].

The magnitude of orthorhombicity δ is of the order of 10−5, which is two orders of

magnitude smaller than that of similar structural transitions from tetragonal I4/mmm to

orthorhombic Fmmm phase in isomorphic BaFe2As2-based iron-pnictide superconductors

[90, 92]. This smallness of the lattice change implies that the hidden-order transition is

driven by an electronic ordering, and small but finite electron-lattice coupling gives rise to

the lattice distortion. It should be noted that several experiments on the electronic structure

provide strong evidence of the band folding over the wave vector Q = (001) [21–23,34,86,87].

Such an antiferro-type ordering is expected to couple weakly to the “ferro-type” (Q = 0)

orthorhombic distortion. We also note that the elastic constants, which are also Q = 0

quantities, exhibit only small changes at THO [82], and it has been pointed out that these

are consistent with several different symmetries including the E(1, 1)-type state, which is

compatible with our results [66].

3.4.7 Sample quality dependence

Another remarkable finding is that the symmetry-breaking orthorhombic lattice distortion

is quite sensitive to disorder (Fig. 3.14). The fact that even the low RRR samples exhibit

clear signatures of the transition in the specific heat measurements [9–12] indicates that

the Q = (0 0 1) band folding is a robust feature against disorder. However, the transition

temperature THO shows a discernible decrease with lowering RRR [12], which implies that

impurities can perturb the hidden order. These may be related to the rotational degree of

freedom of the nematic direction inside the ab plane in the degenerate E-type orders. Indeed

the choice of the [1 1 0] direction can be made by the spin-orbit coupling, and impurities can

induce disorder in the nematic direction which may prevent the long-range lattice distortion

through nontrivial different-Q coupling. We also note that similar high sensitivity to disorder

has been found in the electronic nematic phase in Sr3Ru2O7 where the nematic anisotropy

is found only in very clean samples [93]. Such unusual impurity effects of nematic orders in

strongly correlated electron systems deserve further studies.
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3.4.8 Comparisons with other experiments

We note that the found structure is consistent with previous results. The (h 0 0) peaks

do not show any split along the [h 0 0] direction [18, 83] (Fig. 3.15c), and the thermal ex-

pansion experiment in a large crystal [82] may be insensitive because of the formation of

domains whose size should be smaller than ∼ 50µm. The expanded unit cell (Fig. 2.3a)

leads to the folding of Brillouin zone in the hidden-order phase, and the reconstructed Fermi

surface is expected to be similar to the one with antiferromagnetic order of wave vector

q = (1, 0, 0) = (0, 0, 1) [35]. This is consistent with recent experiments showing similarities

of Fermi surface between the hidden-order and antiferromagnetic phases [23, 34]. Further-

more, the small in-plane anisotropy of cyclotron mass has been reported [86], in agreement

with the orthorhombicity along the [hh0] direction. Finally we comment that the softening

of elastic constant at low temperatures has been found in (C11 − C12)/2 but not in C66,

which at first glance seems to prefer Immm orthorhombicity along [h 0 0] direction [82], 45◦

different from the present results. However, judging from the anomalies found in recent

ultrasound measurements at high magnetic fields [94] we point out that this (C11 − C12)/2

softening may rather be associated with fluctuations of an incommensurate q = (2/3, 0, 0)

spin density wave order, which has been suggested to be responsible for the high-field phase

above the critical field of hidden order (Kuwahara, K. et al. unpublished results). It has

also been pointed out that the small slope changes observed in C66(T ) and (C11 −C12)/2 at

THO can be consistent with several symmetries, and these elastic anomalies may not be very

useful for discrimination between the possible symmetries of hidden order [66].
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3.5 Summary

Since the discovery of the hidden order transition at THO = 17.5K in URu2Si2 about 30

years ago, neither structural distortion and nor magnetic ordering have been observed. The

magnetic torque [27] and NMR [28] experiments suggested electronic nematicity which breaks

fourfold rotational symmetry, but direct evidence is lacking for its ground state at zero field.

We report the observation of lattice symmetry breaking from fourfold tetragonal I4/mmm

to twofold orthorhombic F/mmm structure by high-resolution synchrotron X-ray diffraction,

which clarifies the space symmetry of the order. The estimated difference between aO and bO

is tiny (less than 100 fm) and the magnitude of orthorhombicity δ is of the order of 10−5. The

smallness of the lattice change implies that the transition is driven by the electronic ordering

which distorts the lattice owing to a small electron-lattice coupling. It also makes the

detection quite difficult without high-resolution experiments, which explains why the broken

symmetry has been hidden for so long. Small orthorhombic symmetry-breaking distortion

sets in at THO with a jump, uncovering the weakly first-order nature of the hidden-order

transition. This distortion is observed only in ultrapure sample, implying highly unusual

coupling nature between electronic nematicity and underlying lattice.

The present results clarify the symmetry of the hidden order, which breaks fourfold

rotational symmetry. This gives the most stringent constraint on the genuine hidden order

parameter. The orthorhombic F/mmm point group is consistent with the recently proposed

nematic/hastatic order with in-plane anisotropy [35,44,63,65–67]. The next important step

toward the final solution is to establish whether the time reversal symmetry is broken or

not [95,96], which deserves further studies.
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Chapter 4

Cyclotron resonance in the hidden

order phase

4.1 Introduction

In this chapter, we show the cyclotron resonance study on the hidden order phase of URu2Si2.

Cyclotron resonance is one of the most useful tools to probe of the detailed Fermi surface

structure, which is a complementary technique to the quantum oscillation experiments. The

cyclotron resonance stems from the transition between Landau levels formed by the quantized

cyclotron motion of the conduction electrons. It quantifies directly the effective mass of

quasiparticles moving along extremal orbits on Fermi surface sheets through the simple

relation

m∗
CR = eHCR/ω, (4.1)

where ω = 2πf is the microwave angular frequency and HCR is the resonance field. It should

be noted that in one-component translationally invariant system m∗
CR is not renormalized by

the electron-electron interaction (Kohn’s theorem), but in solids this theorem can be violated

especially for the heavy-fermion systems with interacting conduction and f electrons and

for multiband systems. Therefore, the momentum dependence of m∗
CR in each Fermi surface

should contain important information on the electron correlations, which sometimes are a

source of emergent novel phases. Although there are several studies on cyclotron resonance

in strongly correlated materials, no observations of cyclotron resonance in heavy-fermion

compounds have been reported so far.
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4.1.1 Cyclotron resonance in the normal metal

In the magnetic field applied along the z-axis perpendicular to the conducting plane (i.e.

B0 = (0, 0, B)), a quasiparticle undergoes the circular motion due to the Lorentz force with

the angular frequency,

ωCR = qB/m∗
CR, (4.2)

where q is the electric charge carried by a single electron and m∗ is the effective mass

renormalized by electronic correlation. The equation of the quasiparticle of motion by Drude

model is given by
dv

dt
+

1

τ
v =

q

m∗
CR

(E + v ×B), (4.3)

where τ is the scattering time of the quasiparticle, E = E0e
iωt and B = B0e

iωt is the

electrical magnetic field with radio frequency ω and v is the velocity of the quasiparticle

difined as

v =
1

~
∂E

∂k
, (4.4)

where E is the energy of the quasiparticle and k is the wavevector of the quasiparticle. By

solving the eqn (4.3) about v, current density J = nqv is given by

Jx = σ0
(iωτ + 1)Ex + ωcτEy

(iωτ + 1)2 + (ωcτ)2
, (4.5)

Jy = σ0
(iωτ + 1)Ey − ωcτEx

(iωτ + 1)2 + (ωcτ)2
, (4.6)

σ0 =
nq2τ

m∗
CR

, (4.7)

where n is carrier number of the quasiparticle. The absorption power for right-hand circular

polarized(+) wave and left-hand circular polarized(-) wave E± = Ex ± iEy is shown by

P =
1

2
Re(J · E∗) = σ0|E0|2 ×

1

1 + (ω ± ωCR)2τ 2
. (4.8)

This is the sum of two Lorentzian functions that have two peaks at ω = ±ωc with the width

determined by 1/τ .
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We now consider a k-space electron orbit when E = 0 and τ → ∞. In this simple model,

eqn (4.3) is rewritten by

~
dk

dt
= q(v ×B). (4.9)

Eqn (4.4) and (4.9) implies that dk/dt is perpendicular to ∂E/∂k. This relation means

dk

dt
· ∂E
∂k

=
∑

i=x,y,z

∂ki
∂t

∂E

∂ki
=

dE

dt
= 0 (4.10)

from chain rule. It follows immediately from this equation that the component of k along

the magnetic field and the electronic energy E are both constants of the motion. In other

words, this equation determine the electron orbits in k-space: electrons move along curves

given by the intersection of surfaces of constant energy with planes perpendicular to the

magnetic field. The sign of ∂E/∂k to identifies a section of Fermi surface as hole-like or

electron-like and the direction of the cyclotron motion. In a uniform magnetic field along

z-axis, electrons rotate clockwise and holes rotate anti-clockwise for a closed k-space orbits.

The cyclotron motion in the real space reflects the cyclotron orbit in the k-space. For the

ellipsoidal hole Fermi surface, there are two kinds of the cyclotron orbits: one is the belly

orbit (B) and the other orbit deviated from the belly orbit (L) as shown in Fig 4.1. The

cyclotron orbit on the belly (B) of the Fermi surface leads to a closed loop motion in the real

space. On the other hand, the cyclotron motion deviated from the belly orbit (L) includes the

component of the Fermi velocity parallel to the magnetic field, so the electron moves along

a helical path in which the rotation center drifts along the z-axis (parallel to the magnetic

field) in the real space. Orbits in k-space which enclose extremal area (corresponding orbit

(B) for the ellipsoidal Fermi surface) are especially important because the number of states

per frequency interval is particularly high at these points due to no drift effects.
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Figure 4.1: a. The cyclotron orbit on the belly of the ellipsoidal Fermi surface (red line)
and the cyclotron orbit deviated on the berry orbit (brue line). b. The real space cyclotron
orbit corresponding to the belly orbit. c. The real space orbit for the cyclotron motion
deviated from the belly orbit.
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4.1.2 TE-mode of the microwave cavity

Generally, the cavity resonator can be constructed from circular waveguide shorted at both

ends or built by a cylindrical metal box, i.e. cylindrical cavity resonator. Inside the cavity

resonator, the electric and magnetic fields exist, the total energies of the electric and magnetic

field are stored within the cavity, and the power can be dissipated in the metal wall of the

cavity resonator as well as the filled dielectric material. Beside, the filled dielectric material

will affect the resonant frequency and Q-value. The transverse modes used in the cavity

resonators are the TE and TM mode, which will provide the different dimensions, resonant

frequencies and Q-values. TE-mode is used in our study and The equations for the TElmn-

mode are described in formula [98],

Er = −l
J ′
l (k1r)

k1r
· sin lθ · sin k3z,

Eθ = −J ′
l (k1r) · cos lθ · sin k3z,

Ez = 0, (4.11)

Hr =
k3
k
J ′
l (k1r) · cos lθ · cos k3z,

Hθ = −l
k3
k

J ′
l (k1r)

k1r
· sin lθ · cos k3z,

Hz =
k1
k
J ′
l (k1r) · cos lθ · sin k3z,

where Jl is the Bessel function of the first kind of order l defined as

Jl(z) =
(z
2

)l ∞∑
k=0

(
−z2

4

)k

k!Γ(l + k + 1)
. (4.12)

Here Γ is the gamma function, the prime of J ′
l means the differentiation. The wavenumber

is given by

k1 = 2xlm/D,

k3 = nπ/l,

k2 = k2
1 + k2

3,

and xlm is the m-th solution for J ′
l = 0.
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The microwave magnetic field in the cylindrical cavity can be obtained from eqn (4.11)

and TE011-mode and TE012-mode are shown in the Fig. 4.2. In the TE-mode, tangential

electric fields must be zero at cavity walls. In the TE011-mode, the sample is located at the

center of the cavity and in the TE012-mode, the sample is located at the (3D/4, L/4), where

D is the diameter of the resonant cavity and L is the hight of the resonant cavity. Both

samples are placed in a position of maximum magnetic field and minimum electric field. The

relation between resonant frequency f and the volume of the cavity is given by

(fD)2 =
(cxlm

π

)
+
(cn
2

)2
·
(
D

L

)2

, (4.13)

This equation indicates the cavity volume (hight or diameter) should be smaller as the

microwave frequency is higher.

TE
011
-mode TE

012
-mode

H
ω

E
ω

Figure 4.2: The electromagnetic field distribution in the cylindrical cavity: TE-mode:TE011-
mode and TE011-mode.
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4.1.3 Cavity perturbation method

Cavity perturbation method is analyzed in detail by O. Klein et al [99, 100]. Above a lower

cut-off frequency, a resonant cavity can sustain many standing wave modes, and near each

resonant frequency, the power absorption spectrum estimated from eqn (4.8) has a Lorentzian

shape

P ∝ 1

4(ω − ω0)2 + (2πΓ)2
, (4.14)

where f0 = ω0/2π is the center frequency and Γ is the full frequency width at half maximum.

f0 and Γ are the two characteristics of the resonator and their ratio gives the quality factor

Q of the cavity, which is defined as

Q ≡ f0
Γ

=
ω0〈W 〉

L
, (4.15)

where 〈W 〉 is the time-averaged energy stored in the cavity and L is the energy loss per

cycle.

Here we introduce a complex frequency notation:

ω̂ ≡ ω0 − i
ω0

2Q
. (4.16)

The principle of the cavity perturbation technique is to measure separately the cavity charac-

teristics both before and after a small sample has been inserted. The change in the complex

frequency is given by

∆ω̂ = ω̂s − ω̂0, (4.17)

where the subscripts‘ 0 ’and‘ s ’denote before and after the insertion of the sample,

respectively. If the change ∆ω̂ is adiabatic, then the product of the period and the time-

averaged energy stored is invariant [101],

〈W 〉
ω0

= constant. (4.18)

This implies that
∆〈W 〉
〈W 〉

=
∆ω̂

ω̂
∼ ∆f

f0
− i

2

(
1

Q

)
, (4.19)

where ∆f = fs − f0 is the frequency shift and ∆Γ = ∆(1/Q) = 1/Qs − 1/Q0 is the change

in the width of the resonance.

For ellipsoidal sample, 〈W 〉 and the change ∆〈W 〉 are given by the external electric and

magnetic fields E0, H0, and the polarization and magnetization of the sample P , M , as
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follows:

〈W 〉 =
1

16π

∫
Vc

(|E0(r)|2 + |H0(r)|2)d3r, (4.20)

∆〈W 〉 = −1

4

∫
Vs

(P ·E0(r)
∗ +M ·H0(r)

∗)d3r, (4.21)

where Vc and Vs are the volume of the cavity and sample, respectively. The internal electric

and magnetic fields of the sample E, H are obtained by solving the Helmholtz differential

equations [98],

∆2E(r) + k̂E(r) = 0, (4.22)

∆2H(r) + k̂H(r) = 0, (4.23)

where k̂ is the complex wavevector of the microwave. Since outside the sample, k̂ = 0, the

differential equation is so-called the Laplace equation.

In the case of spherical sample, we can solve the equations rigorously,

∆
〈W 〉
〈W 〉

= −γ

n

ε̂eff − 1

ε̂eff + 2
(4.24)

where n = 1/3 (the depolarization factor of a sphere), and also

γ =
Vc|E0|2

2
∫
Vc
|E0|2d3r

, (4.25)

ε̂eff = β̂ε̂, (4.26)

β̂ = −2

(
−(k̂a) cos(k̂a) + sin(k̂a)

(k̂a) cos(k̂a) + sin(k̂a)− (k̂a)2 sin(k̂a)

)
. (4.27)

Here, ε̂eff is the effective permittivity and a is the radius of the sphere. Depending on the

ratio of the skin depth δ to sample size a, we can distinguish two limiting case.

Depolarization Regime

k̂a � 1 In this limit the fields penetrate uniformly throughout the sample and we can

effectively neglect the second term in eqn (4.22). Therefore, it is only necessary to solve

the Laplace ’s equation. Under this condition the sample is in the so-called depolarization

regime.

Skin depth Regime

k̂a � 1 In the skin depth regime where the sample size is much larger than the skin depth,

k̂ cannot be neglected, and we must solve the full set of Helmholtz equations. As shown in

eqn (4.19), the energy dissipated in the sample is responsible for the variation of the complex
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frequency of the resonator. If we refer to the perturbation ∆ω̂ (the variation caused by the

introduction of the sample in the empty cavity), we have to include a real additive constant,

lim|σ̂|→∞ |∆ω̂/ω0, that represents the shift of the resonance frequency caused by the excluded

volume of the field as the body tends to the perfect conductor limit. This offset is called the

metallic shift and it depends on the volume, geometry and position (within the resonator)

of the sample. For a sample in the skin depth regime, ∆ω̂ is simply related to the surface

impedance
∆ω̂

ω0

= ξẐs + lim
|σ̂|→∞

∆ω̂

ω0

, (4.28)

where ξ is the so-called resonator constant. In general, ξ and lim|σ̂|→∞ ∆ω̂/ω0 depends on the

detailed size and shape of the sample under investigation, and we must await an appropriate

solution of eqn (4.22) for the k̂ = 0 in order to determine them. However, from very general

arguments, we have been able to determine the appropriate form of an equation which relates

an experimentally measurable quantity ∆ω̂/ω0 to an intrinsic quantity Ẑs. In fact, provided

one knows certain properties of the material under investigation, eqn (4.28) is enough to

determine normalized values of Ẑs.

To simplify the notation, we define a new variation

∆′ω̂

ω0

≡ ξẐs =
∆ω̂

ω0

− lim
|σ̂|→∞

∆ω̂

ω0

, (4.29)

where ∆′ω̂/ω0 is the complex frequency shift from a perfectly conducting body of the same

size and shape as the sample. The solutions of the real and imaginary parts of eqn (4.29)

give

∆′ 1

Q
= ∆

1

Q
(4.30)

∆′f = ∆f − lim
|σ̂|→∞

∆f. (4.31)

∆′f/f0 will be hereafter referred to as the shift from a perfect conductor.
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4.1.4 Surface Impedance

The surface impedance Zs is given by the surface resistance Rs and the surface reactance

Xs,

Zs = Rs + iXs (4.32)

The surface impedance is defined as the ratio of the electric and magnetic field at the surface

of the metal [102]

Ẑs ≡
E‖

H‖
(4.33)

where the ‖ sign indicates the field component in the plane of the surface. This definition

is unitless and independent of the surface geometry and normalized by the impedance of

the vacuum Z0 = 4π/c0. In the preceding subsection, we described how the change in the

complex frequency is related to the surface impedance. As shown in eqn (4.19), (4.30), (4.31),

the surface impedance Rs and the surface reactance Xs are given by

Rs =
G

2

(
1

Qs

− 1

Q0

)
, (4.34)

Xs = G

(
−fs − f0

f0

)
+ C, (4.35)

where G is the geometric factor and C is the metallic shift. The energy loss of the microwave

cavity L (eqn (4.15)) corresponds to the absorption power P (eqn (4.8)), so the peak in

∆1/Q(H) can be approximated by the simple Lorentzian

∆1/Q(H) ∝ 1

(H −HCR)2 + (∆H/2)2
, (4.36)

where the normalized full width at half maximum (FWHM) ∆H/HCR is given by 2/ωcτ .

f

Γ

Figure 4.3: The energy loss spectrum of the microwave cavity.
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4.1.5 Kohn’s theorem

Landau’s Fermi liquid theory postulates that an interacting system behaves like a Fermi

gas with renormalized parameters. In Galilean invariant systems, there is a simple rela-

tion between the thermodynamic mass m∗, the band mass m and the Landau Fermi liquid

parameter F s
1 , given by

m∗ =

(
1 +

F s
1

3

)
mb. (4.37)

Here, the thermodynamic effective mass can be determined experimentally by measuring the

specific heat. We emphasize that the effective mass estimated by the cyclotron resonance

experiments is not the same as the thermodynamic effective mass. According to the Kohn’s

theorem [103, 104], the effective mass observed in cyclotron resonance doesn’t depend on

electron-electron interaction, as the cyclotron resonance sees just the center-of-mass motion,

in which the internal force of electron-electron interaction doesn’t have any effect. in fact,

in organic conductors, it was found that the effective mass measured by cyclotron resonance

is much lee than that measured by the Shubunikov-de Haas effect, as the latter is affected

by electron-electron interaction whereas the former is independent of it.

In the normal metal with Galilean invariance, the cyclotron mass mCR coincides with the

band mass mb. However, Legget et al insisted this is not true for a mutually interacting two-

component Fermi liquid even if translationally invariant [105]. Furthermore, C.M.Varma et

al suggests that this relation is also violated in the heavy-fermion system and the cyclotron

mass is given by [106]

mCR = md ≡
m∗

1 + F s
1 /3

> mb (4.38)

where md is the dynamical effective mass defined as the thermodynamic mass divided by the

renormalization factor.

74



4.2 Purpose of the cyclotron resonance study in the

hidden order state

The nature of the hidden order in the heavy-electron metal URu2Si2 is a long-standing

mystery [81] since the discovery of the phase transition at THO = 17.5K [9–11]. There are

several unique features that appear to be clues for understanding the hidden order phase.

Below THO, an electronic excitation gap is formed on a large portion of the Fermi surface

and most of the carriers disappear [29, 107]. Closely related to this, the gap formation also

occurs in the magnetic excitation spectra, as revealed by the neutron inelastic scattering

[30]. The hidden order ground state with no large moment [32, 84, 85] changes to the large-

moment antiferromagnetic state upon applying hydrostatic pressure [16], but the resolved

part of the Fermi surface [21, 24–26, 33, 34, 108–110] has a striking similarity between these

different phases [34, 108], implying that the hidden order is nearly degenerate with the

antiferromagnetic order. The magnetic torque measurements reveal the in-plane anisotropy

of magnetic susceptibility [27], which suggests some hidden mechanism causing that the

magnetic properties of the hidden order phase show a twofold symmetry in the tetragonal

ab plane.

Despite the above peculiar signatures, however, the fundamental question “what is the

nature of the order parameter in the hidden order phase?” remains open, mainly because

a detailed knowledge of the Fermi surface topology in the hidden order is lacking. In fact,

quantum oscillation experiments [33,34,108] have revealed the existence of small pockets in

the hidden order phase similar to those in the antiferromagnetic phase, but the total density

of states of these pockets is significantly smaller than the estimate from the electronic specific

heat, indicating that there must be some missing Fermi surface sheets with heavy mass in

the hidden order phase.
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4.3 Experiments

4.3.1 Samples

We used high-quality single crystals of URu2Si2 with a large residual resistivity ratio of

RRR = 670, which were grown by the Czochralski pulling method in a tetra-arc furnace as

described in previous chapter. The well defined superconducting transition was confirmed

by the specific heat measurements. Experiments have been performed on a single crystal

with the dimension of 2.1× 0.58× 0.10mm3.

4.3.2 Methods

We put the crystal on the sapphire rod and rotate the sample to change the direction of

applied magnetic field(Fig. 4.4 (e)). When we rotate the sample within [100]-[001] plane, the

angle between a-axis and magnetic field is defined as the polar angle θ. The azimuthal angle

φ is defined by the angle between a-axis and magnetic field as the sample rotating within the

[100]-[010] plane. Schematic configuration of the microwave measurements is displayed in

Fig. 4.11. The crystal is placed inside the cavity, where the microwave field component Hω

has an antinode for the TE011 and TE012 modes. The dc field H is applied parallel to Hω,

which excites the microwave current Jω near the sample surface in the region characterized

by the skin depth δ. When the frequency of the cyclotron motion with a radius rc coincides

with the microwave frequency f , the cyclotron resonance occurs.

In the cavity perturbation technique, to get a high-quality factor the resonator must be

surrounded by materials with extremely low microwave absorption and low-loss dielectrics.

In this study we use a cavity resonator made of OFHC copper which have quality factors Q

in excess of 104. The microwave input is carried through the coupling hole via the waveguide

or coaxial cable, and confined inside the cavity. The field distributions for the TE011 mode

used in this study are shown in Fig. 4.2. At the center of the cavity, the magnetic field is

maximum and the electric field is nearly zero. When the crystal is placed in the antinode

of the microwave magnetic field Hω (‖ c axis), the shielding current Iω is excited in the ab

planes of the sample as shown in the expanded picture of Fig. 4.7. Microwave system has

been used by surface impedance experiments at Matsuda laboratory. We applied this system

to cyclotron resonance measurements.
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θ(a)

Hω

φ

φ
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(b)
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Sample
Sapphire rod

(e)

Hdc

[100]
[001] θ

Hdc

[100]
[010]

Figure 4.4: Schematic figure of the sample setting in the cyclotron resonance measurements.
(a) θ rotation set up. (b) φ rotation set up. (c)-(d) Actual setting of the sample. (c) θ = 45◦

and (d) φ = 33◦ set up.
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A schematic diagram of the room-temperature setup is shown in Fig. 4.5. We used

Hewlett-Packard 83640A synthesized sweeper as a microwave generator. The input signal

is carried to the cavity through the coaxial cable or waveguide, and the output is read by

Agilent 8757D scalar network analyzer, where the difference between the output and the

reference signals is picked up. We can extract the resonance frequency f and the quality

factor Q from the full frequency width at half-maximum Γ. Lakeshore model 340 were used

to control each temperature of the sample and cavity. In this study, we performed all the

measurements at zero dc magnetic field.

Hewlett Packard

83640A synthesized sweeper

referenceoutput

input

Agilent

8757D scalar network analyzer

 Lake shore

model-340

P C

Figure 4.5: Schematic diagram of the microwave surface impedance measurement.
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28 GHz cavity

Figure 4.6 shows the schematic picture of the 28 GHz Cu cavity and its sample holder. The

28 GHz cavity is designed by Yuji Matsuda. The superconducting resonator is soaked in the

superfluid 4He at 1.6 K, so the resonator functions as the superconducting cavity. For the

TE011 mode, the resonant frequency and the quality factor of the superconducting cavity

are operated with f ∼ 28 GHz and Q ∼ 20000, respectively, in the absence of samples. The

sample is placed at the center of the cavity and mounted on a sapphire rod with a tiny dot

of Apiezon N grease. The sapphire rod is thermally disconnected with the cavity, but in

contact with the block of copper which is thermally weakly coupled to the superfluid 4He.

The thermometer and heater are installed on the block of copper and we can control the

temperature of the sample within ±1 mK. This is the so-called hot finger technique [111,112]

and known to have high precision to measure the temperature dependence of both the surface

resistance Rs and the surface reactance Xs even in small single crystals. The wires of the

thermometer and heater pass through the stainless-steel pipe, whose one edge is covered

with stycast 1266 for maintaining vacuum inside the cavity, and reach the room-temperature

apparatus.

Waveguide

Heater
Thermometer

Sample
Sapphire rod

Microwave

Stycast 1266

Cu cavity

SUS pipe

Electrical field

Magnetic Field

Figure 4.6: Schematic figure of the 28 GHz Cu cavity.
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60 GHz cavity

Figure 4.7 shows the schematic picture of the 60 GHz Cu cavity and its sample holder. The

60 GHz cavity is also designed by Yuji Matsuda. The superconducting resonator is soaked

in the superfluid 4He at 1.6 K, so the resonator functions as the superconducting cavity. For

the TE011 mode, the resonant frequency and the quality factor of the superconducting cavity

are operated with f ∼ 60 GHz and Q ∼ 40000, respectively, in the absence of samples. The

sample is placed at the center of the cavity and mounted on a sapphire rod with a tiny dot

of Apiezon N grease.

Cu cavity

Sapphire rod

Thermometer

Heater 
(Mn wire)

Waveguide

Vacuum can

Microwave

Sample

Figure 4.7: Schematic figure of the 60 GHz Cu cavity.
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4.4 Results

4.4.1 First observation of the cyclotron resonance in the heavy

fermion compounds

Figure 4.8 shows the microwave data for H//[100] at 1.7K representing the observation

of the cyclotron resonance(CR). The microwave power dissipation ∆1/Q as a function of

applied dc field shows several peaks and at the same fields the frequency shift ∆f shows

rapid changes, which are expected from the Kramers-Kronig relations between real and

imaginary parts of the response functions. These results clearly indicate that the multiple

resonances occur in this field range. These resonances show rapid broadening with increasing

temperature (see Fig. 4.9), which rules out the electron paramagnetic resonance as the origin

of anomalies. Measurements by using different cavities or different modes (see Fig. 4.10)

clearly demonstrate that the resonance fields are proportional to the measurement frequency.

All of these features establish that these anomalies are due to the CR. The observed seven

CR lines are labeled as A to G in the order of corresponding m∗
CR from the heaviest (see

Figs. 4.10 and 4.12).

Figure 4.8: Magnetic-field dependence of the change in the microwave dissipation ∆1/Q
(red, left axis) and the frequency shift ∆f (blue, right axis) of the 60-GHz cavity resonator
containing a single crystal at 1.7K. The dc field is along the [100] direction. The weak field
dependence measured without the crystal has been subtracted. The dotted lines mark the
resonance fields.
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Figure 4.9: Field dependence of ∆1/Q at several different temperatures. Each curve is
shifted vertically for clarity.

Figure 4.10: Relation between the measured frequencies and the resonance fields for H ‖
[100].
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4.4.2 The reason for success of cyclotron resonance experiments

We report the first observation of the cyclotron resonance in URu2Si2. There are two reasons

for success of cyclotron resonance experiments: (i) sample purity and (ii) the relation between

the cyclotron radius rc and skin depth δ, which are discussed below.

Sample’s purity

The detectable condition of the cyclotron resonance demands ωcτ > 1 (where ωc is the

cyclotron angular frequency and τ is the scattering time), which means at least one cyclotron

motion must be performed during the scattering. From the Lorentzian fitting eqn (4.36), we

estimate that ωcτ reaches ∼ 20 at low temperatures for the sharpest line D. Our sample’s

purity with large RRR = 670 leads to such a large value of ωcτ .

The relation between the cyclotron radius rc and skin depth δ

For the skin effect, the cyclotron resonance occurs near the surface within the microwave

skin depth δ = (2ρ/µ0ω)
1/2 (∼ 0.3µm for 28GHz at 1.7K where the dc resistivity ρ is

∼ 1µΩcm in our crystal) when the frequency of the cyclotron motion coincides with the

microwave frequency. We note that unlike conventional cyclotron resonance in metals [97],

heavy mass and small carriers (namely, slow Fermi velocity vF ) in URu2Si2 result in that

the cyclotron radius rc = vF/ω may become shorter than δ in our measurement frequency

range. A schematic picture of our cyclotron resonance set up is shown in Fig. 4.11.

δ
rc

H

H

Jω

ω

J

dc

Figure 4.11: Schematic configuration of the microwave measurements.
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4.4.3 Determination of the cyclotron mass

The cyclotron resonance data set measured at 28 and 60GHz in the ab, [110]-[001], and ac

planes are shown in Figs. 4.12(a)-(f). Here the sample temperature is ∼ 1.7K. The cyclotron

resonance occurs when the relation ω = ωc(= eHCR/m
∗
CR) is satisfied, from which the angle

dependence of m∗
CR can be extracted as shown in Fig. 4.13. From eqn (4.36), the microwave

dissipation ∆1/Q(H) has a peak at HCR,

∆1/Q(H) ∝ 1

(H −HCR)2 + (∆H/2)2
, (4.39)

where the normalized full width at half maximum (FWHM) ∆H/HCR is given by 2/ωcτ , ωc

is the cyclotron angular frequency and τ is the scattering time.

In addition to the resonance peaks, the field dependent surface resistance contributes to

∆1/Q(H) as well. Since URu2Si2 is a compensated metal with equal volumes of electron

and hole carries, the magnetoresistance is large at low temperatures for high-quality crystals

with large τ [29]. This gives noticeable smooth background signals, as evident especially for

28GHz. To resolve the cyclotron resonance lines at high fields, we therefore subtract this

background field dependence by using polynomial functions (dashed lines in Fig. 4.12(a)).

For the resonance line A, we fit the subtracted data by the two Lorentzian functions with

different HCR (see Fig. 4.12(b)).

Figures 4.12(a)-(c) display the resonance lines at two different frequencies when the field

is inclined from [100] toward [110] direction in the ab plane. It is clear that the CR lines

D and A gradually split into two peaks when the field direction is rotated from the [100]

to [110] direction. For the line A, the FWHM for finite azimuth angles φ is significantly

broader than that of H ‖ [100] (φ = 0◦), suggesting that the split occurs immediately after

the field rotation from the a axis. On the other hand, the field split occurs at larger angles

for the line D. Figure 4.12(f) shows the resonance lines at 60GHz when the field is inclined

from [110] toward [001] direction. The split in line D survives against the field tilt angle θ

from the basal plane toward the c axis up to the largest tilt θ = 30◦ used in this study.

Figures 4.12(d) and (e) display the resonance lines at two different frequencies when the

field is inclined from [100] toward [001] direction in the ac plane. The line D exhibits a

gradual shift to higher fields with increasing tilt angle θ, whereas the lines B and B’ merge

into a single peak for large θ. We also note that for the ac plane rotation, due to the limit of

the field range we cannot clearly identify the two-peak feature for the line A. Thus we have

large error bars for the line A at finite θ (see Fig. 4.12).
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Figure 4.12: (a) ∆1/Q under in-plane field rotation at 28GHz. Here φ is the field angle
from the [100] direction in the ab plane. (b) Smooth polynomial background field dependence
1/Qbg (dotted lines in (a)) has been subtracted. At finite angles, the line A shows a broadened
shape, which can be fitted to two Lorentzian functions (dashed lines). (c) ∆1/Q(H) at
60GHz for several angles φ in the ab plane. (d) 60GHz data in the ac plane. Here θ is the
field angle from the ab plane. (e) 28GHz data in the ac plane. (f) Similar data at 60GHz
but in the [110]-[001] plane.
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4.4.4 Assignments of cyclotron mass branches

The field-angle dependence of the CR lines, which can be compared with the band-structure

calculations, allows the determination of the angle-dependent electron masses on the FS

sheets in the HO phase. The three-dimensional structure of FS mass in the hidden-order

phase can be explored by the field-angle dependence of the CR lines, which is summarized

in Fig. 4.13. The characteristic angle dependence of each CR line is important to assign

the corresponding orbits in different FS pockets. Among the observed CR lines, three lines

A (A’), B (B’), and D (D’) exhibit strong intensities (solid symbols in Fig. 4.13), which

should come from the main FS pockets with relatively large volume. Measurements of the

strong lines B and D at two different frequencies provide quantitatively consistent masses,

indicating that the mass is field independent at any angle within the measurement range of

field.

Figure 4.13: Structure of the cyclotron masses m∗
CR for each Fermi surface sheet in URu2Si2

as a function of field angle for the ac-plane (left), ab-plane (center) and [110] − [001] plane
(right) rotations. The solid (open) symbols are for the resonance lines with large (small)
intensities. The dashed lines are guides to the eyes for the main three bands.
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The SdH results indicate that the FS in the hidden-order phase is similar to that in the

antiferromagnetic state [34, 108]. Thus we compare our CR results with the band structure

calculations assuming the antiferromagnetism [35, 38], and discuss the FS structure in the

hidden-order phase. The FS structures calculated with several different values of effective

field for antiferromagnetism are shown in Fig. 4.14. The results in Fig. 4.14(a) are obtained

with the effective field of 40meV, which corresponds to an antiferromagnetic gap of ∼ 4meV

when the renormalization of ∼ 1/10 is taken into account. In this case there exists the cage

structure which is absent in the previous calculation [38], but this structure is sensitive to

the gap size. Indeed we found that small energy shifts to this band (4, 8, and 12meV

for Figs. 4.14(b), (c), and (d), respectively) can diminish this cage structure. Thus our

calculations are completely consistent with the previous case with a larger gap. In these

calculations in the antiferromagnetic state, we always find main three non-equivalent FS

pockets with relatively large volumes, labeled as α, β, and κ (see Figs. 4.14(a)-(d)), which

have obviously different shapes. Below we show that the α, β, and κ bands correspond to the

three strong CR lines D (D’), B (B’) and A (A’), respectively. The other lines with weaker

intensities (see open symbols in Fig. 4.13) are likely corresponding to the smaller pockets γ

inside the α pocket and hourglass-like small pocket near the Z point (see Figs. 4.14(a)-(d)

and 4.15(a)), as well as the possible remnant pockets of the cage which can be found in some

parameter range of antiferromagnetic gap (see Figs. 4.14(b) and (c)).
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Figure 4.14: (a) Schematic views of FS obtained by the density functional band-structure
calculations assuming the antiferromagnetic order. The color indicates the inverse of Fermi
velocity 1/vF on the FS sheets. The lower is schematic cross sectional view of FS in a plane
including Γ (the centre), X, and M points. The effective field of 40meV is used which
corresponds to antiferromagnetic gap of ∼ 4meV considering the renormalization of ∼ 1/10.
(b)-(d) Similar calculations for larger effective fields. The energy shifts of 4 (b), 8 (c), and
12meV (d) are used for the cage band. We checked that for these small changes of effective
field, the main bands α, β and κ do not show any noticeable change.
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·α pocket

The α pocket with nearly isotropic shape, which locates around the center of the folded

Brillouin zone (Γ point), has the largest volume and is the only hole bands among the main

bands. According to the magneto-transport measurements, the Hall coefficient is positive in

the hidden-order phase [29], which immediately indicates that this hole band α has much

larger mobility than the electron bands in this compensated metal. This α pocket is therefore

responsible for the line D having the strongest intensity and sharpest FWHM (with the

largest ωcτ).

· β pocket

There are four β electron pockets with hemispherical shape whose center is along the Γ-X

line. These pockets yield two different extremal orbits for H ‖ [100], but these two become

equivalent for H ‖ [110]. This uniquely corresponds to the angle dependence of the line B.

This line B also tends to merge towards H ‖ [001], which is fully consistent with the shape

of β pockets as well.

·κ pocket

The κ pockets around M point have much heavier band mass with larger 1/vF than the

α pocket (see Figs. 4.14(a)-(d)), which naturally leads us to assign the heaviest line A to

the κ pockets. Indeed, the κ FS consists of two crossing sheets, which should give two

different orbits for in-plane fields except when the field is aligned exactly parallel to the

[100] direction as observed for line A. As for the ac rotation from [100] to [001] one expects

the branch splitting for the κ pockets, but the large errors of mass determination for line A

at finite θ prevent us from observing this split clearly. We stress, however, that no splitting

in our sharpest line D for the ac rotation toward [001] with much higher resolution is a clear

indication that line D does not come from the κ band.
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4.4.5 Comparisons with the quantum oscillations

Our assignments for the α and β bands are consistent with the quantum oscillation reports

[33,34], in which the largest amplitude oscillation branch is assigned to α [33] and the merging

branches for [100] → [001] to β [34]. We note that different band assignments to the quantum

oscillation branches have been proposed [38], in which the largest Γ-centered hole band is

assigned to the ε branch observed only at very high fields above ∼ 17T [113]. However, such

a high-field branch is most likely associated with field-induced transition [113] possibly due

to the Lifshitz topology change by the Zeeman effect [114, 115]. It is rather reasonable to

assign the most pronounced α branch to this largest hole band, which is consistent with our

assignments of CR lines.

Our cyclotron resonance reveals three strong lines which correspond to the main FS

pockets including the heaviest electron band κ that has been missing in the quantum os-

cillation measurements. The heaviest mass and small mean free path of the κ pocket as

revealed by the large FWHM of line A are likely responsible for the difficulty in observing

the corresponding oscillation frequency.

Evaluation of the electronic specific heat

The full determination of the main Fermi surface sheets enables us to evaluate the electronic

specific heat coefficient (Sommerfeld constant) γ =
∑
i

γi, where γi is the contribution from

band i. For closed Fermi surface sheets with spheroidal shape, this can be given by

γi ≈ Ni
k2
BV

3~2
∏

j=a,b,c

(
m∗

jk
j
F

)1/3
, (4.40)

where Ni is the number of equivalent sheets within the Brillouin zone for band i, V =

49 cm3/mol is the molar volume of URu2Si2, m
∗
j is the thermodynamic effective mass and kj

F

is the Fermi wave number along j direction. In a spherical band, kF is directly related to the

quantum oscillation frequency F through the extremal cross sectional area 2πeF/~ = πk2
F .

We approximate each sheet by spheroid with Fermi wave numbers kj
F (j = a, b, c), which

are estimated by using the quantum oscillations results [33,34] for H ‖ [100] and H ‖ [001].

(For α and γ sheets we assume ka
F = kb

F .) The thermodynamic effective mass entered here

can be replaced by the mass m∗
QO measured by the quantum oscillations for each band, which

is different from m∗
CR determined by the cyclotron resonance [104]. Because the mass m∗

QO

has been reported only in a limited field angle range, we simply use H ‖ [001] data for each

band. We find that the ratio of m∗
QO to m∗

CR is in a range of 3-4 for the main bands of

URu2Si2 (Table 4.1). For the heaviest κ band, no quantum oscillations have been observed,

so we calculate m∗
QO by assuming the ratio m∗

QO/m
∗
CR = 4.

89



Table 4.1: Estimation of the electronic specific heat coefficient γ from the comparisons with
the quantum oscillation (QO) results [34]. Values marked with † are estimated by assuming
the ratio m∗

QO/m
∗
CR = 4.

band FH‖[100] (T) FH‖[001] (T) m
∗ H‖[001]
QO m

∗ H‖[001]
CR m∗

QO/m
∗
CR γ ( mJ

molK2 )

α [h] 1230 1065 12.4 4.4 [D] 2.8 6.0

β(β′) [e] 219 (751) 422 23.8 6.1 [B] 3.9 27.3

γ [e] 73 195 10 2.4 [E] 4.2 1.4

κ [e] – – (60)† 15 [A] (4)† 18.4†

total 53.1†

To evaluate γi we need the number of sheets Ni for each band, which requires the band

assignments. As discussed above, the bands α and β are assigned to the hole sheet centered

at Γ point and the four electron sheets located between the Γ and X points (see Figs. 4.13 and

4.14). The band γ with small frequency F and light mass reported by the quantum oscillation

experiments [34] can be assigned to the small electron pocket inside the α sheet, which we

associate with the CR line E with light mass. We ignore the η band which has been observed

only in a limited range of field angle [34], which likely comes from some extremal orbits on

the remnant of the cage with small volume. We also do not consider other branches appeared

only at very high fields named as δ [114], ε [113], and ζ [115], which may be associated with

field-induced transitions. Because of the compensation condition, the volume of κ electron

bands at the zone corner (which has effectively two pockets) can be estimated by the volumes

of one α hole pocket, four β electron pockets, and one γ electron pocket. From this we can

estimate the total Sommerfeld constant as large as ∼ 53mJ/molK2 (Table 4.1), accounting

for more than 80% of the experimental value of γ ≈ 65mJ/molK2 [10]. Considering the

assumptions we made, we infer that the agreement is reasonably good. We can make further

improvement when we take into account the contributions from the cage with hole-like

character, which further make the κ volume larger.
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Fermi surface topology of the α hole band

The quantum oscillation experiments show that the oscillation frequency (Fα) of the α

band changes only weakly with field rotation both within the ab and ac planes, indicating

nearly spherical Fermi surface shape [33, 34]. It is intriguing that for the in-plane fields,

the Fourier transfer spectrum of the oscillations above the upper critical field (∼ 12T for

H ⊥ [001]) shows multiple four-peak structure in a wide range of azimuth angle φ [33,108].

The separation ∆F between these peak frequencies are nearly angle-independent (∆F ∼
0.07 kT), and the number of the oscillation frequencies for H ‖ [110] remains the same as

that for H ‖ [100]. This is completely different angle dependence from the branch splitting

near the [110] direction found in our cyclotron mass for the line D.

Very recent Shubnikov-de Haas studies [108] indicate that the three frequencies of the

four-peak structure are associated with α band and one lowest frequency comes from the β′

orbit. We propose that such three frequencies for the α band with a constant separation

∆F observed only for in-plane fields originates from the field-induced magnetic breakdown

effect. Near the Z point of the Brillouin zone, there is a very small electron pocket connected

to the next zone (Figs. 4.14 and 4.15), which has an hourglass shape. The band-structure

calculations show that a large electron sheet around the Γ point and a slightly smaller hole

sheet around the Z point in the paramagnetic state [33, 38] undergo partial gapping by the

QC = (0, 0, 1) zone folding, which results in divided small pockets; the four β pockets, the

cage, and the ‘hourglass’ pocket [35, 38]. This small hourglass pocket is located very close

to the [001] pole of the α hole sheet (Figs. 4.14 and 4.15). Recent theoretical calculations

suggest that several multipole ordered states possible for URu2Si2 have overall similar FS

topology as the antiferromagnetic case shown in Figs. 4.14 and 4.15 [35].

α (hole)

Γ

Ζ

“hourglass” (electron)

Figure 4.15: Fermi surface (the same as Fig. 4.14(a)) viewed along the [100] direction. Thin
black lines define the Brillouin zone and the color shades depict the magnitude of 1/vF .
Thick lines indicate the cross-sectional profile of the FS in a plane including Γ, Z and X
points (see Fig. 4.14(a)).
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When a high magnetic field is applied perpendicular to the [001] direction, electrons may

tunnel through this small separation between the α hole sheet and the small hourglass elec-

tron pocket. The probability of the breakdown occurrence depends exponentially on the field

strength, p = exp(−H0/H), where the breakdown field H0 depends on the size of the gap. At

high enough fields H & H0, one can see several different orbits, as shown in Figs. 4.16(a)-(c),

which provides a natural explanation for salient features observed in the quantum oscillation

experiments. The breakdown near a [001] pole of the α sheet should decrease the effective

oscillation frequency from Fα [Fig. 4.16(a)] to Fα − ∆F (Fig. 4.16(b)). This is caused by

the reduced effective area of the cyclotron orbit with ‘figure-eight’ topology, which is due

to a combination of the α hole pocket and the hourglass electron pocket [116]. Another

set of breakdown near the other pole leads to the third frequency Fα − 2∆F (Fig. 4.16(c)).

Therefore the three-peak structure in the frequency spectrum with the φ-independent sep-

aration ∆F between the peaks can be understood by this mechanism. This also explains

the fact that the reduced frequency branches Fα − ∆F and Fα − 2∆F disappear once the

field direction is inclined from the ab plane, because for such fields the orbits have large

separation between the α and hourglass pockets. The breakdown probability of each orbit

is (1 − p)2 for Fα (Fig. 4.16(a)), 2p2(1 − p)2 for Fα − ∆F (Fig. 4.16(b)) and p4(1 − p)2 for

Fα − 2∆F (Fig. 4.16(c)). The normalized field dependence of the breakdown probability

is shown in Fig. 4.16(d). From comparisons between these damping factors and quantum

oscillation FFT amplitude in the field range from 8 to 15 T [108], we estimate the breakdown

field H0 of the order of ∼ 5T. Figure 4.16(d) also shows that in the high field range above

∼ 2H0, the damping factors of three orbits are of the same order and their ratios have no

significant dependence of magnetic field, which also seems to be consistent with the quantum

oscillation experiments.

The size of the hourglass pocket and hence the magnitude of ∆F may be sensitive to the

details of band-structure calculations, but the present FS in Fig. 4.15 gives ∆F ∼ 0.03 kT,

which is the same order as the experimental observations. Recent band-structure calculations

suggest that the shape of the α sheet near the poles in the hidden-order phase are sensitive

to the order parameters [35], which may affect the probability of the breakdown at the

field range used in the quantum oscillation studies. We stress that our newly found branch

splitting of the cyclotron resonance is not originated from this breakdown effect, because our

field range (µ0HCR ∼ 3T for the α band at 28GHz) should be lower than the breakdown

field H0. Moreover, the angle dependence of the cyclotron resonance is quite different from

the three-peak behavior in the quantum oscillations. These results clearly indicate that the

FS shape of the hole α band is nearly spherical, and that the CR mass split results from the

peculiar in-plane mass anisotropy which is not directly related to the shape of FS. (In other

words, the slope of the energy-momentum dispersion at the α FS is different for different

directions while the size of Fermi momentum remains nearly the same (see Fig. 4.17(b)).) We

also note that for the mass determination the cyclotron resonance in a high-quality crystal

with large ωcτ (∼ 20 in our case) can yield a much higher resolution than the quantum
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oscillation measurements, which require the analysis of temperature dependent oscillation

amplitude. This allows us to expose the anisotropic mass structure which has been hidden

in the hidden-order phase of URu2Si2.
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Figure 4.16: Possible magnetic breakdown at high magnetic fields for H ⊥ [001]. (a)
Cyclotron orbit for the α hole band without magnetic breakdown. Relative probability
of performing this orbit is given by (1 − p)2, where p = exp(−H0/H) is the breakdown
probability. (b) ‘Figure-eight’ breakdown orbit through the α hole and ‘hourglass’ electron
pockets. (c) Orbit with two sets of magnetic breakdown near the two poles of the α band. (d)
Damping factors for these three orbits which are calculated from the breakdown probability
are plotted against field normalized by the breakdown field H0.
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4.4.6 Nematic electronic structure inferred from cyclotron reso-

nance

In-plane mass anisotropy of the α hole band

Now we focus on the signature of the FS that provides a key to understanding the HO. The

most unexpected and important result is that the sharpest line D arising from the α hole

pocket is clearly split into two lines with nearly equal intensities near the [110] direction

(Figs. 4.12(a), (c), (f) and 4.13). This splitting in the α hole pocket is hardly explained from

the calculated FS structure in the antiferromagnetic phase.

One may argue that some small warping of FS shape gives rise to the appearance of an

additional extremal orbit for particular angles, which can result in the splitting. However,

such a scenario is highly unlikely because of the following reasons. First, quantum oscillation

measurements clearly indicate that the number of extremal orbits in the [110] direction

remains the same as that in [100] direction [33,108]. This argues against that the additional

orbit appears only near the [110] direction. Second, the band-structure calculation indicates

that α pocket is nearly spherical, which is supported by the quantum oscillations experiments

[33,34] that reveal almost angle-independent oscillation frequency for this band. Third, the

fact that the integrated intensity of the split line D’ is nearly equal to that of D line in a wide

range of angle (Figs. 4.12(a), (c) and (f)) suggests that both CR lines arise from the orbits

with nearly equal FS cross sections, which is at odds with the warping scenario. Therefore

we infer that the observed splitting of the CR line D results from a peculiar mass structure

in the HO phase.

The observed splitting of the sharpest CR line D near the [110] direction can be naturally

explained by the emergence of the heavy spots in the α band along [110] as depicted in

Fig. 4.17. One may consider such a twofold mass anisotropy if the system breaks the fourfold

symmetry as suggested by the magnetic torque experiments [27]. The twofold symmetry also

leads to the formation of domains with different nematic directions, which can be called as

[110] and [11̄0] domains as shown in the insets of Fig. 4.17(a). In large crystals containing

these two domains we expect to have two different orbits with different cyclotron masses

near the [110] and equivalent directions. This can explain the observed splitting of the

cyclotron mass near [110]. The robustness against field tilting can also be explained because

the cyclotron orbit for one of the domains always goes through the heavy spots as shown by

the red arrow in the inset of Fig. 4.17(a).

The fact that the quantum oscillation frequency for the α band does not show the cor-

responding splitting for tilted fields indicates that the FS shape does not show significant

breaking of fourfold symmetry but only mass structure strongly breaks the rotational sym-

metry. This suggests that the twofold symmetry is related to the correlation effect, which

modifies mainly the curvature of band dispersion near the Fermi energy (Fig. 4.17(b)).
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Figure 4.17: Structure of the cyclotron mass m∗
CR of the α band. (a) m∗

CR of the α band
as a function of the field angle at 28 and 60 GHz. We use the data for 0 ≤ φ < 45◦ and
0 ≤ θ ≤ 30◦ and symmetrize them for other angles. The solid and dotted lines are the guides
for the eyes representing two domains. Insets illustrates the anisotropic mass distribution
in the spherical α band for the two domains elongated along the [110] and [11̄0] directions.
Red area represents heavy spots. For each domain, two orbits for φ = −45◦, θ = 0◦ (pink)
and φ = −45◦, θ = 30◦ (red) are depicted. (b) For the [110] domain schematic dispersion
curves are shown along the two directions.

95



Enhanced inelastic scattering rate at the heavy spots

A close look at the split resonance lines in Fig. 4.18 reveals that the FWHM for the heavier

line (at higher field) is always larger than the lighter line in our measurement temperature

range. We note that the integrated intensities for these two CR lines are almost identical,

which is reproducible when the field direction is rotated by ∼ 90◦. This implies that the two

domains have almost identical volumes in the large crystal used in this study. We also find

that the data taken after the field cooling condition at 12T remains unchanged, which is

consistent with the previous torque experiments [27]. These results suggest that the domains

are pinned by the underling lattice conditions.

An important result is that the magnitude of ωτ estimated from the width of the

Lorentzian fits is smaller for the heavier resonance line. It has been demonstrated [117]

that the elastic impurity scattering time is longer for heavier band, because of the impurity

limited mean free path at very low temperatures. In our case, however, the opposite trend

has been observed, implying that the inelastic scattering rate 1/τ is enhanced for the heav-

ier cyclotron orbit. This is supported by the higher temperature data (Fig. 4.18(b)), where

the FWHM of the heavier CR line shows more broadening, indicating stronger temperature

dependence of inelastic scattering rate 1/τ(T ) near the heavy spots.

Figure 4.18: Split CR lines for the α band near the [110] direction. (a) Field dependence of
∆1/Q−1/Qbg near the resonance line D at 60GHz for φ = ±43.5◦. The data taken after the
zero-field cooling (ZFC) and field-cooling (FC) procedures are identical within experimental
error. The FC data are fitted by the two Lorentzian functions (dashed lines) with different
ωcτ values (solid lines). Each curve is shifted vertically for clarity. (b) The same plot for
φ = 43.5◦ at three different temperatures.
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α β 

Figure 4.19: Schematic Fermi surface viewed along the [001] direction, showing possible
changes due to the fourfold rotational symmetry breaking. In a [110] nematic state, the
four hemispherical β pockets may rotate or elongate towards each directions indicated by
the black arrows. This symmetry breaking changes the nesting conditions between the β
and α pockets connected with the incommensurate wave vectors (±0.4, 0, 0) and (0,±0.4, 0)
(dashed arrows), and the interband quasiparticle scattering rates shown by the green and
red arrows become non-equivalent.

To discuss possible origins of the enhanced inelastic scattering at the heavy spots, it is

important to consider the interband scattering between the Fermi surface points connected

with particular wave vectors characteristic to the hidden-order phase. It has been shown

from the neutron scattering experiments [30, 31] that the excitations at the commensurate

QC = (1, 0, 0) = (0, 0, 1) and incommensurate QIC = (0.4, 0, 0) wave vectors are important

in the hidden-order phase of URu2Si2. As schematically shown in Fig. 4.19, there are parts

of α and β pockets connected approximately by QIC [38]. In the HO phase, the FS has

twofold symmetry (rather than fourfold tetragonal symmetry) along the [110] direction, and

the four β pockets can be slightly rotated (or elongated) along this direction. This leads to

an imbalance in the interband interactions as depicted by the green and red dashed arrows in

Fig. 4.19. This imbalance may enhance the inelastic scattering at the two of the four corners

of the α hole pocket, generating the hot spots along the [110] (or [1̄10]) direction in the α

sheet as revealed in the present CR experiments.
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4.5 Summary

We have shown that the observation of cyclotron resonance (CR) in the hidden order (HO)

states of URu2Si2 provides useful information of the quasiparticle mass and scattering rate.

We have determined the angle-dependent mass structure, which is compared with the band-

structure calculations assuming the antiferromagnetic state. We were able to assign the

three CR lines with strong intensities with the main Fermi surface pockets, from which a

reasonable estimate of electronic specific heat coefficient can be obtained. In the sharpest

CR line corresponding to the hole α pocket, we observed anomalous splitting near the [110]

direction, which is not expected in the calculations for antiferromagnetic state. This splitting

is found to be robust against the field tilting from the basal plane, which clearly indicates

that the CR splitting has a different origin from the threefold splitting of the quantum

oscillation frequency observed only near the in-plane direction. By considering the Fermi-

surface structure we propose the magnetic breakdown at high fields as a possible origin of

the quantum oscillation splitting. The CR splitting can be naturally explained if we consider

the twofold in-plane anisotropy of the mass and the formation of micro-domains, which is

consistent with the broken rotational fourfold symmetry suggested by the magnetic torque

experiments [27]. Recent nuclear magnetic resonance (NMR) experiments have reported

the peculiar in-plain anisotropy of the Si NMR line width, which also supports the twofold

anisotropy elongated along the [110] direction [28]. Moreover, high-resolution synchrotron X-

ray measurements discussed in previous chapter have revealed evidence for structural change

from the tetragonal I4/mmm to orthorhombic Fmmm-type symmetry [118], which is also

consistent with the broken fourfold symmetry. From the scattering rate analysis, we find

that the anisotropic in-plane mass structure involves the hot spots with heavy mass and

large scattering rate, which suggests strong momentum dependence of electron correlations

due to interband scattering.
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Chapter 5

Cyclotron resonance in the

superconducting state in URu2Si2

5.1 Introduction

Cyclotron resonance in the superconducting phase is currently an exciting area of investiga-

tion theoretically and experimentally. It is thought to be more difficult to observe cyclotron

resonance in superconducting phase than in normal state. This is because the quasiparti-

cles are scattered not only by static defects and impurities, but also by vortices. Recent

development of high quality crystals of some samples including URu2Si2 leads the observa-

tion of the quantum oscillation in the superconducting state, where the amplitudes of the

quantum oscillation actually show reduction at superconducting transition. On the other

hand, the direct observation of cyclotron resonance in the mixed state scarcely have been

observed. One of the reasons is that microwave energy absorbed by carrier (corresponding

to ∼ 1.5K) is very high, which becomes difficult to require the cyclotron condition: the

Landau levels should be larger than the thermal broadening (~ωCR > kBT ). The other is

microwave penetration depth is usually short. We therefore make 3He microwave cavity,

that can cool to ∼ 700mK and study the cyclotron resonance study on the superconducting

phase of URu2Si2.
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5.1.1 Cyclotron motion in the mixed state

In the type-II superconductors for a range of applied fields (Hc1 < H < Hc2), the magnetic

flux (vortex) penetrates the samples and form Abrikosov lattice. Ohkuni et al suggested

quantum oscillation experiments can be explained by the quasiparticles which tunnel into the

normal and superconducting region to perform the cyclotron orbit [33]. A schematic picture

of Abrikosov lattice of vortices and the cyclotron orbit for branch α in URu2Si2 observed by

dHvA experiments is shown Fig. 5.1. Quasiparticles are scattered at the boundary between

the normal and superconducting regions, called Andreev reflection

Figure 5.1: Abrikosov lattice and the cyclotron orbit for branch α for the field along [100]
at H = 0.7Hc2 in URu2Si2 [33]. Vortices are elliptic due to the anisotropy of the coherence
length.

5.1.2 Kohn’s theorem in the superconducting state

Kohn theorem in normal state is shown in previous chapter, which states that the only res-

onance in the system of electrons should occur at the frequency ωCR irrespective of their

mutual interaction. It is still controversial whether the Kohn theorem works in the super-

conducting phase. H.D.Drew et al suggested the Kohn theorem can be applied to the type-I

superconductors and type-II superconductors at low fields (H < Hc1) [119]. On the other

hand, in the mixed state N.B.Kopnin et al suggested the resonant frequency is not coinci-

dent exactly with ωCR [120–122]. This Kohn theorem violation is due to that there are two

different kinds of interacting charge carriers, that is to say, the normal quasiparticles and

superconducting electrons, which breaks the Galilean invariant system.
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5.2 Purpose of the cyclotron resonance study in the

superconducting state

Another important aspect of URu2Si2 is that the hidden order phase hosts the unconven-

tional superconducting phase below the transition temperature TSC = 1.4K at ambient

pressure. The cyclotron mass m∗
CR in the superconducting state has also been a subject of

theoretical debate [119–122]. By considering the ac dynamics of superconducting vortices, a

theory predicts the violation of the Kohn’s theorem and a peculiar temperature dependence

of the resonance frequency in clean type-II superconductors [120]. Experimentally, however,

this point has not yet studied mainly because the observation of cyclotron resonance in the

superconducting state is difficult due to the microwave high energy and the limitation of

microwave penetration depth which is usually short. We therefore made 3He microwave

cavity and observed cyclotron in the superconducting phase of URu2Si2. The temperature

dependence of the cyclotron mass tells us whether the Kohn theorem works in the supercon-

ducting state. Another useful information on the superconducting state is obtained by the

scattering rate estimated from the full width half maximum (FWHM) of the cyclotron reso-

nance peak. In URu2Si2 sample, dHvA measurements show the Dingle temperature which is

proportional to the scattering rate increased in the mixed state. On the other hand, thermal

conductivity experiments revealed an unexpected enhancement of the quasiparticle mean

free path below the melting transition, which implies that the quasiparticles are scattered

less by the vortex lattice than liquid due to the formation of a novel Bloch-like state by

the periodic vortex lattice. These results are controversial, so the scattering time estimated

from cyclotron resonance can indicate important clue. Furthermore, we measure the surface

impedance experiments under same setting of cyclotron resonance, which tells us whether

the URu2Si2 sample actually shows the superconducting transition.
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5.3 Experiments

5.3.1 Sample

Single crystals of URu2Si2 grown by the Czochralski pulling method in a tetra-arc furnace

are provided by Dr. Yoshinori group at Japan Atomic Energy Agency. Figure shows the

temperature dependence of the resistivity, resulting in exceptionally low residual resistivity

ρ0 ' 0.5µΩcm and large residual resistivity ratio of 670. It attest the highest quality

currently achievable.

5.3.2 Methods

Our experiments are performed by OFHC copper cavity resonator in the TE011 mode. We

analyze the Q-factor and resonant frequency by cavity perturbation method. Microwaves

are coupled to the probe through a small circular coupling hole on the top of the cavity.

We set the sample at the center of the cavity where the magnetic field is maximum and the

electric field is nearly zero. This setting is same for cyclotron resonance in the hidden order

state.

We used Hewlett-Packard 83640A synthesized sweeper as a microwave generator. The

input signal is carried to the cavity via the coaxial cable or waveguide, and the output is

read by Agilent 8757D scalar network analyzer, where the difference between the output and

the reference signals is picked up. We can extract the resonant frequency f and the quality

factor Q from the full frequency width at half-maximum Γ. Lakeshore model 340 were used

to control each temperature of the sample and cavity.

45 GHz cavity

Fig. 5.2 shows the schematic picture of the 45GHz cavity and its sample holder. The 45GHz

cavity is designed by Kosuke Ikada. For the TE011 mode, the resonant frequency and the

quality factor of the Cu cavity are operated with f ∼ 45 GHz and Q ∼ 40000, respectively,

in the absence of samples. The sample is placed at the center of the cavity and mounted on a

sapphire rod with a tiny dot of Apiezon N grease. The sapphire rod is thermally disconnected

with the cavity, but in contact with the block of copper which is thermally weakly coupled

to the 3He pot. In this system, we can cool the sample to 700mK. The thermometer and

heater are installed on the block of copper and we can control the temperature of the sample

within ±1 mK. This is the so-called hot finger technique [111,112] and known to have high

precision to measure the temperature dependence of both the surface resistance Rs and the

surface reactance Xs even in small single crystals. The wires of the thermometer and heater

pass through the stainless-steel pipe, whose one edge is covered with stycast 2850FT for

maintaining vacuum inside the cavity, and reach the room-temperature apparatus.
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Figure 5.2: A schematic picture of 45 GHz cavity. This cavity has 3He pot, which can the
sample to about 700 mK.
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5.4 Results

5.4.1 Temperature dependence of surface impedance

Next we discuss the results in the superconducting state, which have been obtained by

using 45-GHz cavity with 3He pot. To check the superconducting transition we measure the

temperature dependence of the surface impedance (Zs = Rs+iXs) at zero and finite magnetic

fields. In our condition that the skin depth δ is smaller than sample dimensions, the change

in the microwave power dissipation ∆1/Q and the frequency shift ∆f are proportional to

the surface resistance Rs and the change of the surface reactance ∆Xs, respectively [111].

In many superconductors, the normal-state microwave electrodynamics is described by the

Hagen-Rubens limit ωτ � 1, in which the surface resistance and reactance have the simple

form

Rs = Xs =

√
µ0ωρ

2
=

µ0ωδ

2
. (5.1)

However, in the present case ωτ becomes large and the Hagen-Rubens limit is not satisfied at

low temperatures. Indeed the temperature dependence of Xs deviates from that of Rs even

above TSC, as shown in Fig. 5.3(a). Similar deviations have been observed, for example, in

the Kondo semiconductor CeNiSn, where the gap formation reduces the scattering leading

to ωτ > 1 at low temperatures [123].

In the SC state below TSC, we clearly observe the reduction of Rs as well as the enhance-

ment of Xs (Fig. 5.3(a)). The latter enhancement is not usually seen in superconductors,

because Xs in the SC state can be approximately given by the magnetic penetration depth

λ as

Xs = µ0ωλ, (5.2)

when λ is much shorter than the skin depth δ. In URu2Si2, however, the small number

and heavy mass of carriers result in very long penetration depth ∼ 1µm [124], which is

longer than the skin depth ∼ 0.24µm at 45GHz in our ultraclean crystals. Under magnetic

fields, we observe essentially similar behaviours in the temperature dependence of Zs (see

Figs. 5.3(b) and (c)). The deviation between Rs(T ) and Xs(T ) is observed in the normal

state, which is enhanced in the SC state. Previous measurements of electrical and thermal

conductivities in fields [73] have provided evidence for the existence of extended region of

vortex liquid state, where the resistivity is still finite even in the SC state below the mean-

field transition temperature TSC. In the vortex solid state below the melting temperature

Tm, the resistivity becomes zero and the thermal conductivity shows an enhancement [73].

By a comparison with the reported vortex phase diagram (see Fig. 5.3(d)), we find that the

deviation between Rs(T ) and Xs(T ) becomes much enhanced below Tm in the vortex solid

state.
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Figure 5.3: (a) Temperature dependence of surface resistance Rs and surface reactance Xs

at 45 GHz in URu2Si2 at zero field. Shaded region represents the superconducting state
below TSC. (b), (c) Similar plots for data taken under magnetic fields H ‖ [100]. (d) Field-
temperature phase diagram for H ‖ [100] taken from Ref. [73]. In (a)-(c), the corresponding
temperature regions for the vortex liquid (blue shade) and vortex solid (red shade) states
are also indicated.
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5.4.2 Cyclotron mass in the superconducting state

The field dependence of ∆1/Q for H ‖ [100] at 45GHz shows multiple CR lines, which

persist down to the lowest temperature at 0.7K (Figs. 5.4(a) and (b)). At this temperature

0.7K, the upper critical field Hc2 and vortex-lattice melting field Hm for H ‖ [100] are 11

and 7T respectively [73]. Thus we focus on the resonance lines at low fields, labeled as D,

E, F, and G. The surface impedance results in Fig. 5.3 clearly indicate that we cover the

field and temperature range deep in the SC state, and thus for these lines the observed clear

peaks in the SC state below TSC can be considered as the first observation of the CR in the

SC phase of heavy-fermion materials.

Figure 5.4: Observation of cyclotron resonance in the superconducting phase of URu2Si2.
(a) Field dependence of the change 1/Q at several temperatures for H ‖ [100].
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The temperature dependence of the cyclotron masses m∗
CR for these lines, which are

determined by the resonance fields, is plotted in Fig. 5.5. Within experimental error, the

masses are temperature independent, and we find that they do not exhibit any noticeable

change between the HO and SC phases. Theoretically, in clean type-II superconductors,

it has been shown [120] that the presence of superconducting and normal carriers in the

vortex states leads to the violation of Kohn’s theorem, and the temperature dependence

of the superconducting carrier number results in a peculiar temperature dependence of the

cyclotron frequency. In the present case, however, such temperature dependence is not

observed. One possible reason for this difference is that in this multiband system, the Kohn’s

theorem is already violated in the normal state above TSC, which may alter the description

of CR in the vortex state. Further studies are necessary for the understanding of CR in

heavy-fermion and multiband superconductors.
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Figure 5.5: The temperature dependence of the cyclotron masses at 45 and 60GHz for CR
lines D-G. Corresponding vortex liquid (blue shade) and vortex solid (red shade) states for
45GHz are determined from the phase diagram in Ref [73].
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5.4.3 Temperature dependence of the scattering rate

A close look at the temperature dependence of the resonance line shape in Figs. 5.4(a) and

(b) finds that the FWHM of the CR lines become broader with increasing temperature.

We analyze the data by the Lorentzian fits to extract the temperature dependence of the

quasiparticle scattering rate 1/τ , which is shown in Fig. 5.6. In the normal state above TSC

the scattering rate roughly follows T -linear dependence, which suggests the deviation from

the standard Fermi-liquid theory of metals. Such non-T 2 dependence of scattering can also

be found in the transport measurements of URu2Si2 [12, 125].

In the SC state below TSC, we observe that the scattering rate is suppressed not at

TSC, but below the vortex-lattice melting transition temperature Tm for all four lines D-G

(Figs. 5.6(a)-(d)). Such a suppression below Tm is consistent with the reported enhancement

of thermal conductivity below Tm, and provides further evidence that the vortex solid state

has much less scattering than the vortex liquid state. In very clean systems the vortices form

a regular lattice in the solid state, which can act as a periodic potential for quasiparticles.

In such a case, the formation of a Bloch-like state may be expected, where the quasiparticle

scattering is reduced compared with the vortex liquid state having more disordered poten-

tials. Thus our observation provides a strong support for the formation of the quasiparticle

Bloch state in vortex-lattice state of clean superconductors.

We also note that the dHvA measurements [33] have shown that the Dingle temperature

TD, which is proportional to the scattering rate, increases when the field is reduced below

the upper critical field at very low temperatures ∼ 35mK. In this low temperature range,

the upper critical field is suggested to be of first order [29], and the boundary between the

vortex liquid and solid states is not fully resolved. This result can be explained by the

enhanced scattering due to the Andreev reflection occurred at the boundary between the

SC and normal (vortex core) regions in the vortex liquid state just below Hc2. This implies

that there is sizeable vortex liquid region even in the low-temperature limit, where thermal

fluctuations vanish. Such a possible quantum vortex liquid state, where quantum fluctuations

melt the vortex lattice, has been suggested in organic and cuprate superconductors [126,

127]. It deserves further studies to determine the complete phase diagram down to the low

temperature limit.

108



Figure 5.6: Temperature dependence of the scattering rate 1/τ extracted from the CR line
width at 45 and 60GHz for CR lines D (a), E (b), F (c), and G (d). Corresponding vortex
liquid (blue shade) and vortex solid (red shade) states for 45GHz are determined from the
phase diagram in Ref. [73].
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5.5 Summary

In the SC phase embedded in the HO phase, we presented the first observation of cyclotron

resonance in the vortex states. Contrary to the proposed temperature dependence, we find

that the mass does not show any significant change below Tc. We rather find that the

scattering rate at low temperatures exhibits characteristic temperature dependence; it shows

non-Fermi liquid-like quasi T -linear dependence followed by a sudden decrease below the

vortex-lattice melting transition temperature, which has been determined by the resistivity

measurements [73]. This supports the formation of a coherent quasiparticle Bloch state in

the vortex lattice phase.
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Chapter 6

Conclusion

URu2Si2 is a heavy fermion compound which exhibits a “hidden order” transition at 17.5K,

whose order parameter remains unclarified despite experimental and theoretical efforts for

more than a quarter century. The hidden order transition accompanies a huge amount of

entropy loss, but neither magnetic ordering nor structural ordering has been observed. The

key to the nature of hidden order lies in understanding which symmetry is being broken.

Recent magnetic torque measurements [27] and NMR experiments [28] reveal the crystal

C4 rotational symmetry in the tetragonal URu2Si2 is broken below the hidden order phase

transition. This newly suggested rotational symmetry breaking has raised several theoretical

proposals, and calls for further experimental verifications by using other techniques.

Here, we report on the first observation of lattice deformation at zero field, which pins

down the symmetry of the hidden order of URu2Si2. Our synchrotron X-ray crystal-structure

analysis reveals tiny but finite orthorhombic distortion of the order of 10−5 (or lattice con-

stant change less than 100 fm). Unlike previous studies, we focus on a high-angle (880)

Bragg diffraction of the body-centered tetragonal crystal structure (I4/mmm), which shows

a clear peak split below THO, demonstrating a transformation to the orthorhombic Fmmm

structure. The smallness of the lattice change implies that the transition is driven by the

electronic ordering which distorts the lattice owing to a small electron-lattice coupling. It

also makes the detection quite difficult without high-resolution experiments, which explains

why the broken symmetry has been hidden for so long. Small orthorhombic symmetry-

breaking distortion sets in at THO with a jump, uncovering the weakly first-order nature of

the hidden-order transition. This distortion is observed only in ultrapure sample, implying

highly unusual coupling nature between electronic nematicity and underlying lattice.

Such four-fold rotational symmetry breaking is also observed by cyclotron resonance

experiments. We report the first observation of the cyclotron resonance in ultrapure URu2Si2

crystals, which allows the full determination of the angle-dependent electron-mass structure

of the main Fermi surface sheets with high precision. In the sharpest cyclotron resonance line

corresponding to the hole α pocket, we observed anomalous splitting near the [110] direction,

which is not expected in the calculations for antiferromagnetic state. The cyclotron resonance

splitting can be naturally explained if we consider the twofold in-plane anisotropy of the mass
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and the formation of micro-domains, which is consistent with the broken rotational fourfold

symmetry.

The broken fourfold symmetry gives strong constraints on the symmetry of the order

parameter in the hidden order phase. In the symmetry classification of the multipole or-

der this is consistent with the two-dimensional E representations. Along this line, rank-2

quadrupole with E+ symmetry, and rank-3 octupole and rank-5 dotriacontapole with E−

symmetry have been theoretically proposed, where the superscript + or － denotes the par-

ity with respect to time reversal. More exotic nematic or hastatic states with and without

time reversal symmetry breaking have also been proposed, which are also consistent with

the broken fourfold symmetry. To pin down the genuine hidden order parameter, the next

important step would be to identify whether time reversal symmetry is broken or not.

Another important aspect of URu2Si2 is that the hidden order phase hosts the uncon-

ventional superconducting phase below the transition temperature TSC = 1.4 K at ambient

pressure. In the superconducting phase embedded in the hidden order phase, we presented

the first observation of cyclotron resonance in the vortex states. We found that while the

cyclotron mass does not show any temperature dependence, the scattering rate shows a rapid

suppression below the vortex lattice melting transition temperature. This provides evidence

for the formation of quasiparticle Bloch state in the vortex lattice state.
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mamoto, Y. Haga, Y. Ōnuki, Z. Fisk, and J. Flouquet, J. Phys. Soc. Jpn. 80, 114710

(2011).

113



[13] T. D. Matsuda, D. Aoki, S. Ikeda, E. Yamamoto, Y. Haga, H. Ohkuni, R. Settai, and
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