
Improvement of surface wave methods for 
constructing subsurface S-wave velocity structures

Tatsunori Ikeda



 



ACKNOWLEDGEMENTS

First of all, I would like to appreciate my supervisor, Prof. Toshifumi Matsuoka

at Kyoto University, who introduced me geophysical exploration, particularly surface

wave analysis. Prof. Matsuoka gave me much advice not only for my research but

also on how to be a good researcher.

I want to sincerely thank Prof. Toshifumi Matsuoka, Prof. Junji Kiyono, and

Prof. Katsuaki Koike for reviewing this dissertation and for providing me constructive

comments and suggestions.

I am grateful to Dr. Takeshi Tsuji at Kyushu University for providing me with

many helpful comments and suggestions. I am also thankful to Dr. Koichi Hayashi

at Geometrics for teaching me the basics of surface wave analysis and providing me

various field data. I would like to thank to Dr. Yasuhiro Yamada for his constructive

comments and suggestions.

I owe chapter 2 to Dr. Masanori Saito, Professor Emeritus at the Tokyo Institute

of Technology, for his kind advice and encouragement of my work.

I owe chapter 3 to Prof. Michael Asten at Monash University. I learned not only

the microtremor analysis method but also a lot about Australian culture from Prof.

Asten. I also thank Clive Collins and Theodora Volti at Geoscience Australia, who

assisted with field observations in Newcastle and Sydney, Australia.

I thank the Port and Airport Research Institute for permission to use the field

data. I am grateful to Mr. Toru Nakayama at Japan Petroleum Exploration Co.

(JAPEX), who performed the procedure for permission to use seismic data in chapter

ii



6. I also thank Japan Oil, Gas and Metals National Corporation (JOGMEC), Japan

Canada Oil Sands Limited (JACOS), and JAPEX for permission to use the three-

component seismic data set acquired jointly by JACOS and JOGMEC. I also thank

Shikoku Electric Power Co. Inc. and Shikoku Research Institute Inc. for seismic data

acquired across the Median Techtronic Line.

I gratefully appreciate the financial support of the Japan Society for the Promotion

of Science (JSPS) Fellowship that made it possible to complete this dissertation.

I wish to express my gratitude to all of my colleagues in Kyoto University. In

particular, I am grateful to Dr. Ayumu Miyakawa at the National Institute of Ad-

vanced Industrial Science and Technology, Dr. Shohei Minato at Delft University

of Technology, Dr. Nori Nakata at Stanford University, and Mr. Kazuya Ishitsuka,

Mr. Hirotatsu Yamabe, and Mr. Kazuya Kobayashi at Kyoto University for precious

discussions.

Finally, I would like to thank to my father, mother, and brother for their moral

support and warm encouragement.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Surface wave method for constructing subsurface S-wave ve-

locity models . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . 4

II. Computation of Rayleigh waves on transversely isotropic me-
dia by the reduced delta matrix method . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 P-SV waves on transversely isotropic media . . . . . . . . . . 10
2.3 Computation of Rayleigh waves . . . . . . . . . . . . . . . . . 15

2.3.1 Haskell method . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Reduced delta matrix method . . . . . . . . . . . . 19
2.3.3 Computations of group velocity, ellipticity, and am-

plitude response . . . . . . . . . . . . . . . . . . . . 23
2.4 Sample calculation . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Transversely isotropic model . . . . . . . . . . . . . 26
2.4.2 Computational efficiency . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



III. Joint inversion of spatial autocorrelation curves with HVSR
curves on the effect of Love wave contribution . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 SPAC method . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 HVSR method . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Joint inversion scheme . . . . . . . . . . . . . . . . 36

3.3 Application to field data . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Data processing . . . . . . . . . . . . . . . . . . . . 38
3.3.2 BRD02 . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 HAM03 . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 WIK01 . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Exclusion of SPAC curves at low frequencies in in-

versions . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Joint inversion using absolute values of HVSR . . . 44
3.4.3 Bias of ESPAC method . . . . . . . . . . . . . . . . 44

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

IV. Multimode inversion with amplitude response of surface waves
in the spatial autocorrelation method . . . . . . . . . . . . . . . 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Theory of the SPAC method . . . . . . . . . . . . . . . . . . 62

4.2.1 Fundamental mode . . . . . . . . . . . . . . . . . . 62
4.2.2 Extended spatial autocorrelation method . . . . . . 63
4.2.3 Multimode analysis . . . . . . . . . . . . . . . . . . 64

4.3 Proposed multimode inversion methods . . . . . . . . . . . . 67
4.3.1 Method using theoretical effective phase velocities . 67
4.3.2 Method using theoretical SPAC coefficients . . . . . 68
4.3.3 Comparison of the two methods . . . . . . . . . . . 68

4.4 Synthetics test . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Field example . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V. Separating mixing modes by the multichannel analysis of sur-
face waves with deconvolution analysis . . . . . . . . . . . . . . 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Multichannel analysis of surface waves . . . . . . . . 89
5.2.2 Convolution equation of dispersion images using the

ASF . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Deconvolution of dispersion images . . . . . . . . . 91

v



5.2.4 Modified MASW for multimode surface wave data . 92
5.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Elastic modeling . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Anelastic modeling . . . . . . . . . . . . . . . . . . 95

5.4 Application to field data . . . . . . . . . . . . . . . . . . . . . 96
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VI. Characteristics of the horizontal component of Rayleigh waves
in multimode analysis of surface waves . . . . . . . . . . . . . . 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Methods and results: Multimode Rayleigh waves in multicom-

ponent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.1 Model A . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.2 Model B . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Field example . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . 113
6.3.2 Dispersion curve estimations . . . . . . . . . . . . . 114

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VII. Window-controlled CMP crosscorrelation analysis for surface
waves in laterally heterogeneous media . . . . . . . . . . . . . . 134

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Common midpoint crosscorrelation method . . . . . . . . . . 136

7.2.1 Conventional CMPCC analysis . . . . . . . . . . . . 136
7.2.2 ASF in CMPCC analysis . . . . . . . . . . . . . . . 137
7.2.3 Wavenumber resolution of the ASF . . . . . . . . . 139
7.2.4 Window-controlled CMPCC analysis . . . . . . . . 140

7.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4 Application to field data . . . . . . . . . . . . . . . . . . . . . 144
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

VIII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.2 Recommendation for future works . . . . . . . . . . . . . . . 165

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
F.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
F.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
F.3 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

vi



LIST OF FIGURES

Figure

1.1 Flow chart of this dissertation. . . . . . . . . . . . . . . . . . . . . . 7

2.1 Coordinate axis for a stacked layer structure. . . . . . . . . . . . . . 30

2.2 Comparison of the fundamental and first higher modes of Rayleigh
waves for the transversely isotropic model shown in Table 2.1used in
Harkrider (1964). (a) Phase velocity, (b) Group velocity, (c) Ellip-
ticity, and (d) Amplitude response. Note that the dimension of the
amplitude response corresponds to one when the units of the velocity
and density are feet/s and kg/m3, respectively. . . . . . . . . . . . 30

2.3 Comparison of the computational time by reduced delta matrix method
TR with those by the delta matrix method using 21 and 15 indepen-
dent matrix elements TD21 and TD15, respectively. Reduction rate of
the computational time is defined as (TD − TR)/TD. . . . . . . . . . 31

3.1 Array shapes used in the survey for (a) BRD02 and WIK01 and (b)
HAM03. Black circles are central receivers used for computing HVSR
curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Set up on a single station. The three-component seismometer is cov-
ered with the bucket. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 The observed SPAC curves for BRD02 corresponding to (a) x = 17.2,
29.8 and 40.5 m and (b) x = 57.7, 68.0 and 99.9 m. (c) The observed
HVSR curve for BRD02. Gray lines are the peak frequency of the
observed HVSR curve. The magenta line is the values of β estimated
by the three-component SPAC method. . . . . . . . . . . . . . . . 48

vii



3.4 Misfit functions for (a) SPAC curves and (b) HVSR curves corre-
sponding to BRD02. ZLCC are also described as dashed lines. 3C
means the case when the values of β are estimated from the three-
component method refer Figure 3.3c. . . . . . . . . . . . . . . . . . 49

3.5 Inverted velocity models by joint inversion for BRD02 when (a) w
= 1.0, (b) (e) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively.
Magenta lines are the velocity models with minimum misfit functions
for each inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Comparison of theoretical SPAC curves for the inverted velocity mod-
els with minimum misfit functions corresponding to (a) x = 68.0 and
(b) 99.9 m and (c) HVSR curves with observed curves for BRD02
when (i) w = 1.0, (ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C,
respectively. Standard errors of SPAC curves are described in (a)
and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 The observed SPAC curves for WIK01 corresponding to (a) x = 17.2,
29.8 and 40.5 m and (b) x = 57.7, 68.0 and 99.9 m. (c) The observed
HVSR curve for WIK01. Gray lines are the peak frequency of the
observed HVSR curve. The magenta line is the values of β estimated
by the three-component SPAC method. . . . . . . . . . . . . . . . . 52

3.8 Misfit functions for (a) SPAC curves and (b) HVSR curves corre-
sponding to WIK01. ZLCC are also described as dashed lines. . . . 52

3.9 Inverted velocity models by joint inversion for WIK01 when (a) w
= 1.0, (b)-(e) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively.
Magenta lines are the velocity models with minimum misfit functions
for each inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Comparison of theoretical SPAC curves for the inverted velocity mod-
els with minimum misfit functions corresponding to (a) x = 29.8 and
(b) 99.9 m and (c) HVSR curves with observed curves for WIK01
when (i) w = 1.0, (ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C,
respectively. Standard errors of SPAC curves are described in (a)
and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Misfit functions for (a) SPAC curves and (b) HVSR curves corre-
sponding to WIK01 with the exclusion of SPAC data at low frequen-
cies <1.6 Hz. ZLCC are also described as dashed lines. . . . . . . . 54

viii



3.12 Inverted velocity models by joint inversion for WIK01 with the ex-
clusion of SPAC data at low frequencies <1.6 Hz when (a) w = 1.0,
(b)-(e) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively. Magenta
lines are the velocity models with minimum misfit functions for each
inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.13 Comparison of theoretical SPAC curves for the inverted velocity mod-
els with minimum misfit functions corresponding to (a) x = 29.8 and
(b) 99.9 m and (c) HVSR curves with observed curves for WIK01
with the exclusion of SPAC data at low frequencies <1.6 Hz when (i)
w = 1.0, (ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively.
Standard errors of SPAC curves are described in (a) and (b). . . . 56

3.14 Misfit functions for (a) SPAC curves and (b) HVSR curves corre-
sponding to BRD02 when RMSE are used in evaluating HVSR curves. 57

3.15 Misfit functions for (a) SPAC curves and (b) HVSR curves corre-
sponding to WIK01 with the exclusion of SPAC data at low frequen-
cies <1.6 Hz when RMSE are used in evaluating HVSR curves. . . 57

3.16 Comparison of dispersion curves estimated by the ESPAC method
with theoretical dispersion curves by joint inversion when w = 1.0
and w = 0.5 with β = 3C for (a) BRD02 and (b) WIK01 with the
removal of SPAC curves at low frequencies. . . . . . . . . . . . . . 58

4.1 Geometry of a receiver array and an incident plane wave. . . . . . . 77

4.2 Flowchart of proposed microtremor analyses that consider higher
modes and multiple receiver separation distances. . . . . . . . . . . 77

4.3 Simulated 4-layered model. . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 (a) Theoretical dispersion curves and (b) power fractions up to second
higher modes for simulated model (Figure 4.3). . . . . . . . . . . . . 78

4.5 Assumed array shape. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Simulated microtremors from one data set. The receiver number
corresponds to Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Comparison of the observed SPAC coefficients with theoretical ones
(red lines) corresponding to r = 25 and 50 m. Only the black circles
among the observed SPAC coefficients were used in an inversion. (b)
Comparison of the observed phase velocities (black circles) from the
ESPAC method with theoretical effective phase velocities (red line). 80

ix



4.8 The average of the misfit functions in each generation for simulated
data. The error bars show the standard deviations. . . . . . . . . . 80

4.9 Results of inversions using effective phase velocities. (a) Simulated
model (red), reference model constructed by equations 4.14 and 4.15
(cyan), inverted models for each trial (black), and the search range
in for the GA inversion (yellow). (b) Final inverted model (blue)
obtained by averaging the S-wave velocities and thicknesses for each
layer over 20 trials and their standard deviations (green). . . . . . . 81

4.10 Results of inversions using SPAC coefficients. (a) Simulated model
(red), reference model constructed by equations 4.14 and 4.15 (cyan),
inverted models for each trial (black), and the search range for the
GA inversion (yellow). (b) Final inverted model (blue) obtained by
averaging the S-wave velocities and thicknesses for each layer over 20
trials and their standard deviations (green). . . . . . . . . . . . . . 81

4.11 Comparison of inverted velocity models using multimode components
with those using only the fundamental mode component for (a) ef-
fective phase velocities and (b) SPAC coefficients. . . . . . . . . . . 82

4.12 Observed microtremors from one data set. The receiver number cor-
responds to Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.13 (a) Theoretical dispersion curves and (b) power fractions up to second
higher modes for a layered model constructed by PS logging data. . 83

4.14 (a) Comparison of observed SPAC coefficients with theoretical ones
(red lines) corresponding to r = 15 and 30 m. Only the black circles
among the observed SPAC coefficients were used in an inversion. (b)
Comparison of the observed phase velocities (black circles) from the
ESPAC method with theoretical effective phase velocities (red line). 83

4.15 The average of the misfit functions in each generation for field data.
The error bars shows the standard deviations. . . . . . . . . . . . . 84

4.16 Results of inversions using effective phase velocities. (a) Logging data
(red), reference model constructed by equations 4.14and 4.15(cyan),
inverted model for each trial (black), and the search range for the GA
inversion (yellow). (b) Final inverted model obtained by averaging
the S-wave velocities and thicknesses for each layer over 20 trials
(blue) and their standard deviations (green). . . . . . . . . . . . . . 84

x



4.17 Results of inversions using SPAC coefficients. (a) Logging data (red),
reference model constructed by equations 4.14and 4.15(cyan), in-
verted models for each trial (black), and the search range for the
GA inversion (yellow). (b) Final inverted model (blue) obtained by
averaging the S-wave velocities and thicknesses for each layer over 20
trials and their standard deviations (green). . . . . . . . . . . . . . 85

4.18 Comparison of inverted velocity models using multimode components
with those using only the fundamental mode component for (a) ef-
fective phase velocities and (b) SPAC coefficients. . . . . . . . . . . 85

4.19 Results of inversions using effective phase velocities. The S-wave ve-
locity and the depth of the infinite half-space were fixed at 700 m/s
and 50 m, respectively. (a) Logging data (red), reference model con-
structed by equations 4.14and 4.15(cyan), inverted models for each
trial (black), and the search range for the GA inversion (yellow). (b)
Final inverted model (blue) obtained by averaging the S-wave veloc-
ities and thicknesses for each layer of 20 trials and their standard
deviations (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 The dispersion image (left) obtained by convolution of the absolute
values of the ASF with the theoretical spectrum. Red lines are the-
oretical dispersion curves. . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Absolute values of the ASF for (a) 24 receivers at intervals of 1 m,
(b) 48 receivers at intervals of 1 m, and (c) 24 receivers at intervals
of 2 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Dispersion images obtained from simulated data without considera-
tion of anelastic attenuation, estimated by (a) the MASW and (b)
the modified MASW, respectively. Red lines are theoretical disper-
sion curves up to the eighth higher mode. (c) and (d) are zoomed
dispersion images for the MASW and the modified MASW, respectively.100

5.4 Deconvolved images constructed from the dispersion image in Figure
5.3a with the MASW with values of ϵ equal to (a) 0.1 (b) 0.05, and
(c) 0.01. (d) A slice of deconvolved images at 10 Hz. . . . . . . . . . 101

5.5 Deconvolved images constructed from the dispersion image in Figure
5.3b with the modified MASW with values of ϵ equal to (a) 0.1, (b)
0.05, and (c) 0.01. (d) A slice of the deconvolved images at 10 Hz. . 102

xi



5.6 Dispersion images obtained from simulated data with anelastic at-
tenuation as in Table 5.1, estimated with (a) the MASW and (b) the
modified MASW. Red lines are theoretical dispersion curves up to
the eighth higher mode. (c) and (d) are zoomed dispersion images
for the MASW and the modified MASW, respectively. . . . . . . . . 103

5.7 Deconvolved images constructed from the dispersion image in Fig-
ure 5.6a with the MASW [(a) and (b)] and in Figure 5.6b with the
modified MASW [(c) and (d)]. . . . . . . . . . . . . . . . . . . . . . 104

5.8 Dispersion images of field data estimated with (a) the MASW and
(b) the modified MASW. (c) and (d) are zoomed dispersion images
for the MASW and the modified MASW, respectively. . . . . . . . . 105

5.9 Deconvolved images constructed from the dispersion image in Figure
5.8a with the MASW [(a), (b), and (c)] and in Figure 5.8b with the
modified MASW [(d) (e), and (f)]. . . . . . . . . . . . . . . . . . . . 106

6.1 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the
vertical force was located at 1 m depth in Model A. Magenta circles
are phase velocities with maximum amplitude for each frequency, and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 119

6.2 (a) Theoretical Rayleigh wave ellipticities and (b) vertical and (c)
horizontal amplitude responses up to the third higher mode for Model
A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the ex-
plosive source was located at 1 m depth in Model A. Magenta circles
are phase velocities with maximum amplitude for each frequency and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 121

6.4 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the ex-
plosive source was located at 8 m depth in Model A. Body waves of
the vertical component data are muted (red line). Magenta circles
are phase velocities with maximum amplitude for each frequency, and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 122

xii



6.5 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the ex-
plosive source was located at 15 m depth in Model A. Body waves
of the vertical component data are muted (red line). Magenta circles
are phase velocities with maximum amplitude for each frequency, and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 123

6.6 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the
vertical force was located at 1 m depth in Model B. Magenta circles
are phase velocities with maximum amplitude for each frequency and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 124

6.7 (a) Theoretical Rayleigh wave ellipticities and (b) vertical and (c)
horizontal amplitude responses up to the third higher mode for Model
B. (d) and (e) Enlarged view of the horizontal amplitude responses. 125

6.8 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the ex-
plosive source was located at 1 m depth in Model B. Magenta circles
are phase velocities with maximum amplitude for each frequency and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 126

6.9 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the ex-
plosive source was located at 8 m depth in Model B. Magenta circles
are phase velocities with maximum amplitude for each frequency and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 127

6.10 The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the ex-
plosive source was located at 15 m depth in Model B. Body waves
of the vertical component data are muted (red line). Magenta circles
are phase velocities with maximum amplitude for each frequency, and
green lines are theoretical dispersion curves. . . . . . . . . . . . . . 128

6.11 Positions of the source and the receivers used in the surface wave
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.12 The 10-Hz low-pass-filtered seismic data and dispersion images for
(a) vertical and (b) horizontal component data. Magenta circles are
phase velocities with maximum amplitude for each frequency. . . . . 130

xiii



6.13 Estimated dispersion curves for the lower two modes in the vertical
and horizontal component data. The solid line represents a wave-
length twice as long as the spread length, and the dashed line repre-
sents a wavelength the same length, and the dashed line represents a
wavelength the same length as the spread length. . . . . . . . . . . 131

6.14 Sensitivity analysis results for the (a) first, (b) second, (c) third, and
(d) fourth layers of Model A. S-wave velocities of each layer were
changed within a range of ±10 % in the simulated model. Circles
and crosses are the observed phase velocities from the vertical and
horizontal components, respectively. . . . . . . . . . . . . . . . . . . 132

6.15 Sensitivity analysis results for the (a) first, (b) second, (c) third, and
(d) fourth layers of Model B. S-wave velocities of each layer were
changed within a range of ± 10 % in the simulated model. Circles
and crosses are the observed phase velocities from the vertical and
horizontal components, respectively. . . . . . . . . . . . . . . . . . . 133

7.1 The concept of CMPCC analysis. . . . . . . . . . . . . . . . . . . . 149

7.2 The number of pairs of crosscorrelations in each CMPCC gather for
(a) receiver spacing and (b) distance from CMP, respectively. . . . . 149

7.3 Estimated dispersion images described as the convolution of absolute
values of ASF with theoretical spectra for the receiver configuration
in Figure 7.2 when (a) all the crosscorrelation pairs, crosscorrelation
pairs with receiver spacing (b) less than 200 and (c) 100 m are used.
Blue lines in dispersion images indicate the theoretical dispersion
curves. Red lines are the minimum wavenumber. . . . . . . . . . . . 150

7.4 The relationship between αλmax and maximum receiver spacing for
α = 1.0 and 0.7 when the receiver configuration described in Figure
7.2 is employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 The simulated three-layered model. Vp, Vs, and ρ are the P-wave
velocity, the S-wave velocity and the density, respectively. . . . . . . 151

7.6 Dispersion curve distributions for the simulated model. (a) Theoret-
ical dispersion curves for beneath one-dimensional structures for the
horizontal points. Observed dispersion curves from CMPCC analysis
with (b) receiver spacing less than 200 m, (c) α = 0.5 and (d) 0.6. . 152

7.7 The CMPCC gather at 100 m horizontal distance. . . . . . . . . . . 153

xiv



7.8 (a) Chart to determine maximum receiver spacing considering maxi-
mum wavelength for ASF. (b) Wavelengths of the observed dispersion
curve and (c) determined maximum receiver spacing at 150 m hori-
zontal distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.9 Maximum receiver spacings for the simulated model for α = (a) 0.5
and (b) 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.10 Comparison of observed dispersion curves with receiver spacing less
than 200 m and α = 0.4-0.7 at 100 m horizontal distance. The cor-
responding CMPCC gather is described in Figure 7.7. . . . . . . . . 154

7.11 Comparison of observed dispersion curves with receiver spacing less
than 200 m and α = 0.4-0.7 at 260 m horizontal distance. . . . . . . 155

7.12 Inverted S-wave velocity structures for the simulated model estimated
by genetic algorithm inversion for (a) receiver spacing less than 200
m and (b) α = 0.5. Solid lines are boundaries of the simulated model
(Ikeda et al., 2013a). . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.13 Study area with in in Shikoku Island. Panel (b) is modified from
Ikeda et al. (2009). The relationship between survey line and MTL
active fault system (MTLASF) is displayed in panel (c). . . . . . . . 157

7.14 The 30Hz low-pass-filtered CMPCC gather at 10 m horizontal distance.157

7.15 Observed dispersion curve distributions for field data calculated from
CMPCC analysis with (a) receiver spacing less than 200 m, (b) α =
0.5 and (c) 0.7. (d)-(f) are dispersion curve distribution between
200-450 m horizontal distance. . . . . . . . . . . . . . . . . . . . . . 158

7.16 Maximum receiver spacings for field data for α = (a) 0.5 and (b) 0.7. 159

7.17 Comparison of observed dispersion curves with receiver spacing less
than 200 m and α = 0.5-0.8 at 360 m horizontal distance. . . . . . . 159

7.18 Comparison of observed dispersion curves with receiver spacing less
than 200 m and α = 0.5-0.8 at 10 m horizontal distance. The corre-
sponding CMPCC gather is described in Figure 7.14. . . . . . . . . 160

7.19 Comparison of observed dispersion curves with receiver spacing less
than 200 m and α = 0.5-0.8 at 250 m horizontal distance. . . . . . . 160

xv



7.20 Inverted S-wave velocity structures by genetic algorithms inversion
for (a) receiver spacing less than 200 m and (b) α = 0.5 (cyan border)
and 0.7. Dash lines correspond to horizontal points for Figures 7.17-
7.19. The S-wave velocities measured by PS logging are overlaid. . . 161

D.1 The observed SPAC curves for HAM03 corresponding to (a) x =
19.2 and 33.3 and (b) x = 57.7 and 99.9 m. (c) The observed HVSR
curve for HAM03. Gray lines are the peak frequency of the observed
HVSR curve. The magenta line is the values of β estimated by the
three-component SPAC method. . . . . . . . . . . . . . . . . . . . 175

D.2 Misfit functions for (a) SPAC curves and (b) HVSR curves corre-
sponding to HAM03. ZLCC are also described as dashed lines. . . . 176

D.3 Inverted velocity models by joint inversion for HAM03 when (a) w
= 1.0, (b)-(e) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively.
Magenta lines are the velocity models with minimum misfit functions
for each inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

D.4 Comparison of theoretical SPAC curves for the inverted velocity mod-
els with minimum misfit functions corresponding to (a) x = 33.3 and
(b) 99.9 m and (c) HVSR curves with observed curves for HAM03
when (i) w = 1.0, (ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C,
respectively. Standard errors of SPAC curves are described in (a)
and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

E.1 Effects on the theoretical calculation of effective phase velocities de-
pending on the distance between receivers using simulated data. Ob-
served phase velocities (black circles), theoretical phase velocities
from equation 4.9 and ones from equation 4.8 for r = 7.21, 14.4,
25 and 28.9 m. Dashed lines show the limit of the high frequency
caused by the spatial aliasing. . . . . . . . . . . . . . . . . . . . . . 180

xvi



LIST OF TABLES

Table

2.1 Parameters used for the transversely isotropic model used inHarkrider
and Anderson (1962) . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Search range of thickness and S-wave velocity in the joint inversion
for BRD02 and HAM03. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Search range of thickness and S-wave velocity in the joint inversion
for WIK01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Parameter values used in the simulated model. . . . . . . . . . . . . 98

5.2 Values of quality factors used in anelastic modeling. . . . . . . . . . 98

6.1 Parameters of Model A. . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Parameters of Model B. . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Parameters of P-SV finite-difference modeling for the simulated model.148

7.2 Parameters of field data acquisition. . . . . . . . . . . . . . . . . . . 148

7.3 Parameters used in the GA inversion; γ is the average coefficient of
variation (Yamanaka and Ishida, 1996). . . . . . . . . . . . . . . . . 148

xvii



LIST OF APPENDICES

Appendix

A. Haskell’s layer matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B. Relationship among di . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C. Matrix elements in the delta matrix method . . . . . . . . . . . . . . 171

D. HAM03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

E. Dependence of effective phase velocities with a distance . . . . . . . . 179

F. Acknowledgements for published contents . . . . . . . . . . . . . . . . 181

xviii



ABSTRACT

Improvement of surface wave methods for constructing subsurface S-wave velocity
structures

by

Tatsunori Ikeda

Chair: Toshifumi Matsuoka

Seismic surface waves are guided waves propagating on the surface of the earth. Al-

though surface waves have a long history in seismological studies, the use of surface

waves has not been common in geophysical explorations. In a reflection or refrac-

tion seismic survey, surface waves are regarded as noise to be eliminated. Recently,

however, a seismic exploration method using surface waves has been dramatically

developed mainly for engineering purposes. The surface wave method is attractive

because it is non-destructive, low cost, and simple compared to other seismic methods.

By the surface wave method, subsurface S-wave velocity structures can be efficiently

estimated from dispersion of surface waves. Since S-wave velocity structures down

to several tens of meters play an important role for evaluating local ground-motion

amplification, the surface wave method is one of the most important geophysical

methods to be established for earthquake-prone countries such as Japan.

The surface wave method utilizes velocity dispersion of surface waves, which can

be extracted from both passive and active seismic data by surface wave analysis. Since

surface waves can be theoretically modeled for horizontally layered structures, S-wave
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velocity structures can be obtained by inversion of observed surface wave dispersion.

Although a number of applications of the surface wave method have demonstrated

the effectiveness of the method, there still remain some issues to be resolved. In this

dissertation, we studied several challenging issues with the surface wave method to

improve the accuracy of S-wave velocity estimations and further extend its applica-

bility.

First we studied a theoretical issue in surface waves. In the surface wave method,

we usually analyze surface waves assuming isotropic media. One reason for this

restriction is that the forward modeling of surface waves in anisotropic media is not

well developed, although analyses of anisotropy have a potential to reveal attractive

information such as lithological alignment, aligned cracks, and stress conditions of

media. Therefore, we developed a forward computation method of surface waves on

transversely isotropic media with enough accuracy and computation time. It can be

effectively used in inversion analysis, which sometimes requires a number of forward

calculations.

We then studied the surface wave method using passive seismic data. By inverting

observed dispersion curves with the microtremor analysis method, S-wave velocities of

sedimentary layers can be retrieved well. The combined use of a horizontal-to-vertical

particle motion spectral ratio (HVSR) with dispersion curves can further constrain

bedrock depth or velocity contrasts in bedrock. Although a Love wave contribution to

Rayleigh waves is necessary for inverting HVSR curves, in some conditions, we need to

give an assumption of Love wave contribution. We investigated the effect of the Love

wave contribution in the joint inversion of cross-correlations including information on

surface wave dispersion with HVSR curves. The results suggested that the choice of

the assumption of Love wave contribution is insensitive to the inverted velocity models

down to bedrock, although there is an ambiguity to estimating S-wave velocities of

bedrock.
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The use of higher modes of surface waves is one of the most important issues in the

surface wave method because it can improve S-wave velocity estimations, increasing

investigation depth. One of the biggest problems in multimode analysis is that sev-

eral mode components are mixed in observed surface waves. This ambiguity causes

significant errors in inversion analysis, and therefore only the fundamental mode of

surface waves is sometimes used in the surface wave analysis.

We proposed two kinds of multimode inversion methods considering the effects of

different receiver separation distances in array observations for passive seismic data

analysis. Multimode inversion can be performed for phase velocity or cross-correlation

data before converting into phase velocities. Both methods don’t require mode num-

bering for observed data. The multimode inversion methods were successfully applied

for both simulated and field data. The inverted velocity models had a good agreement

with logging data.

We also studied higher modes of surface waves in the surface wave method using

active sources. To separate mixing multimode surface waves from observed seismic

data acquired by active sources, we proposed the deconvolution technique based on

the fact that dispersion images can be described by convolution of the theoretical

spectrum with absolute values of the array smoothing function. Applying the de-

convolution technique can separate two mixing modes from single peaks. Separating

mixing modes with the deconvolution technique contributes not only to improving

phase velocity estimations but also to identifying mode transition points.

Furthermore, we studied the characteristics of horizontal components of multi-

mode Rayleigh waves. Only the vertical components of Rayleigh waves are usually

used in the surface wave method, although Rayleigh waves are also included in hori-

zontal components of P-SV waves. We demonstrated that when an explosive source

is located at a deeper depth, additional mode information can be extracted from hor-

izontal component data improving the sensitivity to S-wave velocity changes. This
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result suggests that the multimode analysis of horizontal components of Rayleigh

waves with vertical component data can be efficiently applied in seismic data ac-

quired for standard reflection seismic surveys with three-component seismometers.

In surface wave analysis, two-dimensional S-wave velocity structures can be ob-

tained by assembling one-dimensional S-wave velocity structures because surface wave

analysis requires the assumption of horizontally layered structures in inversion anal-

ysis. The key to improving the lateral resolution of estimated S-wave velocity struc-

tures is estimating dispersion curves corresponding to one-dimensional S-wave velocity

structures, removing lateral heterogeneity. To improve lateral resolution of inverted

two-dimensional velocity structures, we proposed the combined technique of CMP

cross-correlation analysis for surface waves with applying spatial windows to CMP

gathers. The wavelength-dependent window is applied, keeping enough resolution to

estimate phase velocities. The proposed method is successfully applied for remov-

ing lateral heterogeneity in estimating dispersion curves for one-dimensional velocity

structures. Therefore, two-dimensional S-wave velocity structures with high lateral

resolution can be obtained by the subsequent inversion.

In summary, we improved surface wave analysis methods to enhance the accuracy

of S-wave velocity structure estimations. We demonstrated the effectiveness of the

analysis methods by applying both numerically simulated data and field data. Our

findings in this dissertation will contribute to extending the applicability of the surface

wave method.
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CHAPTER I

Introduction

1.1 Motivation

An earthquake is one of the most dangerous natural hazards in the world. Japan is

an especially earthquake-prone country because it is surrounded by plate boundaries.

The 2011 Tohoku earthquake (Mw 9.0) that occurred northeast of Japan reminded

us not only of the fear of earthquakes but also of the importance of a risk assessment

for earthquake damages.

In order to evaluate local ground conditions in terms of local ground-motion am-

plification, impedance, damping, and resonance are key parameters (Kramer , 1996).

For example, when seismic waves propagate through low-impedance materials (e.g.,

silt and clay), the amplitude of seismic waves is increased to conserve energy (McPher-

son and Hall , 2013). However, the above parameters are difficult to obtain from a

practical point of view. As an alternative approach, S-wave velocity structures down

to 30 m (V s30) are widely used for characterizing site conditions for earthquake site

response (e.g. Borcherdt , 1994; Boore, 2004; Matsuoka et al., 2005; Wald and Allen,

2007; McPherson and Hall , 2013). S-wave velocity models are also important for use

in estimation of strong ground motion by numerical simulation (e.g. Yamanaka and

Yamada, 2006; Kasamatsu and Yamanaka, 2006).

There are several approaches to estimating subsurface S-wave velocity structures.
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The direct measurement of S-wave velocities at boreholes gives a good estimation.

However, it is difficult to estimate the spatial distribution of S-wave velocity struc-

tures, and this method cannot be applied in urban areas due to environmental prob-

lems. On the other hand, the shallow S-wave refraction method is a non-destructive

method of obtaining good estimates of near-surface S-wave velocities on the assump-

tion of horizontally layered structures. The S-wave refraction method has been com-

monly used in engineering and environmental studies. In non-horizontal media, how-

ever, estimating correct S-wave velocities is difficult because SH-waves cannot be

distinguished from converted waves in refraction data (Xia et al., 2002b). We need

to establish an alternative approach for constructing near-surface S-wave velocity

structures.

1.2 Surface wave method for constructing subsurface S-wave

velocity models

To overcome this problem, a geophysical method using seismic surface waves has

received a lot of attention and has been significantly developed in recent years because

subsurface S-wave velocity structures can be easily obtained at low cost. Surface wave

analysis has been widely applied for various fields; for example, for mapping bedrock

(Miller et al., 1999), soil liquefaction potential (Lin et al., 2004), pavement structures

(Ryden and Lowe, 2004), geothermal fields (Xu et al., 2012; Galgaro et al., 2013) and

glaciers (Tsuji et al., 2012).

Surface waves are guided waves propagating between different materials. In this

dissertation, we focus on surface waves propagating on the surface of the earth.

These surface waves can be classified into two types: Rayleigh waves and Love waves.

Rayleigh waves are generated by the interaction of P- and SV-waves, whereas Love

waves are generated by SH-waves. Rayleigh waves are usually used in surface wave
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analysis because they can be easily excited.

The velocities of surface waves on layered media differ in frequency. The energy

of surface waves is concentrated down to about one wavelength. Surface waves with

shorter wavelengths (high frequencies) are sensitive to S-wave velocities at a shal-

lower depth, whereas surface waves with longer wavelengths (low frequencies) are

sensitive to a deeper structure. Thus, the depth sensitivity of surface waves depends

on wavelengths (frequencies).

The standard procedure for surface wave analysis can be divided into three main

steps (Socco et al., 2010):

(1) acquire the experimental data

(2) process the signal to obtain the experimental dispersion curve

(3) solve the inverse problem to estimate model parameters

In short, subsurface velocity structures can be estimated by the inversion of ob-

served surface waves extracted from acquired seismic data. We note that in forward

modeling of surface waves, we should assume one-dimensionally layered structures

because theoretical computations of surface waves are constrained to horizontally

layered structures developed by Thomson (1950) and Haskell (1953).

Surface wave analysis methods can be divided into two main methods depending

on data acquisition. One is the method of using surface waves included in seismic

data excited by an active source. Nazarian and Stokoe (1984) introduced the spec-

tral analysis of surface waves (SASW) method, in which dispersion curves of surface

waves can be estimated from a pair of receivers. In order to improve the accuracy of

dispersion curve estimations, Park et al. (1998, 1999a) proposed the method of using

multichannel waveform data, referred to as the multichannel analysis of surface waves

(MASW).

The other is the microtremor survey method (e.g.Okada, 2003) using microtremors

(ambient noise). Microtremors are passive seismic data excited by ambient noise from
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natural phenomena (e.g., winds and ocean waves) and human activities (e.g., traffic

noise and industrial noise). Microtremors at low frequencies (<1 Hz), mostly gen-

erated by natural phenomena (Asten, 1978), contribute to retrieving deeper S-wave

velocity structures, compared to surface wave analysis using active sources.

The spatial autocorrelation (SPAC) method proposed by Aki (1957, 1965) and

the frequency-wavenumber (f-k) method developed by Lacoss et al. (1969) and Capon

(1969) are two main microtremor analysis methods for estimating surface wave disper-

sion curves with an array observation. As a single-station method, the horizontal-to-

vertical particle motion spectral ratio (HVSR) method originally proposed by Nogoshi

and Igarashi (1971) and widely popularized by Nakamura (1989) uses a spectral ratio

between vertical and horizontal components of microtremors. A peak of a HVSR curve

usually agrees well with the fundamental resonance frequency (Bonnefoy-Claudet

et al., 2008). HVSR curves can be efficiently combined with estimated dispersion

curves by an active or passive surface wave method to constrain a depth or S-wave

velocity of bedrock (e.g. Scherbaum et al., 2003; Parolai et al., 2005; Arai and Toki-

matsu, 2005). Also, a difference between in observed HVSR frequency maxima for

axial and transverse components can be an indicator of 2D effects in the geology (e.g.

Roten et al., 2006; Claprood et al., 2012).

1.3 Outline of the dissertation

In this dissertation, we have studied several challenging issues that remain in

surface wave analysis for improving subsurface S-wave velocity estimations. Figure

1.1 shows a flowchart of this dissertation. We have considered the use of surface waves

from a theoretical aspect of surface waves (chapter 2) to data processing for surface

waves included in microtremors (chapters 3 and 4) and in seismic data excited by

active sources (chapters 5-7).

In chapter 2, we address the computation of Rayleigh waves on transversely
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isotropic media. In surface wave analysis, we usually assume isotropic media. Al-

though analyses of anisotropy have potential to reveal various properties of a medium

(e.g. Crampin, 1981), very few studies have been conducted on surface wave analysis

considering anisotropy. To extend surface wave analysis to anisotropic media, the

most important point is a development of stable forward modeling of surface waves

with enough accuracy and computational time for inversion. Therefore, we develop

the theoretical computation method of Rayleigh waves on transversely isotropic me-

dia. The basic theory of P-SV waves and Rayleigh waves is described in chapter

2.

In chapter 3, we apply joint inversion of the SPAC method with HVSR curves

for field data acquired in Newcastle, Australia. When we invert HVSR curves by

using modelled Rayleigh wave ellipticity, the assumption of Love wave contribution is

required in some conditions. We consider the effect of the assumption of Love wave

contribution to joint inversion. We also evaluate observed HVSR curves by zero-lag

cross-correlations to remove noise effects other than Rayleigh waves.

In chapter 4, we propose two kinds of multimode inversion procedures in the

SPAC method considering the effect of different receiver spacings. One is multimode

inversion in a phase velocity domain, and the other is in a coherency domain without

conversion from coherencies to phase velocities. Although different mode signals are

rarely separated by the SPAC method, neither inversion technique requires mode

identification for observed data owing to consideration of theoretical amplitude for

each mode component. The proposed multimode inversion methods can be easily

adapted for cross-correlation data with multiple receiver separation distances.

In chapter 5, we propose the deconvolution technique for separating mixing mul-

timode surface waves in the MASW. When the fundamental mode of surface waves

is dominant, a dispersion spectrum constructed by the MASW can be described by

convolution of the theoretical spectrum with absolute values of the array smoothing

5



function (ASF), which can be defined by the receiver configurations. Based on this

fact, we apply the deconvolution technique for dispersion spectra by using the ASF

to separate mixing mode signals.

In chapter 6, we study fundamental characteristics of horizontal components of

multimode Rayleigh waves. Although only vertical components of seismic data are

usually used to estimate multimode Rayleigh waves, Rayleigh waves are also included

in horizontal components of P-SV waves. The horizontal component of multimode

Rayleigh waves has different amplitude distribution from vertical component data.

To reveal the advantages of the use of horizontal components of Rayleigh waves, we

investigate the effects of source types and source depths on multimode Rayleigh waves

in horizontal component data as well as vertical component data.

In chapter 7, we discuss how to improve the lateral resolution of dispersion curve

estimations in laterally heterogeneous media. In the inversion of surface wave disper-

sion curves, we should assume horizontally layered structures. Therefore, in surface

wave analysis, two-dimensional S-wave velocity structures are obtained by assembling

one-dimensional S-wave velocity structures estimated from local dispersion curves for

different reference points. The key to improving lateral resolution of two-dimensional

S-wave velocity models is extracting local dispersion curves corresponding to one-

dimensional velocity structures beneath reference points. To improve lateral resolu-

tion of local dispersion curve estimations, we propose the window-controlled CMP

cross-correlation analysis. In the proposed method, wavelength-dependent spatial

windows are applied for the cross-correlation gathers to provide a weight for refer-

ence points.

In chapter 8, we make a conclusion and describe a recommendation for future

work.

These researches have been published in or submitted to the following journals.

Chapter 2: Computation of Rayleigh waves on transversely isotropic media by the
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reduced delta matrix method, 2013, Bulletin of the Seismological Society of America,

103, 2083-2093. doi: 10.1785/0120120207.

Chapter 3: Submitted to Geophysical Journal International.

Chapter 4: Multimode inversion with amplitude response of surface waves in the

spatial autocorrelation method, 2012, Geophysical Journal International, 190, 541-

552. doi: 10.1111/j.1365-246X.2012.05496.x.

Chapter 5: A part of chapter 5 has been submitted to Geophysical Journal Inter-

national.

Chapter 6: Submitted to Geophysics.

Chapter 7: Window-controlled CMP crosscorrelation analysis for surface waves in

laterally heterogeneous media, 2013, Geophysics, 78, EN95-EN105. doi: 10.1190/GEO2013-
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Figure 1.1: Flow chart of this dissertation.
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CHAPTER II

Computation of Rayleigh waves on transversely

isotropic media by the reduced delta matrix

method

2.1 Introduction

Because anisotropy of a medium is mainly caused by crystal alignment, lithological

alignment, stress-induced effects, and aligned cracks (Crampin, 1981), analyses of

seismic anisotropy can reveal information about underground structures. The analysis

of S-wave splitting, the separation of an incident S-wave into two directions, is the

most general technique used in the study of seismic anisotropy. The strength of the

anisotropy and the predominant direction, estimated by S-wave splitting, has been

used for structural interpretations of the crust and the upper mantle (e.g. Crampin

et al., 1980; Silver and Chan, 1991; Crampin and Peacock , 2008).

In contrast, analyses of surface wave anisotropy have the potential to determine

anisotropy velocities with their depth distribution. The Love-Rayleigh discrepancy

(Anderson, 1961), or the directional dependence of surface waves, has been used to re-

veal anisotropy mainly in the lithosphere (e.g.Maupin and Cara, 1992; Friederich and

Huang , 1996; Gaherty , 2004; Alvizuri and Tanimoto, 2011). Recently, the anisotropy

of surface waves propagating on near the surface has been discussed (Zhang et al.,
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2009; Dal Moro and Ferigo, 2011).

The estimation of underground structures using surface waves is based on an in-

version in which observed surface waves are compared with theoretically calculated

surface waves for assumed media. Theoretical computations of surface waves are

complicated and usually confined to horizontally layered media. For isotropic lay-

ered media, surface waves can be calculated by the Haskell method (Haskell , 1953),

in which surface waves are obtained by root searches of the characteristic functions.

In the computation of Rayleigh waves, however, the huge exponential functions of

the layer matrices in the Haskell method generate numerical instabilities such as un-

derflow at high frequencies. Dunkin (1965) overcame this problem by analytically

decreasing the order of the characteristic functions by using the delta matrix. Wat-

son (1970) further extended this method as the reduced delta matrix method, which

can compute Rayleigh waves more efficiently than the standard delta matrix method

by decreasing the number of independent variables. Saito and Kabasawa (1993) re-

formulated the reduced matrix method so that Rayleigh waves could be computed

without using complex numbers. Similar computational methods to overcome the nu-

merical instabilities of Rayleigh waves have been developed by Schwab (1970), Schwab

and Knopoff (1972), and Abo-Zena (1979). Kennett (1974) and Kennett and Kerry

(1979) developed a quite different approach using the Reflection-Transmission (RT)

matrix method, which was improved by Chen (1993). Although the computational

efficiencies of the above methods are different, their accuracies are essentially the same

for the computation of the characteristic function (Buchen and Ben-Hador , 1996).

Anderson (1961) computed surface waves on transversely isotropic media by ex-

tending the Haskell method, and Crampin (1970) further extended the Haskell method

to general anisotropic media. Takeuchi and Saito (1972) developed a method of com-

puting surface waves on transversely isotropic media by a numerical integration of the

equations of motion. This approach was extended to general anisotropy by Kawasaki

9



and Koketsu (1990). However, instabilities in the computation of surface waves at

high frequencies also exist for anisotropic media. Park (1996) developed the compu-

tational method for layered anisotropic structures with an arbitrarily oriented axis of

symmetry and three constants related to the wave speed variations of P- and S-waves

by extending the method of Chen (1993). Mandal and Mitchell (1986) derived the

delta matrix method for transversely isotropic media. As the use of the delta matrix

method makes it possible to compute partial derivatives of characteristic functions

analytically (Saito and Kabasawa, 1993), the group velocity and amplitude response

(Harkrider , 1964, 1970) can be obtained without loss of numerical precision. How-

ever, Mandal and Mitchell (1986) did not discuss how to compute Rayleigh waves for

transversely isotropic media as they used the delta matrix method for the computa-

tion of synthetic waveforms rather than surface waves. Moreover, the delta matrix

method has not yet been extended to the reduced delta matrix method.

In this paper, we demonstrate the computation of Rayleigh waves on transversely

isotropic media by the reduced matrix method. First, we derive layer matrices in the

Haskell method and the matrix elements in the delta matrix method for transversely

isotropic media. Second, we extend the delta matrix method to the reduced delta

matrix method. Third, we discuss analytical computations of partial derivatives of

the characteristic function. Finally, we show the effectiveness of the reduced matrix

method by computing the phase velocity, group velocity, ellipticity, and amplitude

response of Rayleigh waves on transversely isotropic media.

2.2 P-SV waves on transversely isotropic media

Let us consider a Cartesian coordinate system with the x − y plane horizontal

and the z axis vertical. Let the displacement, stress, and density be u = (u, v, w)T ,

σ = (σxx, σyy, σzz, σyz, σzx, σxy)
T , and ρ, respectively. Then the equations of motion
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can be expressed as

ρ
∂2u

∂t2
=

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z

ρ
∂2v

∂t2
=

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z

ρ
∂2w

∂t2
=

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
.

(2.1)

Assuming Hooke’s law, the stress-strain relationship for transversely isotropic me-

dia with five independent elastic constants is written as Anderson (1961)



σxx

σyy

σzz

σyz

σzx

σxy


=



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c11−c12
2





∂u
∂x

∂v
∂y

∂w
∂z

∂w
∂y

+ ∂v
∂z

∂u
∂z

+ ∂w
∂x

∂v
∂x

+ ∂u
∂y


. (2.2)

For P-SV waves, it is sufficient to consider waves propagating along the x axis

at a velocity c because transversely isotropic media are symmetric about the z axis.

Under this condition we have

v = 0
∂

∂y
= 0. (2.3)
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Substituting equation 2.3 into equations 2.1 and 2.2, we obtain

ρ
∂2u

∂t2
=

∂σxx

∂x
+

∂σxz

∂z

ρ
∂2w

∂t2
=

∂σzx

∂x
+

∂σzz

∂z

σxx = c11
∂u

∂x
+ c13

∂w

∂z

σzz = c13
∂u

∂x
+ c33

∂w

∂z

σzx = c44

(
∂u

∂z
+

∂w

∂x

)
.

(2.4)

We assume solutions of displacements and stresses in the form of

w = y1(z)e
−i(ωt−kx)

σzz = y2(z)e
−i(ωt−kx)

u = iy3(z)e
−i(ωt−kx)

σzx = iy4(z)e
−i(ωt−kx),

(2.5)

where t is time, ω is angular frequency, k is horizontal wavenumber, and y =

(y1, y2, y3, y4)
T is an unknown function to be determined. Substituting equation 2.5

into equation 2.4 and assuming that ρ and cij depend only on z, we obtain the fol-

lowing linear differential equations:

dy1(z)

dz
=

1

c33
y2(z) +

c13
c33

ky3(z)

dy2(z)

dz
= −ρω2y1(z) + ky4(z)

dy3(z)

dz
= −ky1(z) +

1

c44
ky4(z)

dy4(z)

dz
= −c13

c33
ky2(z) +

[(
c11 −

c213
c33

)
k2 − ρω2

]
y3(z).

(2.6)

Even if cij(z) is discontinuous along the z axis, yi(z) must be continuous.

As we consider only homogeneous media in the following discussion, we suppose
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solutions of the above linear differential equations in the forms

y1(z) = eνz y3(z) = ϵeνz. (2.7)

Substituting equation 2.7 into equation 2.6, we obtain

y2(z) = (c33ν − c13kϵ)e
νz

y4(z) = c44(k + νϵ)eνz

ϵ =
c33ν

2 + ρω2 − c44k
2

(c13 + c44)kν

=
(c13 + c44)kν

c11k2 − ρω2 − c44ν2
.

(2.8)

From the third equation in equation 2.8, we obtain the following quartic equation

about ν:

c33c44ν
4 + [c44(ρω

2 − c44k
2) + c33(ρω

2 − c11k
2)

+(c13 + c44)
2k2]ν2 + (ρω2 − c44k

2)(ρω2 − c11k
2)

= 0.

(2.9)

Solutions for ν2 in equation 2.9 can be expressed as

ν2 =
−M1±

√
M2

1 − 4c33c44M2

2c33c44
, (2.10)

where

M1 = c44(ρω
2 − c44k

2) + c33(ρω
2 − c11k

2) + (c13 + c44)
2k2

M2 = (ρω2 − c44k
2)(ρω2 − c11k

2),

(2.11)
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and then the solutions for ν can be expressed as

ν1 =

√
−M1 +

√
M2

1 − 4c33c44M2

2c33c44
ν2 = −ν1

ν2 =

√
−M1 −

√
M2

1 − 4c33c44M2

2c33c44
ν4 = −ν3.

(2.12)

A general solution for y in a homogeneous layer can be expressed as follows:

y1(z) =
4∑

m=1

Fme
νmz

y2(z) =
4∑

m=1

(c33νm − c13kϵm)Fme
νmz

y3(z) =
4∑

m=1

ϵmFme
νmz

y4(z) =
4∑

m=1

c44(k + νmϵm)Fme
νmz.

(2.13)

Here, Fm is a constant of integration. We then replace eνmz in equation 2.13 with a

hyperbolic function. For example, y1(z) can be rewritten as

y1(z) =
4∑

m=1

Fme
νmz

= F1e
ν1z + F2e

ν2z + F3e
ν3z + F4e

ν4z

= F1e
ν1z + F2e

−ν1z + F3e
ν3z + F4e

−ν3z

= (F1 + F2)coshν1z + (F1 − F2)sinhν1z

+ (F3 + F4)coshν3z + (F3 − F4)sinhν3z.

(2.14)

Finally, the general solution y can be expressed as

y(z) = D(z)F, (2.15)
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where

D(z) =



C1(z) S1(z) C3(z) S3(z)

d1S1(z) d1C1(z) d2S3(z) d2C3(z)

ϵ1S1(z) ϵ1C1(z) ϵ3S3(z) ϵ3C3(z)

c44d3C1(z) c44d3S1(z) c44d4C3(z) c44d4S3(z)



F(z) =



F1 + F2

F1 − F2

F3 + F4

F3 − F4



(2.16)

and

C1(z) = coshν1z

C3(z) = coshν3z

S1(z) = sinhν1z

S3(z) = sinhν3z

d1 = c33ν1 − c13kϵ1

d2 = c33ν3 − c13kϵ3

d3 = k + ν1ϵ1

d4 = k + ν3ϵ3.

(2.17)

2.3 Computation of Rayleigh waves

2.3.1 Haskell method

We assume a stacked-layer structure in which each layer is homogeneous as in

Figure 2.1. Here, we define zn−1 = 0 < z < zn = hn as the n-th layer. If we define

the origin of the z axis to be at zn−1, from equation 2.15 the general solution of yn
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within the n-th layer can be expressed as

yn(z) = Dn(z)Fn. (2.18)

Substituting z = zn−1 = 0 into equation 2.18, we obtain

yn(0) = Dn(0)Fn, (2.19)

where

Dn(0) =



1 0 1 0

0 d1 0 d2

0 ϵ1 0 ϵ3

c44d3 0 c44d4 0.


(2.20)

From equation 2.19, Fn is solved as

Fn = D−1
n (0)yn(0) (2.21)

where

D−1
n (0) =



−d4
d5

0 0 1
c44d5

0 − ϵ3
c33d6

d2
c33d6

0

d3
d5

0 0 − 1
c44d5

0 ϵ1
c33d6

− d1
c33d6

0


(2.22)

and

d5 = ν1ϵ1 − ν3ϵ3 d6 = ν3ϵ1 − ν1ϵ3. (2.23)
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Substituting equation 2.21 into equation 2.18, the general solution for the n-th layer

can be written as

yn(z) = An(z)yn(0), (2.24)

where An is defined by

An(z) = Dn(z)D
−1
n (0), (2.25)

which is called Haskell’s layer matrix. Haskell’s layer matrices are listed in Appendix

A. By using these relationships among di described in Appendix B, the layer matrices

described by 16 elements as in Mandal and Mitchell (1986) decrease to 10 elements,

which is the same number as for isotropic media. Equation 2.24 indicates that the

solution in the n-th layer can be obtained from the solution at the bottom of the n

th layer with elastic constants and the density of the n-th layer. Since the solution

of the upper surface in the n-th layer must be continuous with that of the bottom in

the (n+ 1)-th layer, it can be expressed as

yn+1(hn) = yn(hn) = An(hn)yn(0). (2.26)

Thus, the solution at the top of the (n+ 1)-th layer can be generally expressed as

yn+1(hn+1 + hn) = An+1(hn+1)An(hn)yn(0). (2.27)

By connecting the layer matrices to initial values at the bottom of the N -layered

medium, the general solution in the horizontally layered medium can be obtained. If

we define z = 0 as the boundary of the homogeneous half-space and z = H as the
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free surface, the solution on the free surface can be expressed as

yN(H) = AN(hN)AN−1(hN−1) · · ·A3(h3)A2(h2)y1(0). (2.28)

If the boundary of the half-space is deep enough and a source is located at z > 0,

only down-going waves exist at z < 0. The solution under this condition must be

F2 = F4 = 0 in equation 2.13. Thus, if we define the following initial values:

ya(0) =



1

d1

ϵ1

c44d3


yb(0) =



1

d2

ϵ3

c44d4


(2.29)

and solutions for these initial values as ya(z), yb(z), respectively, the general solution

can be expressed as

y(z) = F1ya(z) + F3yb(z). (2.30)

From the boundary condition of vanishing stress at the free surface,

[y(H)]2 = F1[ya(H)]2 + F3[yb(H)]2 = 0

[y(H)]4 = F1[ya(H)]4 + F3[yb(H)]4 = 0.

(2.31)

A nontrivial solution of equation 2.31 exists only when

∆R(c, ω) = [ya(H)]4[yb(H)]4 − [yb(H)]2[ya(H)]4 = 0, (2.32)

where ∆R and equation 2.32 are called the characteristic function and the character-

istic equation of Rayleigh waves, respectively. ∆R can be obtained from the elastic

constants, the density and thickness of each layer as functions of the phase velocity c
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and frequency. The phase velocity c that satisfies equation 2.32 is defined to be that

of Rayleigh waves. However, phase velocities at high frequencies cannot be obtained

accurately due to loss of numerical precision in the computation of the characteristic

functions.

2.3.2 Reduced delta matrix method

In this section, we apply the reduced delta matrix method (Watson, 1970; Saito

and Kabasawa, 1993) for transversely isotropic media to prevent numerical instability

at high frequencies. First, we define the following minor referred to as a delta matrix

(also referred to as a compound matrix):

Yij(z) = [ya(z)]i[yb(z)]j − [yb(z)]i[ya(z)]j, i < j. (2.33)

Because of the following relationship,

Yji(z) = −Yij(z) Yii(z) = 0, (2.34)

there are only six independent elements in Yij(z). The characteristic function of a

Rayleigh wave is defined in terms of Yij(z) as

∆R = Y24(H). (2.35)

The delta matrix elements satisfy a set of linear differential equations. By differ-
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entiating the defining equation 2.33 and using equation 2.6, we obtain

dY12(z)

dz
= kY14(z)−

c13
c33

kY23(z)

dY13(z)

dz
=

1

c44
Y14(z) +

1

c33
Y23(z)

dY14(z)

dz
= −c13

c33
kY12(z) +

[(
c11 −

c213
c33

)
k2 − ρω2

]
Y13(z)

+
1

c33
Y24(z) +

c13
c33

kY34(z)

dY23(z)

dz
= kY12(z)− ρω2Y13(z) +

1

c44
Y24(z)− kY34(z)

dY24(z)

dz
= −ρω2Y14(z) +

[(
c11 −

c213
c33

)
k2 − ρω2

]
Y23(z)

dY34(z)

dz
= −kY14(z) +

c13
c33

kY23(z).

(2.36)

The sixth-order equation can be reduced to a fifth-order equation. From the first and

last equations, we have

dY12(z)

dz
+

dY34(z)

dz
= 0, (2.37)

that is,

Y12(z) + Y34(z) = const.. (2.38)

Because we are interested only in surface waves, Yij(z) must satisfy the radiation

condition

Yij(z) → 0 as z → −∞. (2.39)

Therefore, the constant on the right-hand side in equation 2.38 should be zero, and
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the delta matrix for surface waves satisfies

Y12(z) = −Y34(z). (2.40)

Thus Y34(z) can be eliminated in equation 2.36.

For a stacked layer structure, we can integrate equation 2.36 by the matrix method.

Substituting equation 2.24 into equation 2.33, we obtain

Yij(z) =
∑
k

∑
l>k

bijkl(z)Ykl(0), (2.41)

where

bijkl(z) = [A(z)]ik[A(z)]jl − [A(z)]il[A(z)]jk. (2.42)

The initial values at the boundary of the homogeneous half-space z = 0 can be

obtained from equation 2.29 as

Y12(0) = d2 − d1

Y13(0) = ϵ3 − ϵ1

Y14(0) = −c44d5

Y23(0) = −c33d6

Y24(0) = c44(d1d4 − d2d3)

Y34(0) = c44(ϵ1d4 − ϵ3d3)

= −Y12(0).

(2.43)

Because there are 5 independent values in Yij(z), there are 25 elements in bijkl. Matrix

elements in the delta matrix method are described by 21 independent elements, which

is the same number as in Mandal and Mitchell (1986) due to symmetry. By using
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the relationships in Appendix B, 21 independent elements of the delta matrix method

further decreases to 15 independent elements (Appendix C), which is the same number

as in isotropic media. The terms C1S1, C3S3, C
2
1 , C

2
3 , S

2
1 , S

2
3 are cancelled out in the

derivation of bijkl as in the case of isotropic media. This contributes to a decrease

in the order of the characteristic function and prevents loss of numerical precision at

high frequencies since C and S increase exponentially with increasing frequency when

ν is a real number.

Our derivation shows that the number of independent variables in the delta ma-

trices and matrix elements are decreased to 5 and 15, respectively, which are the same

as those in the reduced matrix method for isotropic media. In this way, we extend

the delta matrix method for transversely isotropic media to the reduced delta matrix

method. Connecting the matrix elements of each layer to initial values at the bottom

of the N -layered medium, the characteristic function can be obtained as equation

2.35.

For isotropic media, all the computations can be implemented in real numbers

(Buchen and Ben-Hador , 1996) in the Haskell or (reduced) delta matrix methods.

For transversely isotropic media, however, there is a possibility that ν as described

in equation 2.12 becomes complex depending on the elastic constants, phase velocity,

and frequency. If ν is complex, then the computation of complex numbers must be

implemented in the algorithm. Consequently more computational time is required

for transversely isotropic media. Because the coefficients of the differential equations

described in equations 2.6 and 2.36 are real, however, the layer matrices and matrix

elements themselves are also real, even if ν is complex. In contrast, the computation

method of Takeuchi and Saito (1972), which directly solves the differential equations

by a numerical integral, can avoid the use of complex numbers. Note that in the RT

matrix method, complex numbers must be used even for isotropic media.

The characteristic function obtained by multiplying the matrix elements for each
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layer by the initial values becomes real for isotropic media because the initial values

are real. However, the initial values for transversely isotropic media described in

equation 2.43 are not real numbers when ν is complex. In this case, ϵ1 and ϵ3 become

complex conjugates because a branch of the square root of equation 2.12 can be taken

where ν1 and ν3 are complex conjugates. From these features, we can find values of

Y13(0) in equation 2.43 purely imaginary as follows:

Y13(0) = ϵ3 − ϵ1 = 2Im(ϵ3). (2.44)

Other initial values can be found purely imaginary as well. As a result, even if ν is

complex, the characteristic function can be defined as real by multiplying the initial

values by an imaginary number.

We obtain the phase velocities of Rayleigh waves by the following procedure.

First, the characteristic functions are calculated by changing the phase velocities by

a constant interval at a fixed frequency. Second, when the characteristic function

changes sign, its intermediate velocity is kept as the tentative phase velocity for the

frequency. Third, the estimation of the phase velocities is improved by using Newton’

s method with the tentative phase velocity as the initial value. Finally, the dispersion

curve can be obtained by repeating this procedure for necessary frequencies.

2.3.3 Computations of group velocity, ellipticity, and amplitude response

In this section, we explain the computation of group velocity, ellipticity, and ampli-

tude response of Rayleigh waves by using the delta matrix. Following Ben-Menahem

and Singh (1981), the group velocity U is defined as

1

U
=

1

c
− ω

c2
dc

dω
, (2.45)
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where the derivative is taken along the dispersion curve. From the implicit function

theorem, the derivatives of the characteristic equation 2.32 can be expressed as

∂∆R

∂ω
+

∂∆R

∂c

dc

dω
= 0. (2.46)

By using equations 2.45 and 2.46, the group velocity can be written as

c

U
= 1 +

ω

c

∂∆R

∂ω

(
∂∆R

∂c

)−1

. (2.47)

Because the dispersion curve is defined by ∆R(c, ω) = 0, the phase velocity in this

equation must be at the root of the characteristic function, and the partialderivatives

of the characteristic functions must be computed at this phase velocity. Although the

partial derivatives of the angular frequency and phase velocity can be easily computed

by numerical differentiation, they can be computed analytically by the delta matrix

method (Saito and Kabasawa, 1993).

The partial derivatives of equation 2.41 with respect to the phase velocity can be

written as

∂Yij(z)

∂c
=
∑
k

∑
l>k

∂bijkl(z)

∂c
Ykl(0) +

∑
k

∑
l>k

bijkl(z)
∂Ykl(0)

∂c
. (2.48)

This equation indicates that the partial derivative of Yij(z) with respect to the phase

velocity can be obtained by using the partial derivatives of bijkl and Yij(0). For

stacked layer media, Yij at the boundary of each layer is required and must be simul-

taneously computed by using equation 2.41. From equations 2.10 and 2.11, the partial
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derivatives of M1, M2, and ν with respect to the phase velocity can be expressed as

∂M1

∂c
= 2

k2

c
[c11c33 + c244 − (c13 + c44)

2]

∂M2

∂c
= 2

k2

c
[(c11 + c44)ρω

2 − 2c11c44k
2]

∂ν

∂c
=

1

4c33c44ν

[
−∂M1

∂c
± 1√

M2
1 − 4c33c44M2

(
M1

∂M1

∂c
− 2c33c44

∂M2

∂c

)]
.

(2.49)

By applying a similar procedure, the partial derivatives of ϵi and di with respect to the

phase velocity can be also obtained. Although it is too complicated to transcribe the

partial derivatives of bijkl and Yij(0) with respect to the phase velocity, they can be

calculated by computer by using the differential formula. In this way, we can compute

the partial derivative of Yij(z) with respect to the phase velocity without numerical

differentiation. The partial derivative of Yij(z) with respect to the angular frequency

can obtained similarly. Finally, by substituting the calculated partial derivatives of

the characteristic functions at the free surface z = H into equation 2.47, the group

velocity of Rayleigh waves can be obtained.

The ellipticity and amplitude response of Rayleigh waves as defined by Harkrider

(1970) and Tokimatsu (1997) can be written as follows:

H/V = −Y23(H)

Y12(H)
= −Y12(H)

Y14(H)
. (2.50)

AR = −k2

c
Y14(H)

(
∂Y24(H)

∂c

)−1

. (2.51)
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2.4 Sample calculation

2.4.1 Transversely isotropic model

We computed Rayleigh waves on transversely isotropic media to verify the effec-

tiveness of the reduced delta matrix method. The computational model is a structure

with 20 horizontal layers overlying a halfspace of which 17 layers are transversely

isotropic used in Harkrider and Anderson (1962)(Table 2.1). Figure 2.2 shows the

calculated phase velocity, group velocity, ellipticity, and amplitude response of the

fundamental mode and the first higher mode for Rayleigh waves. The Rayleigh wave

results with the Haskell method by Harkrider and Anderson (1962) are also described

in Figure 2.2. Note that the results by Harkrider and Anderson (1962) are only for

the fundamental mode of Rayleigh waves and there are no results for the amplitude

response.

In the computation by Harkrider and Anderson (1962), if ν was complex, the

elastic constants of its layer were replaced with ones from an isotropic layer to avoid

the computation of complex dispersion. Although the program we developed can

implement the computation of complex numbers, we also make the replacement if

ν is complex in order to compute Rayleigh waves that correspond to the results of

Harkrider and Anderson (1962). We found that ν becomes complex near the roots

of the characteristic functions for the 9 th, 10 th, 15 th, and 16 th layers depending

on the frequency.

The calculated phase velocity and ellipticity are almost the same. However, there

is a difference in the group velocity at about 8 Hz. This difference would come from

how the partial derivatives of the characteristic function are computed. Harkrider

and Anderson (1962) computed them by numerical differentiation which generates

numerical errors near the group velocity minimum due to a lack of significance in the

root k differences as written in their original paper. On the other hands, we analyti-
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cally computed them from the delta matrix, as described in the previous section. The

numerical accuracy in the calculation of partial derivatives by the implicit function

theorem depends only on machine precision (Cercato, 2007).

2.4.2 Computational efficiency

We compared the computational time by the reduced delta matrix method with

that by the delta matrix method. For the layered model described in Table 2.1, surface

waves were computed from 2nd to 21st layered models. Characteristic functions with

5000 (phase velocities) × 200 (frequencies up to 100 Hz with frequency spacing of

0.5 Hz) pixels were calculated for each model. Phase velocities, group velocities,

ellipticities and amplitude responses for all the modes were calculated. Figure 2.3

shows the comparison of the computational time by the reduced delta matrix method

with those by the delta matrix method using 21 and 15 independent matrix elements.

By using the reduced delta matrix method, the computational efficiency is increased

by about 15.8 and 3.0 percent compared with the delta matrix method using 21 and

15 independent elements, respectively.

2.5 Summary

We have developed the reduced delta matrix method to compute Rayleigh waves,

which has a better computational efficiency than the standard delta matrix method

for transversely isotropic media.

First, we obtained Haskell’s layer matrices for Rayleigh waves from P-SV waves

in transversely isotropic media. The matrix elements for the delta matrix method

were then derived from the delta matrix. We extended the delta matrix method

to the reduced delta matrix method by showing that the delta matrices and matrix

elements in the delta matrix method can be expressed by 5 and 15 independent

variables, respectively. These are the same number of independent variables as for
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isotropic media.

Moreover, we showed that if ν for the initial values is complex, the initial values

for the delta matrix are purely imaginary. In this case, the characteristic function

can be defined as real by multiplying the imaginary numbers by the initial values,

although computer computation of complex numbers is required. We described how

to compute analytically the partial differential of the characteristic function. The

results of the computation example demonstrated the stability and computational

efficiency of the reduced delta matrix method. We can state that the computation of

Rayleigh waves in transversely isotropic media can be efficiently implemented by the

reduced delta matrix method without loss of numerical precision at high frequencies.
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Table 2.1: Parameters used for the transversely isotropic model used in Harkrider
and Anderson (1962)

Layer Number
Thickness
(feet)

Vp

(kfeet/s)
Vs

(kfeet/s)
Density
(g/cm3) PHI NADA

1 5.00 1.2040 0.2600 2.0000 1.0000 1.0000
2 5.00 1.4880 0.4490 2.0000 1.0000 1.0000
3 5.00 1.3930 0.7320 2.0000 1.0000 1.0000
4 5.00 1.6060 1.0000 2.2500 1.0000 1.0000
5 5.00 1.7000 1.0860 2.2500 0.9060 0.9500
6 5.00 1.7000 1.0630 2.2500 0.9060 0.9500
7 5.00 1.7950 1.0630 2.2500 0.9060 0.8400
8 5.00 1.7950 0.9450 2.2500 0.9060 0.8400
9 5.00 1.8660 1.0000 2.2500 0.6280 0.8400
10 5.00 1.8660 1.0630 2.2500 0.6280 0.8400
11 5.00 2.0000 1.4170 2.2500 0.6280 0.7520
12 5.00 2.2440 1.4170 2.2500 0.6280 0.7520
13 5.00 3.8970 1.6060 2.5000 0.9500 0.9300
14 5.00 5.4080 1.6530 2.5000 0.9500 0.9300
15 5.00 5.4080 1.6300 2.5000 0.8500 0.9300
16 5.00 5.4080 1.6300 2.5000 0.8500 0.9300
17 5.00 5.6920 2.0310 2.5000 0.8500 0.9000
18 5.00 5.5970 1.7700 2.5000 0.8500 0.9000
19 5.00 5.5030 1.8420 2.5000 0.9000 0.9300
20 5.00 6.1170 1.7240 2.5000 0.9000 0.9300
21 ∞ 6.2350 2.0000 2.6000 0.9000 0.9300

1

1Note that we analogize units of each parameter because they are not described in Harkrider
and Anderson (1962). PHI is squared ratio of vertical to horizontal traveling P-wave velocity and
NADA is squared ratio of 45◦ to horizontal traveling P-wave velocity.
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Figure 2.1: Coordinate axis for a stacked layer structure.
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Figure 2.2: Comparison of the fundamental and first higher modes of Rayleigh waves
for the transversely isotropic model shown in Table 2.1 used in Harkrider
(1964). (a) Phase velocity, (b) Group velocity, (c) Ellipticity, and (d)
Amplitude response. Note that the dimension of the amplitude response
corresponds to one when the units of the velocity and density are feet/s
and kg/m3, respectively.
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Figure 2.3: Comparison of the computational time by reduced delta matrix method
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matrix elements TD21 and TD15, respectively. Reduction rate of the com-
putational time is defined as (TD − TR)/TD.
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CHAPTER III

Joint inversion of spatial autocorrelation curves

with HVSR curves on the effect of Love wave

contribution

3.1 Introduction

Constructing near surface velocity structures is a very important task for evalu-

ating seismic hazard. In particular, an average S-wave velocity down to 30 m (V s30)

is widely used for site classification. The direct measurement of S-wave velocities

at boreholes gives a good estimation but it is expensive to estimate a large spatial

distribution of S-wave velocity structures and it is difficult to apply it in an urban

area.

As a non-destructive seismic method to estimate near surface S-wave velocity

structures, much attention has been paid to the microtremor survey method in re-

cent decades (e.g. Okada, 2003). Microtremors are passive seismic data excited by

ambient noise from natural phenomena (e.g., winds and ocean waves) and human

activities (e.g., traffic noise and industrial noise). The microtremor survey method

usually extracts surface waves included in microtremors. S-wave velocity structures

are then obtained by inversion of surface waves. As the array techniques to infer

dispersion curves of surface waves, the spatial autocorrelation (SPAC) method (Aki ,
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1957, 1965) and frequency-wavenumber (f-k) analysis (Capon, 1969) are commonly

used. Recently, Cho et al. (2004, 2006) developed the centerless circular array (CCA)

method with miniature array by extending the SPAC method.

As a single station technique, the horizontal to vertical particle motion spectral

ratio (HVSR) method originally proposed by Nogoshi and Igarashi (1971) and widely

popularised by Nakamura (1989) uses a spectral ratio between vertical and horizontal

components of microtremors. Although the origin of HVSR curves is a still contro-

versial problem (e.g. Bonnefoy-Claudet et al., 2008), HVSR curves can be interpreted

as Rayleigh wave ellipticity on the assumption that surface waves are dominant in

microtremors. Fäh et al. (2003) and Arai and Tokimatsu (2004) obtained S-wave ve-

locity structures by inversion of HVSR curves using a prior information about S-wave

velocities or thicknesses of sedimentary layers.

In order to obtain improved estimates of S-wave velocity structures, joint inversion

of dispersion curves estimated by the array techniques and HVSR curves was proposed

by Scherbaum et al. (2003). After that, a number of authors applied joint inversion

(e.g. Arai and Tokimatsu, 2005; Parolai et al., 2005; Picozzi et al., 2005; Hobiger et al.,

2013). Most of them conclude that including HVSR curves in inversion constrains

the depth or S-wave velocity of bedrock.

However, several unknown factors other than Rayleigh waves are included in

HVSR curves observed in an actual wavefield. A Love wave contribution is usually

neglected or assumed as constant values over frequencies (e.g. Arai and Tokimatsu,

2004; Castellaro and Mulargia, 2009). The energy proportion between Love and

Rayleigh waves can be estimated by using the three-component SPAC method (Aki ,

1957; Köhler et al., 2007) or f-k method (Poggi and Fäh, 2010). Hobiger et al. (2009)

also proposed the RayDec method to extract Rayleigh wave ellipticity based on the

random decrement technique. Observations of the energy proportion revealed that

it depends on not only frequencies (e.g. Okada, 2003; Köhler et al., 2007; Bonnefoy-
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Claudet et al., 2006a) but also time (Endrun, 2011).

Despite these observations, in some situations, we need to invert observed HVSR

curves under some assumption regarding the Love waves contribution because appli-

cable frequency ranges where the energy proportion of both Love and Rayleigh waves

can be determined from the three-component SPAC method are restricted (Bonnefoy-

Claudet et al., 2008). The RayDec method also fails in reproducing Rayleigh wave

ellipticity when vertical or horizontal component of Rayleigh waves vanishes (Hobiger

et al., 2009).

Moreover, the effect of body waves cannot be neglected for some combinations

of impedance contrast and source positions (Bonnefoy-Claudet et al., 2006a, 2008).

Higher modes of surface waves also affect the shape of HVSR curves as studied by

(Arai and Tokimatsu, 2004).

Due to above noise effects, absolute values of Rayleigh wave ellipticity are difficult

to reproduce in some cases. For example, the result of joint inversion of dispersion

curves with HVSR curves by Hayashi et al. (2011) shows that the absolute values

of the observed HVSR curve are not consistent with the theoretical curve, although

the shape of the HVSR curve is well retrieved. Therefore, in order to evaluate the

shape of HVSR curves rather than the absolute values, Zor et al. (2010) prefer to use

zero-lag crosscorrelations (ZLCC) in evaluating HVSR curves.

In this paper, we demonstrate the effectiveness of the joint inversion of the SPAC

method with the HVSR method in which HVSR curves are evaluated by ZLCC. In ad-

dition, we investigate the effects of the assumption of the Love wave contribution and

the weighting proportion between SPAC and HVSR curves. We apply the proposed

inversion to field data acquired in the Newcastle city, Australia.
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3.2 Method

3.2.1 SPAC method

The basic theory of the SPAC method can be summarized as follows (e.g. Okada,

2003; Asten, 2006). Suppose microtremors are obtained by a circle array with a radius

x and surface waves of fundamental mode are dominant in microtremors. Then, the

azimuthal average of complex coherencies between a central and a circumferential

receiver goes to the Bessel function, referred to as SPAC curves (coefficients) ρ,

ρ(x, f) = J0

[
2πf

c(f)
x

]
, (3.1)

where f is the frequency, c is the phase velocity, and J0 is the Bessel function of the

first kind of zero order. In the SPAC method, dispersion curves of Rayleigh waves

can be estimated by fitting observed SPAC curves to the Bessel function for each x.

The fitting procedure is extended by using all possible pairs of x referred to as the

extended SPAC (ESPAC) method (Ling and Okada, 1993; Ohori et al., 2002).

As proposed by Asten et al. (2004) and Asten (2006), however, observed SPAC

curves can be directly compared with the theoretical curves. In this study, we prefer

to use the direct fitting inversion of SPAC curves because it doesn’t require the

interpretation of phase velocities intrinsically and it can reduce bias caused by the

conversion from SPAC curves to phase velocities. Wathelet et al. (2005) applied the

direct fitting of SPAC curves by using neighborhood algorithm and Ikeda et al. (2012)

also applied the direct fitting inversion including higher modes with genetic algorithm

(GA). Hobiger et al. (2013) combined the direct fitting method of SPAC curves with

HVSR curves as joint inversion.
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3.2.2 HVSR method

Following Arai and Tokimatsu (2004), observed HVSR curves (H/V )obs consider-

ing Love and Rayleigh waves can be described as follows.

(H/V )obs(f) =

√
PHR(f) + PHL(f)

PV R(f)
, (3.2)

where PHR is the horizontal-component power of Rayleigh waves, PV R is the vertical-

component power of Rayleigh waves and PHL is the horizontal-component power of

Love waves. Equation 3.2 can be expressed by using Rayleigh wave ellipticity (H/V )R

and Rayleigh to Love wave amplitude ratio for horizontal motion β,

(H/V )obs(f) =

√
1 +

1

β2
(H/V )R(f), (3.3)

where

(H/V )R(f) =

√
PHR(f)

PV R(f)
, (3.4)

β(f) =

√
PHR(f)

PHL(f)
, (3.5)

Assuming the value of β, theoretical HVSR curves corresponding observed curves

(equation 3.2 or 3.3) can be computed by Rayleigh wave ellipticity. Matsushima and

Okada (1990) and Arai and Tokimatsu (2000) indicated the value of the Rayleigh to

Love wave amplitude ratio β is stable at in the range 0.4-1.0. Therefore, Arai and

Tokimatsu (2004, 2005) assumed the value of β as 0.7 because it is an average between

0.4 and 1.0. To further investigate the effects of β in inversion, we apply firstly several

constant values of β (0.4, 0.7 and 1.0) and secondly a frequency dependent β estimated

by the three-component SPAC method.
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3.2.3 Joint inversion scheme

In joint inversion of SPAC curves with HVSR curves, the misfit function for SPAC

curves FSP is defined as follows (Wathelet et al., 2005);

FSP =

√√√√ 1∑nR

k=1 nFk

nR∑
i=1

nFi∑
j=1

{ρobs(xi, fj)− ρtheo(xi, fj)}2
σ2
ij(xi, fj)

, (3.6)

where ρobs is the observed SPAC curve, ρtheo is the theoretical SPAC curve, σ is the

observed standard deviation, nR is the number of receiver spacings and nFi
is the

number of frequency samples for receiver spacing i.

HVSR curves are usually evaluated by comparing absolute values of observed

HVSR curves with theoretical curves (e.g. Arai and Tokimatsu, 2005; Parolai et al.,

2005; Hobiger et al., 2013). Scherbaum et al. (2003) evaluate the shape of HVSR

curves by using peak and trough frequencies. Asten et al. (2014) used both peak and

trough frequencies plus qualitative shapes of HVSR curves . In this study, we employ

ZLCC in log-scale proposed by Zor et al. (2010) to evaluate the shape of HVSR curves

rather than absolute values. The misfit function for HVSR curves FHV is defined by

the inverse of ZLCC between observed and theoretical HVSR curves as follows;

FHV = ZLCC−1, (3.7)

ZLCC =

∑N
i=1 log10HVobs(fi)log10HVtheo(fi)√∑N

i=1 log10HVobs(fi)2
∑N

i=1 log10HVtheo(fi)2
, (3.8)

As the misfit function for joint inversion F , two misfit functions are combined by

using a weighting coefficient w as follows;

F = wFSP + (1− w)FHV . (3.9)
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Since the value of w is a matter of choice, we also investigate the effects of the choice

of w as well as that of β.

In order to search a wide model space without the effect of initial models, we

employ genetic algorithm (GA) (Goldberg , 1989; Sen and Stoffa, 1995) with elite se-

lection and dynamic mutation (Yamanaka and Ishida, 1996) as an inversion method.

When ZLCC takes negative values for poorly correlated data, the corresponding FHV

takes negative values. To avoid this problem, ZLCC with negative values are au-

tomatically replaced with very small positive values in GA inversion. Theoretical

dispersion curves and a Rayleigh wave ellipticity are computed by the compound

matrix method (Saito, 1988; Saito and Kabasawa, 1993; Ikeda and Matsuoka, 2013).

3.3 Application to field data

In this section, we apply the proposed joint inversion method to field data acquired

during the 2012 Newcastle and Sydney SPAC surveys (Asten et al., 2013; Volti et al.,

2013). Microtremor array measurements were conducted at 23 sites in the city of New-

castle and 2 sites in Sydney. The comprehensive results of the microtremor survey by

the direct fitting of SPAC curves using GEOPSY software package (www.geopsy.org)

and the software developed by Asten (2006) are summarized in Volti et al. (2013).

Asten et al. (2013) also reported on uncertainties due to local sources from adja-

cent road traffic and the effectiveness of the combined use of both SPAC and HVSR

methods to resolve bedrock using same dataset. We analyzed three dataset (BRD02,

HAM03 and WIK01) acquired in the city of Newcastle.

3.3.1 Data processing

Each array station used a Kelunji Echo recorder with a single Lenartz LE-3Dlite

1 Hz 3-component seismometer as a receiver. The sampling rate was 100 Hz and

the data length for each array was about 1 hour. Three-component microtremors are
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observed by 2 types of triangle arrays using 7 seismometers (Figure 3.1). Figure 3.2

shows an example of set up on a single station.

First we generated 100 datasets from the observed microtremor data. Each dataset

is about 30 sec with 30 % overlap and tapered with a 5 % cosine function. SPAC curves

are computed by the average of 100 datasets for each receiver spacing x. SPAC curves

derived from azimuthal averages of more than 3 pairs of coherencies are then used

in the subsequent inversion. HVSR curves are computed by the average of estimated

curves from 100 datasets from 3 component data for the central seismometer. Konno-

Ohmachi smoothing functions with b = 30 for BRD02 and 40 for HAM03 and WIK01

(Konno and Ohmachi , 1998) were applied to observed HVSR curves.

3.3.2 BRD02

Figure 3.3 shows the observed SPAC curves and the HVSR curve for site BRD02

which used the triangle array described in Figure 3.1a. A sharp peak is observed

in the HVSR curve at about 1.9 Hz indicating a strong velocity contrast between

sedimentary layers and bedrock. The magenta line in Figure 3.3c is the set of val-

ues of β estimated by the three-component SPAC method. After we obtained the

dispersion curve of Rayleigh waves by the ESPAC method from vertical component

of microtremors, the values of β were estimated based on the method described in

Boxberger et al. (2011). Values of β at frequencies below the peak of the HVSR curve

cannot be extracted because Love and Rayleigh wave dispersion curves don’t show

reasonable values in this range. For the purpose of the inversion, the value of β at

the lowest available frequency is assumed to apply at lower frequencies.

It can be seen that the observed SPAC curves at low frequencies don’t have the

shapes of the Bessel function. We can recognize two different reduction patterns of

SPAC curves. One is the reduction of coherencies depending on receiver spacings.

Generally, the longer receiver spacing is, the better coherencies can be estimated at
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low frequencies. The other is the loss of coherencies below 1.9 Hz corresponding to

the peak frequency of the HVSR curve, as pointed out by Scherbaum et al. (2003)

and Parolai et al. (2005). Thus, the lowest useful frequencies of SPAC curves used

in inversion are defined as the frequencies without any decrease of coherencies higher

than 2.1 Hz. The highest frequency of SPAC curves used in inversion was determined

where the phase velocities estimated by the ESPAC method show reasonable values.

As the frequency range of the HVSR curve in inversion, both flanks of the peak

frequency are used to give a better constrain the peak frequency (Hobiger et al.,

2013).

The next step is to estimate S-wave velocity structures by joint inversion of SPAC

curves together with HVSR curves, using in turn three different constant values of β,

and the frequency-variable value of β obtained as in the previous step. In inversion,

5-layer structures are assumed. Table 3.1 shows the search range of thicknesses and

S-wave velocities for each layer. The S-wave velocity at an infinite half space was fixed

as 2000 m/s. P-wave velocities and densities were determined from S-wave velocities

by empirical equations (Kitsunezaki et al., 1990; Ludwig et al., 1970). The S-wave

velocities and thickness for each layer are digitized as 7 bit binary strings. The number

of the population and generations are 100 and 200, respectively. In order to avoid

convergence dependent on initial populations, we carried out 6 trials with randomly

seeded initial populations.

Figure 3.4 shows the minimum misfit functions of SPAC and HVSR curves for

different values of β and w. The values of ZLCC are also described in Figure 3.4b.

By including HVSR curves in the joint inversion, we observe a clear improvement of

the values of FHV and ZLCC for values w ≤0.7. We have determined w =0.5 as the

optimal value for BRD02 because it keeps enough weighting for both misfit functions.

It should be noted that the misfit functions are less dependent on the values of β.

Figure 3.5 shows the inverted velocity models for w = 1.0 and w = 0.5 with
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β = 1.0, 0.7 and 0.4 and frequency-dependent, respectively. Color indicates the

differences from the minimum misfit function. When only SPAC curves are considered

in inversion (Figure 3.5a), there is an ambiguity in inverting velocity contrast at near

20 m. Moreover, there is no indication of bedrock because of a lack of SPAC curves

at low frequencies. On the other hand, including HVSR curves in joint inversion

generates clear velocity contrasts at about 23 m (Figures 3.5b-e) the depth of which

is consistent with the result of the seismic cone penetrometer (SCPT) (Volti et al.,

2013). Although the S-wave velocities for the 3rd layer (from about 20 to 30 m) is not

well constrained and differs in the value of β, the existence of high S-wave velocity

layers at depths deeper than 35 m is suggested by joint inversion.

We prefer to describe an ensemble of accepted models (within 5 % for the velocity

model with the minimum misfit function) but velocity models with minimum misfit

functions are also analyzed. Figure 3.6 shows the comparison of observed SPAC and

HVSR curves with theoretical curves for velocity models with the minimum misfit

values (magenta lines in Figure 3.5). Although the theoretical HVSR curve is poorly

resolved when only SPAC curves are considered in inversion, the peak position and the

shape of HVSR curves are well retrieved by including HVSR curves in joint inversion

(Figure 3.6c).

The observed SPAC curves broadly agree with theoretical curves for all cases. At

low frequencies, however, the observed SPAC curve for x = 99.9 m is more consistent

with theoretical SPAC curves obtained by joint inversion than when only SPAC curves

are considered (Figure 3.6b). The opposite result is observed for the SPAC curve

corresponding to x = 68.0 m (Figure 3.6a). It is considered that at low frequencies,

the theoretical SPAC curves by joint inversion are more reasonable because SPAC

curves with longer receiver spacings are more stable at lower frequencies. It should

be emphasized that the results of joint inversion are relatively insensitive to the values

of β.
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3.3.3 HAM03

The results for HAM03 are similar to those for BRD02 and are summarized in the

appendix D.

3.3.4 WIK01

Figure 3.7 shows the observed SPAC and HVSR curves and the estimated values

of β obtained by the three-component SPAC method for site WIK01. The triangle

array described in Figure 3.1a was used. The observed HVSR curve has a peak at

1.35 Hz. The observed SPAC curves slightly decrease near the peak frequency of

the HVSR curve. In contrast to the results for BRD02 and HAM03, however, SPAC

curves show good coherencies down to about 0.65 Hz which is well below the peak

frequency of the HVSR curve. Therefore, the lowest frequencies of SPAC curves used

in the inversion are determined to be 0.65 Hz. The estimated values of β at low

frequencies are larger than those for BRD02 and HAM03.

As a second step we applied joint inversion for different values of β and w. Table

3.2 shows the search range of model parameters for WIK01. ZLCC are significantly

improved when values w ≤ 0.5 are used in joint inversion (Figure 3.8). In contrast to

the case when the weighting value w = 1.0, the misfit functions for SPAC curves show

about 40 % increase when using values w ≤ 0.5, indicating the discrepancy between

inverting SPAC and HVSR curves .

Figure 3.9 shows the velocity models obtained from joint inversion. Inverted veloc-

ity models by considering only SPAC curves, show ambiguity in estimating velocity

contrasts at depths from 30 to 40 m (Figure 3.9a). However, S-wave velocities at

deeper depths are well constrained without the use of the HVSR curve because the

lowest frequency of SPAC curves used in the inversion is enough to constrain deeper

velocity structures. Inclusion of HVSR curves in joint inversion generates apparent

velocity contrasts at about 31 m, which is consistent with the result of SCPT (Volti
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et al., 2013). When we consider only SPAC curves, there is no indication of the exis-

tence of high S-wave velocity layers. However, the results of joint inversion indicate

existing transition layers at depths from 30 to 50 m and high S-wave velocity layers

at depth deeper than 50 m.

Figure 3.10 shows the comparison of theoretical SPAC and HVSR curves with the

observed curves. Theoretical SPAC curves at higher than 2.0 Hz are consistent with

observed curves. Theoretical SPAC curves for w = 1.0 are more consistent with the

observed values below 2.0 Hz, whereas the observed HVSR curve are well retrieved

by joint inversion.

3.4 Discussion

3.4.1 Exclusion of SPAC curves at low frequencies in inversions

For WIK01, we have observed the discrepancy between inverting SPAC curves

below the peak frequency of the HVSR curve and HVSR curves. The observed SPAC

curves show small decreases of coherencies at near the peak frequency of the HVSR

curve. These decreases might be caused by low amplitudes of vertical component of

microtremors at the peak of the HVSR curve. To overcome this problem, we exclude

observed SPAC data below 1.6 Hz. We also note that use of β estimated by the

three-component SPAC method is restricted to frequencies above 1.6 Hz. Below 1.6

Hz, we assume a constant value β = 0.5.

Figure 3.11 shows the misfit functions for WIK01 when we remove SPAC curves

at low frequencies. For values w ≤ 0.7, ZLCC take high values above 0.95 indicating

convergence of inverting HVSR curves. In this case, increments of the misfit functions

of SPAC curves are about 15 % compared to the case when the weighting value w

=1.0.

When only SPAC curves are considered in the inversion (Figure 3.12a), an ambi-
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guity of inverting S-wave velocities at depths deeper than 30 m is increased because

the lowest frequencies of SPAC curves are higher than those without the removal of

SPAC curves (Figure 3.9a). The strong velocity contrasts at about 33 m are well

emphasized in this case. The thick transition layers in Figure 3.9 might be artificial

ones because they become thinner in inverted models whereas the S-wave velocities

for the 3rd layer differs in the value of β.

Figure 3.13 shows the comparison of the observed SPAC and HVSR curves with

the theoretical curves. By excluding low frequency data, the difference between the-

oretical SPAC curves for w = 1.0 and those for joint inversion can be interpreted as

not just a discrepancy between inverting SPAC and HVSR curves but low coherencies

of SPAC curves depending on receiver spacing as in BRD02 (Figure 3.6) because the

observed SPAC curve with longer receiver spacing (x = 99.9 m) is consistent with

theoretical curves from joint inversion at low frequencies.

From these examples we recommend exclusion of SPAC data when there is a

discrepancy between SPAC curves at low frequencies below a peak frequency of a

HVSR curve, and the corresponding HVSR curves.

3.4.2 Joint inversion using absolute values of HVSR

In order to investigate advantages of the use of ZLCC in evaluating HVSR curves

in joint inversion, we also applied joint inversion of SPAC curves with HVSR curves,

in which fitted HVSR curves are evaluated by root mean squares error (RMSE) com-

puted on logarithmic scales. This is an approach similar to that of Hobiger et al.

(2013) who used a neighborhood algorithm for the inversion. Here, we focus on the

difference of misfit functions depending on the choice of β and w.

Figures 3.14 and 3.15 show the misfit functions of joint inversion using RMSE

for BRD02 and WIK01, respectively. For WIK01, we used excluded SPAC curves

below 1.6 Hz. For values w ≤ 0.9 for BRD02, and w ≤ 0.7 for WIK01, the misfit
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functions for HVSR curves are significantly improved. However, when the values of

β are 1.0, applying further smaller values of w makes the misfit functions for SPAC

curves considerably worse. This result indicates that finding optimal values of w

is difficult when larger values of β (e.g., 1.0) are applied with the use of RMSE in

evaluating HVSR curves compared to the case with the use of ZLCC (Figures 3.4 and

3.11).

3.4.3 Bias of ESPAC method

We demonstrate a bias introduced by the intermediate step of conversion from

SPAC curves to phase velocities prior to inversion, by comparing dispersion curves

estimated by the ESPAC method with the theoretical dispersion curves for the previ-

ous above inversion. Theoretical dispersion curves for velocity models with minimum

misfit functions when w = 1.0 and w = 0.5 and the values of β estimated from the

three-component SPAC method are used.

Figure 3.16 shows the result of BRD02 and WIK01 with the removal of SPAC

curves at low frequencies. The estimated phase velocities by the ESPAC method

agree with theoretical ones when only SPAC curves are considered in inversion (w =

1.0) for both sites. As long as we compare the results in phase velocity domain, the

mismatches between observed phase velocities and theoretical ones by joint inversion

are considered as a discrepancy between observed phase velocities and HVSR curves.

However, if we compare observed data in SPAC curves as in Figures 3.6a and b or

Figures 3.13a and b, we notice that low coherencies depending on receiver spacings

also have an effect on these mismatches. Since SPAC curves for vertical component

data also take low values near the peak of HVSR curves, careful comparison of ob-

served SPAC and HVSR curves with inverted values are recommended to avoid the

bias introduced SPAC data at low frequencies.
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3.5 Conclusions

In this paper, we investigated the effect of Love wave contribution in joint inversion

of SPAC and HVSR curves to construct S-wave velocities down to bedrock. We used

ZLCC as the misfit function of HVSR curves to assists in minimizing the noise effect

of wave modes other than Rayleigh waves.

We have applied the proposed joint inversion for field data acquired at Newcastle,

Australia. For some data sets a two-step process is possible whereby firstly the

frequency-dependent values of Rayleigh to Love wave contribution β are extracted

from the three-component SPAC method, with subsequent joint inversion of SPAC

and HVSR data. However, the frequency ranges of estimated β are generally restricted

to frequencies above the peak frequency of the HVSR curves. An added limitation

of this approach is that the use of three-component seismometers might be difficult

in some conditions. We have therefore evaluated the joint inversion method using

assumed constant values of β.

Inclusion of HVSR curves in joint inversion provides some level of constraint on

estimates of the depth of velocity contrasts between sedimentary layers and high S-

wave velocity layers in the basement. Results are robust with respect to the choice

of β so a priori knowledge of β, or successful extraction of a frequency-dependent

β from preliminary ESPAC analysis, does not have a significant influence on the

depth of velocity contrasts in the joint inversion outcome. However, the velocity

contrasts between sedimentary layers and basements are not well constrained by the

joint inversion and differ for differing choices of β.

When there is a discrepancy between observed and modelled SPAC curves at

frequencies below the peak frequency of HVSR curves (e.g., WIK01), it is worth

excluding SPAC data at low frequencies because they are unstable near the peak

of HVSR curves at some conditions. In such a situation the observed HVSR curve

provides the necessary low-frequency data for a successful joint inversion. We find
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that when ZLCC is used in joint inversion, the misfit functions for SPAC curves are

less affected by the choice of the values of β, compared to the case when RMSE

are used in evaluating HVSR curves. To further investigate the advantage of ZLCC,

additional quantitative studies using synthetic-noise microtremors will be necessary.

We also demonstrated existence of a bias caused by conversion of SPAC curves to

phase velocities by the ESPAC method, especially evident at low frequencies. This

bias has the potential to significantly affect construction of S-wave velocities and

depth at or near bedrock in the inversion process. Comparison of observed SPAC

curves with theoretical SPAC curves assists in recognition if such bias occurs.
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Table 3.1: Search range of thickness and S-wave velocity in the joint inversion for
BRD02 and HAM03.

Layer No. Thicknessmin(m) Thicknessmax(m) V smin(m/s) V smax(m/s)
1 5 15 100 250
2 5 25 150 300
3 5 30 300 1000
4 20 100 500 2000
5 ∞ ∞ 2000 2000

Table 3.2: Search range of thickness and S-wave velocity in the joint inversion for
WIK01.

Layer No. Thicknessmin(m) Thicknessmax(m) V smin(m/s) V smax(m/s)
1 5 20 100 250
2 5 30 150 300
3 5 50 350 1000
4 30 150 400 2000
5 ∞ ∞ 2000 2000

100m

30m

(a) (b)

100 m

30 m

Figure 3.1: Array shapes used in the survey for (a) BRD02 and WIK01 and (b)
HAM03. Black circles are central receivers used for computing HVSR
curves.
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Figure 3.2: Set up on a single station. The three-component seismometer is covered
with the bucket.
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Figure 3.3: The observed SPAC curves for BRD02 corresponding to (a) x = 17.2, 29.8
and 40.5 m and (b) x = 57.7, 68.0 and 99.9 m. (c) The observed HVSR
curve for BRD02. Gray lines are the peak frequency of the observed
HVSR curve. The magenta line is the values of β estimated by the three-
component SPAC method.
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(b) β = 1.0, w = 0.5 (c) β = 0.7, w = 0.5

(d) β = 0.4, w = 0.5

(a) w = 1.0
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(e) β = 3C, w = 0.5

Figure 3.5: Inverted velocity models by joint inversion for BRD02 when (a) w = 1.0,
(b) (e) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively. Magenta lines
are the velocity models with minimum misfit functions for each inversion.
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Figure 3.6: Comparison of theoretical SPAC curves for the inverted velocity models
with minimum misfit functions corresponding to (a) x = 68.0 and (b) 99.9
m and (c) HVSR curves with observed curves for BRD02 when (i) w =
1.0, (ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively. Standard
errors of SPAC curves are described in (a) and (b).
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and 40.5 m and (b) x = 57.7, 68.0 and 99.9 m. (c) The observed HVSR
curve for WIK01. Gray lines are the peak frequency of the observed
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Figure 3.8: Misfit functions for (a) SPAC curves and (b) HVSR curves corresponding
to WIK01. ZLCC are also described as dashed lines.
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(b) β = 1.0, w = 0.5 (c) β = 0.7, w = 0.5
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(e) β = 3C, w = 0.5

Figure 3.9: Inverted velocity models by joint inversion for WIK01 when (a) w = 1.0,
(b)-(e) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively. Magenta lines
are the velocity models with minimum misfit functions for each inversion.
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Figure 3.10: Comparison of theoretical SPAC curves for the inverted velocity models
with minimum misfit functions corresponding to (a) x = 29.8 and (b)
99.9 m and (c) HVSR curves with observed curves for WIK01 when (i)
w = 1.0, (ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively.
Standard errors of SPAC curves are described in (a) and (b).
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to WIK01 with the exclusion of SPAC data at low frequencies <1.6 Hz.
ZLCC are also described as dashed lines.
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(e) β = 3C, w = 0.5

Figure 3.12: Inverted velocity models by joint inversion for WIK01 with the exclusion
of SPAC data at low frequencies <1.6 Hz when (a) w = 1.0, (b)-(e) w
= 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively. Magenta lines are the
velocity models with minimum misfit functions for each inversion.
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Figure 3.13: Comparison of theoretical SPAC curves for the inverted velocity models
with minimum misfit functions corresponding to (a) x = 29.8 and (b)
99.9 m and (c) HVSR curves with observed curves for WIK01 with the
exclusion of SPAC data at low frequencies <1.6 Hz when (i) w = 1.0,
(ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively. Standard
errors of SPAC curves are described in (a) and (b).
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Figure 3.16: Comparison of dispersion curves estimated by the ESPAC method with
theoretical dispersion curves by joint inversion when w = 1.0 and w =
0.5 with β = 3C for (a) BRD02 and (b) WIK01 with the removal of
SPAC curves at low frequencies.
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CHAPTER IV

Multimode inversion with amplitude response of

surface waves in the spatial autocorrelation

method

4.1 Introduction

The microtremor method (Okada, 2003) has been applied to the estimation of S-

wave velocity structures by using surface waves (e.g. Okada, 2003; Bonnefoy-Claudet

et al., 2006b). The method has been used mainly for geotechnical site characteriza-

tion (e.g. Tokimatsu, 1997; Roberts and Asten, 2004; Richwalski et al., 2007). Since

the method is non-destructive and needs no active sources, it is inexpensive and

easy to apply in various environments. The spatial autocorrelation (SPAC) method

(Aki , 1957, 1965) and the frequency-wavenumber (f-k) method (Capon, 1969) are the

two main approaches for estimating the dispersion curves of surface waves from mi-

crotremor data. Recently, Cho et al. (2004, 2006) developed the centerless circular

array (CCA) method which uses a miniature circular array. Analysis using refraction

microtremors (ReMi) (Louie, 2001) and time domain analysis (Chávez-Garćıa and

Luzón, 2005) has also been proposed. In this paper, we focus on the SPAC method,

whose effectiveness has been demonstrated at various sites, and discuss how to per-

form a stable inversion with higher modes of surface waves included in microtremors.
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The SPAC method can extract the phase velocities of surface waves from mi-

crotremor array observations. The S-wave velocity structure is then estimated from

an inversion of the phase velocities. Surface waves have different modes of propaga-

tion. The mode which has lowest velocity is called fundamental mode, whereas the

modes which propagate faster than the fundamental mode are called higher modes.

Higher modes play an important role if a stiff layer overlies a soft layer or is embedded

in soft layers (Gucunski and Woods , 1992; Tokimatsu et al., 1992b). Xia et al. (2003)

showed that consideration of higher modes improves the resolution of the inversion

and makes its sensitivity deep. However, observed microtremors have been analyzed

on the assumption that the fundamental component is predominant in the SPAC

method, although some studies have shown that the effect of higher modes included

in microtremors is not negligible (e.g. Tokimatsu, 1997; Ohori et al., 2002; Foti , 2005;

Feng et al., 2005; Asten and Roberts , 2006). If higher modes of surface waves are

predominant in the observed microtremors, analysis without any considerations of

higher modes would make it difficult to determine a unique velocity model. Thus, a

method that considers higher modes in the SPAC method is required.

Aki (1957) proposed an implementation of the SPAC method when a wave is

composed of partial waves with different phase velocities. The proposal regards ob-

served spatial autocorrelation (SPAC) coefficients as a superposition of each mode

component weighted by its power fraction. By applying this idea to higher modes,

several multi-mode analysis methods in the SPAC method have been proposed. Asten

(1976, 2001) proposed an analysis method that separates each mode component by

solving the phase velocities and energy fractions of the two modes from the observed

data. Asten et al. (2004) and Asten and Roberts (2006) also proposed a method

to recognize higher modes in direct-fitting method of SPAC coefficients (Asten et al.,

2002, 2004), which is called multi-mode SPAC (MMSPAC). Asten and Roberts (2006)

demonstrated the effectiveness of MMSPAC, although they failed to identify higher
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mode propagation in a simulated data analysis.

Another multi-mode analysis method was proposed by Tokimatsu et al. (1992a,b);

Tokimatsu (1997). If the phase velocities of each mode cannot be separated, the

observed phase velocities may not be explained by only one mode. These velocities

are called apparent or effective velocities (Socco et al., 2010) or fallacious estimates of

phase velocities (Yokoi , 2010). The approach is to evaluate numerically the theoretical

effective phase velocities corresponding to the observed ones by using the energy

fractions of each mode from the amplitude response (Harkrider , 1964, 1970) using

a given subsurface model. For inversion, this evaluated effective phase velocities

are compared with corresponding to the observed phase velocities. This multi-mode

method is superior to the former one in that the phase velocities and energy fractions

of each mode do not have to be extracted from the observed microtremors, which

makes it easier to increase the number of modes in an inversion. Furthermore, this

advantage contributes to the avoidance of mode misidentification, which sometimes

causes notable error in the results (e.g. Zhang and Chan, 2003; O’Neill and Matsuoka,

2005). Ohori et al. (2002) and Obuchi et al. (2004) applied this approach to the SPAC

method and performed a successful analysis. In addition, Yokoi (2010) derived the

power partition ratio of each mode in the SPAC and CCAmethods by using the theory

of seismic interferometry, and showed better inversion performance with dual-mode

inversion than with single mode.

When higher modes are considered, the effective phase velocities are functions

of the receiver separation distance in addition to the frequency, whereas the phase

velocities of each mode are functions only of the frequency. This implies that the effect

of the receiver separation distance has to be considered when applying the extended

spatial autocorrelation (ESPAC) method (Ling and Okada, 1993; Okada, 2003), which

is more robust than the SPAC method and determines a phase velocity from the

observed SPAC coefficients obtained from all possible pairs of receivers. However,
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a method for analyzing the theoretical effective phase velocities corresponding to

the ones estimated by the ESPAC method has not yet been established. Moreover,

multi-mode analysis using amplitude response has not been applied to the direct-

fitting method of SPAC coefficients. As we will discuss later, multi-mode analysis

using amplitude response in the direct-fitting method is much simpler than in the

ESPAC method.

In this paper, we propose two analysis methods that consider the effect of higher

modes and multiple receiver separation distances in the SPAC method using ampli-

tude response. One is to calculate the theoretical effective phase velocities corre-

sponding to the observed phase velocities from the ESPAC method. The other is to

compare the observed SPAC coefficients with theoretical ones by a receiver separa-

tion distance when considering higher modes. We first simulated microtremors with

a model in which higher modes predominate to conduct a quantitative evaluation of

the proposed methods. We compared the observed dispersion curve and SPAC coeffi-

cients with theoretical ones. Then we estimated S-wave velocity models by inversions

using the proposed methods. We also apply our methods to field data obtained in

Tsukuba City, Japan.

4.2 Theory of the SPAC method

4.2.1 Fundamental mode

The basic theory of the SPAC method (Okada, 2003; Asten, 2006) is summarized

as follows. Here we assume that microtremors are mainly composed of surface waves

and that the fundamental mode of a surface wave is dominant. If microtremors are

observed by a circle array with radius r (Figure 4.1), the complex coherencies COH

between a central and a circumferential receiver can be defined as

COH(r, ω, θ, ϕ) = exp[irkcos(θ − ϕ)], (4.1)
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where i is the imaginary number, ω is the angular frequency, k is the wavenumber,

θ is the azimuthal angle, and ϕ is the azimuth of propagation of a single plane wave

across the array. The azimuthal average of θ for the complex coherencies ρ yields

SPAC coefficients,

ρ(r, ω) =
1

2π

2π∫
0

exp[irkcos(θ − ϕ)]dθ = J0(rk) = J0

[
ω

c(ω)
r

]
, (4.2)

where J0 is the Bessel function of the first kind of zero order. The azimuthal aver-

age of ϕ for complex coherencies also yields the same result, which indicates that a

single pair of receivers is sufficient for plane waves coming from all directions. The

phase velocities are estimated by fitting the observed SPAC coefficients to the Bessel

function.

4.2.2 Extended spatial autocorrelation method

If we observe microtremors by using a circular array with radius r0, SPAC coeffi-

cient of angular frequency ω0 can be written as

ρr0,ω0 = J0

[
ω0

c(ω0)
r0

]
= J0(A), (4.3)

where A =
[

ω0

c(ω0)
r0

]
is constant. To estimate a unique phase velocity , it is necessary

to decide upon a unique value of A from the observed SPAC coefficients. However,

finding a unique A is difficult, especially near the minima and maxima of the Bessel

function.

To overcome this difficulty, Ling and Okada (1993) and Okada (2003) proposed

an analysis method called the extended spatial autocorrelation (ESPAC) method. If

microtremors are observed by multiple receiver separations, the SPAC coefficient of
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ω = ω0 can be written as

ρω0(r) = J0

[
ω0

c(ω0)
r

]
= J0(Br), (4.4)

where B =
[

ω0

c(ω0)
r0

]
is constant. The optimum Bessel function can be found by using

the least squares method. To increase the receiver separation distance r, the array

observation does not always need to be repeated. As previously mentioned, if we

assume that microtremors come from all directions, the observed SPAC coefficients

go into the Bessel function without the azimuthal average of θ. Thus, possible pairs

of an array can be used in the ESPAC method based on this assumption. Bettig et al.

(2001) also extended the SPAC method in which arbitrarily shaped arrays can be

used by averaging the SPAC coefficients within two circles.

4.2.3 Multimode analysis

Before we analyze microtremors that include higher modes of surface waves, we

have to understand the description of the SPAC coefficients that consider higher

modes. The SPAC coefficients that include partial waves with different velocities

were derived by Aki (1957) and are defined as

ρ(r, ω) =
∑
i

Pi(ω)

P (ω)
J0

[
ω

ci(ω)
r

]
, (4.5)

P (ω) =
∑
i

Pi(ω), (4.6)

where Pi and ci are the power and the velocity of ith component, respectively. Equa-

tion 4.5 shows that SPAC coefficients that include partial waves with different veloc-

ities can be described as the summation of each component weighted by its power

fraction.
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Harkrider (1964) derived the relative vertical displacement of the ith Rayleigh

mode for a harmonic vertical point force, called the amplitude response (Harkrider ,

1970). By extending Aki’s method to higher modes of surface waves with ampli-

tude response, Tokimatsu et al. (1992b) developed the multi-mode analysis method.

Tokimatsu et al. (1992b) extracted the mode contribution that depends only on the

frequency and regarded the value of its square as the power fraction in equation 4.5.

It can be written as

Pi(ω)

P (ω)
=

ci(ω)A
2
i (ω)∑

i ci(ω)A
2
i (ω)

, (4.7)

where Ai(ω) is the amplitude response of ith mode. Note that in Tokimatsu et al.

(1992a), Tokimatsu et al. (1992b), and Tokimatsu (1997) described the Bessel function

in equation 4.5 by the cosine function, as Tokimatsu et al. (1992a,b) and Tokimatsu

(1997) applied equation 4.7 to f-k analysis on the assumption of one-dimensional

stochastic Rayleigh waves. We assume the power of each mode as equation 4.7 in the

following discussion. Yokoi (2010) also derived the energy fractions of higher modes

from seismic interferometry. The energy fractions by Yokoi (2010) are different from

equation 4.7.

With this assumption, the theoretical SPAC coefficients (equation 4.5) can be cal-

culated for a horizontally layered medium by using a theoretical dispersion curve and

the amplitude response of each mode. In this study, we used DISPER80 (Saito, 1988),

a computer program that calculates a theoretical dispersion curve and amplitude re-

sponse. It is clear that if one mode of the surface waves is dominant, the observed

phase velocities obtained from the SPAC method correspond to the dominant modes.

However, if multi-mode components are predominant, the observed SPAC coefficients

are described by the summation of the Bessel function of each mode weighted by its

power fraction. As a result, the observed phase velocities cannot be explained by
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the theoretical ones of only one mode, and they are called effective (apparent) phase

velocities. When considering an inversion analysis, computation of the theoretical

effective phase velocities for an assumed layered model is necessary.

Theoretical effective phase velocities can be calculated by the following procedure

(Obuchi et al., 2004). First, the root mean square error (RMSE) between the Bessel

function and the theoretical SPAC coefficients is calculated by the following equation

by changing the phase velocity c(ω) :

RMSE(c, ω) =

√√√√[J0( ω

c(ω)
r

)
−
∑
i

Pi(ω)

P (ω)
J0

(
ω

ci(ω)
r

)]2
, (4.8)

Next, the velocity that minimizes RMSE in equation 4.8 can be considered to be

the theoretical effective phase velocity ce(ω) at angular frequency ω. These effective

phase velocities correspond to the observed ones even if higher modes of surface waves

are predominant.

However, it is necessary to modify this method to calculate the effective phase

velocities when the ESPAC method is employed. Since the theoretical SPAC coeffi-

cients that consider higher modes are no longer described by the Bessel function, the

effective phase velocities differ by a receiver separation distance. Ohori et al. (2002)

compared observed phase velocities estimated from the ESPAC method with effective

phase velocities. Ohori et al. (2002), however, used only the shortest receiver distance

in the calculation of theoretical effective phase velocities. Thus, it is necessary to es-

tablish a method to calculate effective phase velocities that gives proper consideration

to the receiver separation distances used in the ESPAC method.

Asten et al. (2002, 2004) proposed a method of fitting SPAC coefficients directly.

In their method, S-wave velocity structures are directly inverted by comparing ob-

served SPAC coefficients with theoretical ones. Wathelet et al. (2005) estimated S-

wave velocity profiles from this method by introducing the neighborhood algorithm.
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This method has the advantage that there is no need to estimate phase velocities

from the observed SPAC coefficients. In spite of its simplicity, the method using the

amplitude response has not been applied to the direct-fitting method yet.

Here, we propose two multi-mode analysis methods that use the amplitude re-

sponse considering multiple receiver separation distances. One is to calculate theo-

retical effective phase velocities corresponding to the observed ones obtained by the

ESPAC method. The other is to compare the observed SPAC coefficients with theo-

retical ones using the amplitude response. We will explain details of these methods

in the next section.

4.3 Proposed multimode inversion methods

4.3.1 Method using theoretical effective phase velocities

We assume that higher modes are predominant in microtremors data and that

the phase velocities are estimated by the ESPAC method. Theoretical effective phase

velocities corresponding to the observed ones can be calculated by the following pro-

cedure. First, the RMSE between the Bessel function and the theoretical SPAC

coefficients are calculated by the following equation by varying the phase velocity

c(ω):

RMSE(c, ω) =

√√√√ 1

N

N∑
j

[
J0

(
ω

c(ω)
rj

)
−
∑
i

Pi(ω)

P (ω)
J0

(
ω

ci(ω)
rj

)]2
, (4.9)

where rj is the jth receiver separation distance in an array. Equation 4.9 differs from

equation 4.8 in that the effect of multiple receiver separation distances is evaluated

by the summation of the rj. Next, the velocity that minimizes RMSE in equation 4.9

can be considered as the theoretical effective phase velocity ce(ω) and corresponds to

the observed one from the ESPAC method. If the effective phase velocities calculated

68



from equation 4.8 have some differences by a receiver separation distance, equation 4.9

would be important to implement a stable inversion in comparison with the method

by Ohori et al. (2002), which uses the shortest receiver distance in the calculation

of theoretical effective phase velocities. The dependence of effective phase velocities

with a distance is discussed in appendix E. Here, we define the misfit function in an

inversion as

Misfit =

√√√√ 1

M

M∑
k

[cobs(ωk)− ce(ωk)]
2, (4.10)

where cobs is the observed phase velocity obtained by the ESPAC method.

4.3.2 Method using theoretical SPAC coefficients

If we assume that the observed microtremors dominate the fundamental mode

of surface waves, the misfit function in an inversion in the direct-fitting method by

Asten et al. (2002, 2004) can be defined as

Misfit =

√√√√ 1

MN

M∑
k

N∑
j

[
ρobs(rj, ωk)− J0

(
ωk

c(ωk)
rj

)]2
, (4.11)

where ρobs is the observed SPAC coefficient. As Okada (2008) indicated, we can

easily introduce their interpretation method to multi-modal analysis using amplitude

response by equations 4.5-4.7. In this case, the misfit function can be defined as

Misfit =

√√√√ 1

MN

M∑
k

N∑
j

[
ρobs(rj, ωk)−

∑
i

Pi(ωk)

P (ωk)
J0

(
ωk

ci(ωk)
rj

)]2
. (4.12)

4.3.3 Comparison of the two methods

Figure 4.2 shows a flowchart of the multi-mode analysis methods proposed in the

previous section. The left side is for the analysis of observed data and the right side
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is for forward modeling of an assumed medium. The final elastic model is decided

upon by evaluating the errors between the observed and theoretical values (Figure

4.2, central panel). Here, we suppose that the ESPAC method is used in the estima-

tion of the phase velocities. If an analysis method using effective phase velocities is

employed, both observed and theoretical (effective) phase velocities will be approxi-

mately determined by the least squares fitting. In contrast, the direct-fitting method

for comparing SPAC coefficients generates no such estimation errors (Okada, 2008).

Because of this point, the direct-fitting method is superior to the method using effec-

tive phase velocities. It should be emphasized that neither proposed method needs

to identify the mode of the observed phase velocities and SPAC coefficients.

In the ESPAC method, however, the least squares fitting of observed SPAC coef-

ficients with different receiver separation distances to the Bessel function can reduce

errors of the observed SPAC coefficients of each receiver separation distance. In addi-

tion, it is beneficial to estimate a dispersion curve even if we analyze microtremors by

the direct-fitting of SPAC coefficients. It is known that the S-wave velocity structure

can be roughly estimated from observed phase velocities by transforming 1.1 times

phase velocities versus wavelength/α(α = 2 − 4) to S-wave velocities versus depth

(e.g. Abbiss , 1983; Heisey et al., 1982). This S-wave velocity structure can be useful

to determine an initial model or a search range of model parameters in an inversion

if there is no prior information about observation area.

4.4 Synthetics test

To evaluate the effectiveness of the proposed methods, a numerical simulation

study was conducted. It is well known that if the S-wave velocity decreases with

increasing depth, higher modes of surface waves play a significant role at some fre-

quencies (Gucunski and Woods , 1992; Tokimatsu et al., 1992b). In the 4-layered

model used for the simulation study, a high velocity layer is embedded in low-velocity
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layers (Figure 4.3). Figure 4.4 shows the theoretical dispersion curves and power

fractions up to the second higher mode. It can be seen that the first higher mode is

predominant in the frequency range from 5 to 7.5 Hz. The first higher mode of surface

waves would not be negligible in this frequency range. The anomalous predominance

of first higher mode can be seen at about 2.5 Hz (Figure 4.4b). This anomaly is

caused by the appearance of first higher mode with a high amplitude response at

a cut-off frequency (Figure 4.4a), although the amplitude response of fundamental

mode increases in this frequency range. The predominant higher modes in the low

frequency range were studied by Picozzi and Albarello (2007). A similar feature can

be seen in a field example. However, since we mainly use microtremors of the higher

frequency range, the predominance of the first higher mode at about 2.5 Hz has little

effect on our analysis.

Synthetic microtremors for a one-dimensional layered model have been success-

fully simulated by Bonnefoy-Claudet et al. (2006a), Bonnefoy-Claudet et al. (2004)

and Wathelet et al. (2005). We simulated microtremors by the following procedure.

The Discrete Wave-number Integral (DWI) method (Bouchon and Aki , 1977) was

employed for the calculation of waveforms. The source was a vertical force with an

8 Hz Ricker wavelet. For the simplicity, constant and sufficiently large quality fac-

tors (Q=10000) are given for each layer in order to ignore anelastic attenuation. A

triangular array with 10 receivers (Figure 4.5) was assumed in this simulation. One

thousand sources were randomly distributed on the surface at radii from 500 to 1000

m from the central receiver of the array and the waveforms were calculated for each

source independently. We assume that the wave propagates as a plane wave for the

central receiver. Only the vertical component of the waveforms was used to estimate

the Rayleigh wave dispersion. Simulated microtremors of about 30 s in duration were

synthesized by superposing 50 waveforms randomly chosen from the 1000 waveforms.

In this manner, 100 data sets were synthesized. Figure 4.6 shows an example of
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simulated microtremors from one data set.

Next, we applied the proposed methods to the simulated data. The SPAC coef-

ficients were obtained by averaging the azimuthal average of complex coherencies of

100 data sets with a cosine taper in time domain. Figure 4.7a shows the observed

SPAC coefficients for r = 25 and 50 m. In addition, the theoretical SPAC coeffi-

cients of the superposed modes and theoretical ones up to the first higher mode are

shown. The observed SPAC coefficients are in good agreement with the theoretical

ones of the superposed modes even if the observed SPAC coefficients are between the

fundamental and first higher mode.

By the ESPAC method, the phase velocities were estimated from observed SPAC

coefficients of 9 different receiver separation distances (Figure 4.7b). The frequency

range of the dispersion curve is determined by the following relation between the

wavelength λ and the receiver separation distance r :

2rmin < λ < 4rmax, (4.13)

where λ is the wavelength of the observed phase velocity, and rmin and rmax are

the minimum and maximum receiver separation distance, respectively. The limit of

the shortest wavelength is based on the spatial aliasing, whereas the longest one is

determined empirically. The frequency range of SPAC coefficients used in an inversion

is the same as that of the estimated phase velocities. Although the observed dispersion

curve cannot be separated into dispersion curves for each mode in the frequency

range from 5 to 7.5 Hz, the effective phase velocities calculated from equation 4.9 are

consistent with the observed ones. It can be seen that both proposed methods are

effective for multi-mode analyses that consider multiple receiver separation distances.

S-wave velocity profiles were estimated by inversions in which the proposed meth-

ods were introduced into a forward modeling. A genetic algorithm (GA) (e.g. Gold-
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berg , 1989) with elite selection and dynamic mutation (Yamanaka and Ishida, 1996)

was employed as the inversion method. The unknown parameters were the S-wave

velocity and thickness of each layer, since empirical equations (Ludwig et al., 1970;

Kitsunezaki et al., 1990) were used to obtain the P-wave velocity and density from

the S-wave velocity. The reference S-wave velocity model used in the inversion was

constructed only from the observed dispersion curve. The depth and S-wave velocity

(Vs) of the reference model are determined by the following wavelength transforma-

tion (Heisey et al., 1982):

Depth =
1

3
λobs, (4.14)

Vs = 1.1× cobs. (4.15)

A 6-layered model was assumed in the inversion. The search range of the S-

wave velocity and thickness was ±50 % for the reference model. The number of

generations and the population were 200 and 100, respectively. Twenty trials were

performed with the random seeds of an initial population. The final inverted model

was constructed by averaging the S-wave velocity and thickness for each layer over

20 trials. Theoretical dispersion curves and power fractions were calculated up to the

third higher mode in a forward modeling.

Figure 4.8 shows the average values of the misfit functions and the standard devi-

ations for each generation. The misfit functions of the last 150 generations show little

decrease and the standard derivation of the last generation is quite small, which indi-

cate convergence of the GA inversions. Since objective functions and their dimensions

of both methods are different, it is difficult to compare the values of standard devi-

ations. However, standard deviations of the inverted S-wave velocity models can be

compared because the dimensions of inverted models are same. The S-wave velocity
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profiles estimated from an inversion that introduces two kinds of proposed forward

modeling are shown in Figures 4.9 and 4.10. The final inverted models and their stan-

dard deviations are quite similar. The reversal of the S-wave velocity is well retrieved

by either multi-mode inversion analysis. However, the standard deviations near the

infinite half-space are relatively large. This is because the observed phase velocities

or SPAC coefficients do not have sufficient sensitivity to deep structure due to a lack

of estimated values at lower frequencies.

Figure 4.11 compared the inverted velocity models using only the fundamental

mode component with those using multimode components. The reversal of S-wave

velocities was overestimated by inversion using only the fundamental mode in both

inversion methods.

4.5 Field example

We also applied the proposed methods to field data. The survey site is located

in Tsukuba City, Japan. Geophones with a natural frequency of 2 Hz were used as

receivers. The array shape was similar to that shown in Figure 4.5, and the largest

aperture of the array was 30 m. The sampling time was 2 ms and each data set

consists of 8192 samples. Finally, 300 data sets of about 80 min were obtained.

Figure 4.12 shows an example of observed microtremors. P- and S-wave velocities

were obtained at this site by PS-logging (Suzuki and Takahashi , 1999). Figure 4.13

shows the theoretical dispersion curves and power fractions up to the second higher

mode constructed from PS-logging data. It can be seen that the power fraction of

the first higher mode is predominant near 7.5 Hz. Moreover, the second higher mode

has some influence at high frequencies.

The SPAC coefficients and dispersion curve were obtained from 300 data sets in the

same way as the synthetic test. Figure 4.14a shows the observed SPAC coefficients for

r = 15 and 30 m calculated from microtremor data. The theoretical SPAC coefficients
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of the superposed modes and theoretical ones up to the second higher mode are also

shown. Figure 4.14b shows the observed phase velocities from the ESPAC method for

which the frequency range was determined by equation 4.13. Despite being within

this frequency range, phase velocities could not be obtained for frequencies higher

than 13.2 Hz because they did not show significant dispersion. In the frequency range

from 5 to 10 Hz where the observed SPAC coefficients and phase velocities lie between

the fundamental and first higher mode, the observed values are in good agreement

with the theoretical ones considering higher modes. However, there are discrepancies

between observed and theoretical values below 4 Hz. Figure 4.14a shows that the

observed SPAC coefficient agreed with theoretical one becomes slightly lower with the

increase of a receiver separation distance, which indicates the wavelength dependence

of these discrepancies. The phase velocities at lower than 4 Hz are also included in

the second and third reliable regions of 4 regions named as ’acceptable’ and ’critical’

according to the classification by Cornou et al. (2006). Thus, the discrepancies below

4 Hz would be generated from instability of estimated wavelengths.

The S-wave velocity profiles were estimated by inversions. The procedure and pa-

rameters of the inversions were the same as in the simulation study. Figure 4.15 shows

the average values of the misfit functions for each generation. The S-wave velocity

profiles estimated from inversions by two proposed methods of forward modeling are

shown in Figures 4.16 and 4.17. The standard deviations of inverted models using

effective phase velocities are much higher than those using SPAC coefficients. The

final S-wave velocity model by an inversion using effective phase velocities is poorly

resolved. It is considered this failure is caused by the discrepancies in the observed

phase velocities below 4 Hz. Although the inversion using SPAC coefficients is also

effected on the misfit below 4 Hz, the S-wave velocity consistent with logging data

can be inverted.

Figure 4.18 shows the comparison of the inverted velocity models using only the
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fundamental mode with those using multimode components. Compared to logging

data, the reversal of S-wave velocities obtained by inversion using only the fundamen-

tal mode is unrealistic.

Then, we considered giving a constraint in the inversion using effective phase

velocities in order to improve the S-wave velocity estimation. Since the discrepancies

of observed phase velocities below 4 Hz are considerably related with an infinite half-

space of inverted S-wave velocity, we constrained the velocity of an infinite half-space

to 700 m/s and the depth to 50 m as prior information in an inversion. Figure 4.19

shows the result of the inversion by effective phase velocities when prior information

is introduced. It can be seen that the S-wave velocity structure is better resolved.

From this result, we suggest the objective function using SPAC coefficients (equation

4.12) is robust than that using effective phase velocities (equation 4.10) in the point

that the former can give a better weighting for low frequencies when observed values

have significant errors.

4.6 Conclusions

In this study, we proposed two multi-mode analyses in the SPAC method using

amplitude response of surface waves. The use of amplitude response is superior in that

there is no need to identify the observed modes, and therefore mode misidentification

is avoided. Practical application point of view, this point becomes important since it

may solve an uncertainty problem by a lack of experimental knowledge of engineers.

The first method is to calculate the theoretical effective phase velocities corresponding

to the estimated ones by the ESPAC method. The second method is to fit SPAC

coefficients directly. The latter approach is simpler than the former one.

To conduct quantitative verification, we simulated microtremors with predomi-

nant higher modes of surface waves. Although the estimated phase velocities from

the ESPAC method were between theoretical phase velocities of fundamental mode
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and first higher mode at some frequencies, the theoretical effective phase velocities

were consistent with the estimated ones. The observed SPAC coefficients were also

consistent with the theoretical ones. These methods were included in the forward

modeling of a GA inversion. The reversal layer of a S-wave velocity, which usually

plays an important role in higher modes, was successfully inverted by both proposed

methods although it was overestimated by inversion using only the fundamental mode.

In addition, we applied the proposed methods to field data in which higher modes

were considered to be predominant from PS logging data. The S-wave velocity esti-

mated by an inversion using SPAC coefficients is well consistent with that from log-

ging data. On the other hand, the inverted model using effective phase velocities was

poorly resolved. Introduction of prior information about the infinite half-space layer,

however, improved the result of the inversion. When we apply inversion using only

the fundamental mode, the unrealistic reversal of S-wave velocities was estimated.

The simulation study and field example demonstrated that results from our pro-

posed methods are mostly in good agreement with the observed phase velocities and

SPAC coefficients. However, these methods have to be applied carefully to an inver-

sion analysis without any prior information. If the observed values have low quality

for crucial S-wave velocities when applying the multi-mode analysis (e.g., below 4

Hz in Figure 4.14), the inverted models may be trapped in the local minimum as in

Figure 4.16. Meanwhile, the S-wave velocity structure was successfully estimated by

an inversion using SPAC coefficients without any constraints for the reference model.

Because of this, we suggest that the multi-mode inversion using SPAC coefficients has

a better weighting for low frequencies when observed values have significant errors

and therefore, it is more robust than an inversion using effective phase velocities.

To verify the effectiveness of the proposed methods, the observed microtremors need

to be applied to various areas where borehole data are available for a quantitative

evaluation.
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Figure 4.1: Geometry of a receiver array and an incident plane wave.
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Figure 4.2: Flowchart of proposed microtremor analyses that consider higher modes
and multiple receiver separation distances.
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Figure 4.3: Simulated 4-layered model.
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Figure 4.4: (a) Theoretical dispersion curves and (b) power fractions up to second
higher modes for simulated model (Figure 4.3).
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Figure 4.9: Results of inversions using effective phase velocities. (a) Simulated model
(red), reference model constructed by equations 4.14 and 4.15 (cyan),
inverted models for each trial (black), and the search range in for the GA
inversion (yellow). (b) Final inverted model (blue) obtained by averaging
the S-wave velocities and thicknesses for each layer over 20 trials and their
standard deviations (green).
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Figure 4.10: Results of inversions using SPAC coefficients. (a) Simulated model (red),
reference model constructed by equations 4.14 and 4.15 (cyan), inverted
models for each trial (black), and the search range for the GA inversion
(yellow). (b) Final inverted model (blue) obtained by averaging the S-
wave velocities and thicknesses for each layer over 20 trials and their
standard deviations (green).
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Figure 4.11: Comparison of inverted velocity models using multimode components
with those using only the fundamental mode component for (a) effective
phase velocities and (b) SPAC coefficients.
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Figure 4.12: Observed microtremors from one data set. The receiver number corre-
sponds to Figure 4.5.
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Figure 4.13: (a) Theoretical dispersion curves and (b) power fractions up to second
higher modes for a layered model constructed by PS logging data.
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lines) corresponding to r = 15 and 30 m. Only the black circles among
the observed SPAC coefficients were used in an inversion. (b) Com-
parison of the observed phase velocities (black circles) from the ESPAC
method with theoretical effective phase velocities (red line).
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Figure 4.15: The average of the misfit functions in each generation for field data. The
error bars shows the standard deviations.

(a) (b)

Logging Data Reference Model

Search Range Each Trial

Final Model Standard Deviation

0 200 400 600

0

10

20

30

40

50

S-wave Velocity (m/s)

D
e

p
th

 (
m

)

0 200 400 600

0

10

20

30

40

50

S-wave Velocity (m/s)

D
e

p
th

 (
m

)

Figure 4.16: Results of inversions using effective phase velocities. (a) Logging data
(red), reference model constructed by equations 4.14 and 4.15 (cyan),
inverted model for each trial (black), and the search range for the GA
inversion (yellow). (b) Final inverted model obtained by averaging the
S-wave velocities and thicknesses for each layer over 20 trials (blue) and
their standard deviations (green).

85



(a) (b)

Logging Data Reference Model

Search Range Each Trial

Final Model Standard Deviation

0 200 400 600

0

10

20

30

40

50

S-wave Velocity (m/s)

D
e

p
th

 (
m

)

0 200 400 600

0

10

20

30

40

50

S-wave Velocity (m/s)

D
e

p
th

 (
m

)

Figure 4.17: Results of inversions using SPAC coefficients. (a) Logging data (red),
reference model constructed by equations 4.14 and 4.15 (cyan), inverted
models for each trial (black), and the search range for the GA inversion
(yellow). (b) Final inverted model (blue) obtained by averaging the S-
wave velocities and thicknesses for each layer over 20 trials and their
standard deviations (green).
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Figure 4.18: Comparison of inverted velocity models using multimode components
with those using only the fundamental mode component for (a) effective
phase velocities and (b) SPAC coefficients.
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Figure 4.19: Results of inversions using effective phase velocities. The S-wave velocity
and the depth of the infinite half-space were fixed at 700 m/s and 50
m, respectively. (a) Logging data (red), reference model constructed by
equations 4.14 and 4.15 (cyan), inverted models for each trial (black),
and the search range for the GA inversion (yellow). (b) Final inverted
model (blue) obtained by averaging the S-wave velocities and thicknesses
for each layer of 20 trials and their standard deviations (green).
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CHAPTER V

Separating mixing modes by the multichannel

analysis of surface waves with deconvolution

analysis

5.1 Introduction

The surface wave method has been widely applied as a non-destructive means

for obtaining S-wave velocity structures (e.g. Miller et al., 1999; Ryden and Lowe,

2004; Lin et al., 2004; Foti et al., 2009; Socco et al., 2010; Tsuji et al., 2012). The

surface wave method utilizes the dispersion characteristics of surface waves. Nazarian

et al. (1983) have introduced the spectral analysis of surface waves method (SASW)

in which dispersion curves of surface waves are estimated from a pair of receivers.

The accuracy of dispersion curves estimates is improved by analysis of multichannel

seismic data with the multichannel analysis of surface waves (MASW) method (Park

et al., 1998, 1999a) or the f-k method (Foti , 2000, 2005). Because surface waves are

most sensitive to S-wave velocities, S-wave velocity structures can be estimated by

inversion of dispersion curves (e.g. Xia et al., 1999).

Surface waves have different propagation velocities at different frequencies. The

propagation mode with the slowest propagation velocity is the fundamental mode,

and the other modes are referred to as higher modes. The fundamental mode of
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surface waves is usually the focus of a surface wave analysis. However, higher modes

of surface waves cannot be ignored when a low-velocity layer is embedded between soft

layers (e.g. Tokimatsu et al., 1992b; Lu et al., 2007; Tsuji et al., 2012). In inversion

analysis, inclusion of higher surface wave modes improves the resolution of S-wave

velocity estimations, the result being an increase of the investigation depth (e.g. Xia

et al., 2003; Luo et al., 2007).

One of the difficulties associated with multimode analysis of surface waves is the

separation of multimode signals. The receivers must be spread out over a long dis-

tance to clearly separate multimode surface waves (Bergamo et al., 2012; Ikeda et al.,

2013b), and a large number of receivers is required to suppress noise effects. How-

ever, such field observations are sometimes difficult to conduct because of financial

or topographical restrictions. Even if the component of each mode is clearly sepa-

rated, there is still difficulty in identifying the observed mode number. Consequently,

the mode misidentification generates substantial errors in inversion (e.g. Zhang and

Chan, 2003; Maraschini et al., 2010).

To overcome these problems, a number of authors have developed multimode in-

version techniques that do not require mode identification. For example, Tokimatsu

et al. (1992b), Tsuji et al. (2012), and Ikeda et al. (2012) have applied multimode

inversion techniques for inverting mixed modes that take into consideration the theo-

retical amplitude of multimode surface waves. To consider the effects of leaky modes

and body waves, Forbriger (2003) and O’Neill and Matsuoka (2005) have applied

full-waveform inversion without any mode identification, although such analysis re-

quires much computational time. Maraschini et al. (2010) and Maraschini and Foti

(2010) have also proposed a new misfit function in multimode inversion based on the

Haskell-Thomson matrix method.

In contrast, very few studies have focused on the retrieval of multimode surface

waves from observed seismic data. Luo et al. (2009) have proposed a high-resolution
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linear Radon transform for separating and reconstructing multimode surface waves.

Deconvolution techniques have also been applied to the estimation of dispersion im-

ages to emphasize the peaks corresponding to particular surface wave modes. Nishida

et al. (2008) and Picozzi et al. (2010) have applied deconvolution to ambient noise

data, and Maupin (2011) has applied deconvolution to teleseismic data. However,

there has not been a clear awareness of the advantage of applying deconvolution.

Futhermore, the deconvolution technique has not been applied to dispersion images

constructed from surface seismic data for near-surface S-wave velocity estimation.

In this study, we introduced the deconvolution technique into the MASW to sep-

arate mixing modes in dispersion images. This technique is based on the fact that

estimated dispersion images can be described by convolution of true spectra with

the array smoothing function (ASF) discussed by Boiero and Socco (2011). For mul-

timode surface data, we change the MASW computational procedure to obtain a

description in the proximity of the summation of the convolution for each mode com-

ponent. We have used both simulated and field data to demonstrate the effectiveness

of the proposed technique.

5.2 Method

5.2.1 Multichannel analysis of surface waves

In this section, we review the multichannel analysis of surface waves (MASW)

proposed by Park et al. (1998, 1999a). Dispersion images in the wavenumber (phase

velocity) versus frequency domain can be obtained from multichannel seismic data

with the MASW method. First, a Fourier transform is used to transform observed

seismic data in the time domain into the frequency domain. Based on the description

by Tokimatsu et al. (1992b), if we assume that seismic data are composed of the

fundamental mode of surface waves, observed data can be described in the frequency
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domain as follows:

F (f, x) =
1√
x
A(f)e−ik0x, (5.1)

where f is the frequency, x is the offset from the source, k0 is the wavenumber for the

fundamental mode of surface waves, and A(f) is a term that depends on frequency.

For simplicity, we have neglected in equation 5.1 anelastic attenuation, the time-

dependent term and the constant value, which is independent of the frequency and

offset. Seismic data in the frequency domain are then normalized with respect to

absolute values and integrated over receivers with a phase shift. Use of absolute

values of integrated data allows dispersion images U to be described as follows:

U(f, k) =

∣∣∣∣∣∣
∞∫

−∞

F (f, x)

|F (f, x)|
eikxdx

∣∣∣∣∣∣ . (5.2)

Wavenumbers or phase velocities with local maximum values in U can be defined as

predominant surface wave modes.

5.2.2 Convolution equation of dispersion images using the ASF

Observed dispersion images are described by convolution of true spectra with the

ASF, as demonstrated in the case of the f-k method by Boiero and Socco (2011)

and in the case of the CMP cross-correlation method by Ikeda et al. (2013b). The

dispersion images in equation 5.2 have impulses at wavenumbers corresponding to the

fundamental mode of surface waves because dispersion images become delta functions

in which the wavenumber is shifted to k0. Because seismic data are observed by a

finite number of receivers, equation 5.2 should be rendered by using a summation as
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follows:

U(f, k) =

∣∣∣∣∣
N∑
j

F (f, xj)

|F (f, xj)|
eikxj

∣∣∣∣∣ =
∣∣∣∣∣

N∑
j

ei(k−k0)xj

∣∣∣∣∣ , (5.3)

where N is the number of receivers used in data acquisition. The dispersion images

described by equation 5.3 become absolute values of the sinc function with a peak at

k0. Thus, we can describe equation 5.3 as follows:

U(f, k) = |ASF (k)| ∗ P0(f, k), (5.4)

ASF (k) =
N∑
j

eikxj , (5.5)

where ASF is the array smoothing function and P0 is the theoretical spectrum for the

fundamental mode of surface waves. Thus, dispersion images observed with MASW

can be described by convolution of theoretical spectra with the ASF (Figure 5.1).

The ASF can be obtained for any wavenumber by using an offset x.

Figure 5.2 shows three examples of absolute values of the ASF for 24 receivers

with a receiver interval of 1 m, 48 receivers with a receiver interval of 1 m, and 24

receivers with a receiver interval of 2 m. It is apparent that the ASF is a periodic

function because of a spatial aliasing associated with the receiver interval. The shorter

the receiver interval is, the longer the period of the ASF is. Moreover, the ASF has

more distinct peaks the longer the distance between minimum and maximum offsets

(spread length).

5.2.3 Deconvolution of dispersion images

Because observed dispersion images can be described by convolution, true spectra

can be estimated by applying deconvolution with the ASF. By applying a Fourier
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transform in the wavenumber k domain, theoretical spectra in the transformed k′

domain can be described as a deconvolution:

P0(f, k
′) =

U(f, k′)

|ASF (k′)|
. (5.6)

For stability of division in equation 5.6, deconvolution is applied with a stabilization

parameter ϵ.

P0(f, k
′) =

U(f, k′)ASF (k′)

|ASF (k′)||ASF (k′)|+ ϵ
, (5.7)

where the overbar signifies the complex conjugate. Note that when we apply decon-

volution by using equation 5.7, we normalize the ASF in the k′ domain in equation

5.7 with respect to its maximum absolute value.

5.2.4 Modified MASW for multimode surface wave data

We now consider the application of the MASW and deconvolution to a case of

seismic data that includes higher modes of surface waves. Based on the description

by Tokimatsu et al. (1992b), multimode surface wave data are described as follows:

F (f, x) =
1√
x

∑
m=0

Am(f)e
−ikmx, (5.8)

where km and Am are the mth mode component of the wavenumber and a term that

depends on frequency, respectively. For simplicity, we neglect anelastic attenuation

in equation 5.8. Substituting equation 5.8 into equation 5.3, we obtain,

U(f, k) =

∣∣∣∣∣∑
m

Am(f)
N∑
j

1

|
∑

mAm(f)e−ikmxj |
ei(k−km)xj

∣∣∣∣∣ , (5.9)

93



The value of |
∑

mAm(f)e
−ikmxj | in equation 5.9 depends on xj. This term generates

errors when retrieving delta functions for each mode component by deconvolution

with ASF in equation 5.7. To reduce this effect, we modify the definition of dispersion

images U in equation 5.3 by multiplying the square root of x by F as follows:

U(f, k) =

∣∣∣∣∣
N∑
j

√
xjF (f, xj)e

ikxj

∣∣∣∣∣ =
∣∣∣∣∣∑

m

Am(f)
N∑
j

ei(k−km)xj

∣∣∣∣∣
=

{(∑
m

Am(f)
N∑
j

ei(k−km)xj

)(∑
m

Am(f)
N∑
j

e−i(k−km)xj

)}0.5

=

∑
m

Am(f)
2

∣∣∣∣∣
N∑
j

ei(k−km)xj

∣∣∣∣∣
2

+ 2
∑
m

∑
n(̸=m)

Am(f)An(f)
N∑
j

N∑
p

cos [(k − km)xj − (k − kn)xp]


0.5

(5.10)

In this paper, as a matter of convenience, this procedure will be characterized as the

modified MASW. If only a single mode of surface waves is dominant and anelastic

attenuation is neglected, the result is equivalent to the definition of the MASW in

equation 5.3. If we assume that the second term in the last line of equation 5.10 can

be neglected, dispersion images can be described by summation of the convolution of

the ASF with the theoretical spectrum of each mode component as follows:

U(f, k) =
∑
m

Am(f)

∣∣∣∣∣
N∑
j

ei(k−km)xj

∣∣∣∣∣ =∑
m

|ASF (k)| ∗ Pm(f, k), (5.11)

where Pm is the theoretical spectrum of the mth mode component of surface waves.

Deconvolution would therefore be applicable to analysis of seismic data, including

higher modes of surface waves, to separate mixing mode components.
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5.3 Simulation study

In this section, we demonstrate the proposed methods by using numerically syn-

thesized data, with or without consideration of anelastic attenuation. The simulated

four-layer model is slightly modified from case 3 in Tokimatsu et al. (1992b) (Table

5.1) and includes a low-velocity layer. The presence of a low-velocity layer makes the

first higher mode of surface waves predominant. We employed the discrete wavenum-

ber integral method of Bouchon and Aki (1977) to calculate the vertical component of

synthetic waveforms. The source was a vertical force with a 15 Hz Ricker wavelet. We

put the source at a depth of 1 m below the surface. We used 48 receivers, the receiver

interval between receivers being 1 m. The minimum offset was 2 m. The correspond-

ing ASF is depicted in Figure 5.2b. The duration of the synthesized seismogram was

2 s.

5.3.1 Elastic modeling

First, we ignored anelastic attenuation by setting the quality factor to 1000 for

all layers. Figure 5.3 shows the dispersion curve images estimated from simulated

waveforms by the MASW and the modified MASW. It is apparent that the funda-

mental mode is dominant at most frequencies in both dispersion images. The first

higher mode at frequencies higher than 30 Hz is also more clearly identified by using

the modified MASW. Although the fundamental mode and the first higher mode are

predominant at frequencies of 5-10 Hz, the fundamental mode can be more clearly

identified in the dispersion image produced by the modified MASW. At about 10 Hz,

we observe the smooth mode transition from the first higher mode to the fundamental

mode (Figures 5.3c and 5.3d). If low frequency components at frequencies lower than

7 Hz are insufficient, we might misinterpret the first higher mode at frequencies of

5-10 Hz as the fundamental mode.

We then used equation 5.7 to apply deconvolution to the dispersion images. Fig-
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ures 5.4 and 5.5 depict the results of deconvolution for dispersion images estimated

by the MASW and the modified MASW, respectively. In both cases, the peaks

corresponding to predominant modes are enhanced by the deconvolution technique

compared to the dispersion images without deconvolution (Figure 5.4). However, the

peak positions are in most cases similar to those without deconvolution when a single

mode component of surface waves is dominant, as Maupin (2011) has pointed out.

Figures 5.4d and 5.5d show slices of the deconvolved images at 10 Hz where there

is a mode transition from the first higher mode to the fundamental mode. Applying

deconvolution to the dispersion image estimated from the modified MASW clearly

separates two mixing modes at 10 Hz (Figure 5.5d). Separating two modes from one

peak contributes to not only improving phase velocity estimations but also identifying

mode transition at corresponding frequencies. On the other hand, identifying the

secondary peak is not easy in the deconvolved image from the MASW (Figure 5.4d).

Values of 0.01-0.05 for ϵ are enough to retrieve two mixing modes at 10 Hz.

5.3.2 Anelastic modeling

We neglected the effects of anelastic attenuation in the previous section because

they are complicated for multimode data. In reality, however, anelastic attenuation

might play an important role in the analysis of multimode components of surface

waves. We therefore, applied the proposed method to numerically simulated data

that included the effects of anelastic attenuation. The parameters for the simulated

model were the same as those in Table 5.1. The quality factors for each layer are

given in Table 5.2.

Figure 5.6 shows the dispersion images estimated with the MASW and the modi-

fied MASW. We also observe the smooth mode transition at 10 Hz. At this frequency,

the peak for the modified MASW exists at the midpoint between the fundamental

mode and the first higher mode (Figure 5.6d) whereas the dispersion image for the
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MASW is contaminated probably due to the effect of the hidden fundamental mode

(Fig. 5.6c). The dispersion image from the modified MASW does not have clear side

lobes near the peak positions at high frequencies. This is because dispersion images

with the modified MASW are affected by anelastic attenuation whereas the normal-

ization in the MASW (equation 5.3) can remove the effects of attenuation (Park et al.,

1999b; Park , 2011).

Figure 5.7 shows the results of applying deconvolution to the dispersion images.

Two mode components are mixed at 10 Hz without deconvolution, but they can be

successfully separated by applying the deconvolution technique with the modified

MASW (Fig. 5.7d). Although two peaks are also generated from one peak by the

deconvolution technique with the MASW, it is difficult to distinguish the secondary

peak due to the other peaks.

5.4 Application to field data

We then applied the proposed methods to field data acquired at Uto city, Ku-

mamoto Prefecture, Japan (Watanabe et al., 2011). A sledge hammer was used as a

source. Twenty-four geophones were placed at intervals of 1 m. The minimum offset

was 2 m. The sampling time was 2 ms, and the number of sample was 1024. The

corresponding ASF is depicted in Figure 5.2a.

Figure 5.8 shows the dispersion images estimated with the MASW and the modi-

fied MASW. The fundamental mode of surface waves at frequencies lower than 7 Hz

is observed in these images. Owing to this mode, we can interpret the dispersion

curve at frequencies of 7-15 Hz as that for the first higher mode. This first higher

mode might be related to reversal of S-wave velocities. It is considered that the fun-

damental mode and the first higher mode are mixed at about 15 Hz. At frequencies

higher than 15 Hz, a single mode component is dominant. More continuous peaks

can be identified with the modified MASW. The dispersion image estimated from the
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modified MASW does not have clear side lobes at high frequencies, the indication

being that observed seismic data are affected by anelastic attenuation, as was the

case in the simulation study.

Figure 5.9 shows the result of applying deconvolution to dispersion images pro-

duced with the MASW and modified MASW. At 15.1 Hz, the two peaks were gen-

erated from one peak by deconvolution analysis with the modified MASW whereas

the peak position of the secondary peak is modified by deconvolution analysis with

the MASW (Figs. 5.9b and 5.9e). The two modes for the MASW and the modified

MASW are good consistent with each other. At 15.6 Hz, the secondary peak is not

retrieved in the deconvolved image with the MASW (Fig. 5.9c). On the other hand,

two peaks were generated by deconvolution analysis with the modified MASW (Fig.

5.9f).

5.5 Conclusions

To separate mixing multimode surface waves from dispersion images, we proposed

a deconvolution technique for dispersion images. We also changed the MASW com-

putational procedure for retrieving multimode signals in dispersion images.

We applied the deconvolution technique to dispersion images estimated from nu-

merically synthetic data for the simulated model with a low-velocity layer. When

two mode components were mixed together and appeared as only one peak in disper-

sion images, applying the deconvolution technique contributed to separation of the

mixed mode peaks at the mode transition point. Although side lobes in dispersion

images with the modified MASW are smeared by the effect of anelastic attenuation,

higher modes of surface waves are more clearly recognized in the deconvolved images

obtained from the modified MASW. Mixing modes were also separated from single

peaks with the modified MASW from field data. This result indicates there is a mode

transition point at this frequency.
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In these examples, we could verify mode transition points estimated by sepa-

rating mixing modes with deconvolution analysis because fundamental mode signals

are observed at frequencies lower than the transition points. However, due to an

insufficient source spectrum or poor performance of seismometers for low frequency

signals, it might be difficult to retrieve low frequency components. In such conditions,

separating mixing modes by the deconvolution analysis contributes to not only im-

proving phase velocity estimations but also identifying mode transition points which

are important to prevent mode misidentification.
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Table 5.1: Parameter values used in the simulated model.

Layer Number
Thickness

(m)
S-wave Velocity

(m/s)
P-wave Velocity

(m/s)
Density
(g/cm3)

1 3 80 300 1.8
2 7 180 1000 1.8
3 10 120 1400 1.8
4 ∞ 360 1400 1.8

Table 5.2: Values of quality factors used in anelastic modeling.
Layer Number Qs Qp

1 20 40
2 30 60
3 30 60
4 40 80
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Figure 5.1: The dispersion image (left) obtained by convolution of the absolute val-
ues of the ASF with the theoretical spectrum. Red lines are theoretical
dispersion curves.
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Figure 5.2: Absolute values of the ASF for (a) 24 receivers at intervals of 1 m, (b) 48
receivers at intervals of 1 m, and (c) 24 receivers at intervals of 2 m.
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Figure 5.3: Dispersion images obtained from simulated data without consideration of
anelastic attenuation, estimated by (a) the MASW and (b) the modified
MASW, respectively. Red lines are theoretical dispersion curves up to
the eighth higher mode. (c) and (d) are zoomed dispersion images for the
MASW and the modified MASW, respectively.
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(a) Deconvolution with ε = 0.1%

(d) Slice at 10 Hz(c) Deconvolution with ε = 0.01%

(b) Deconvolution with ε = 0.05%
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Figure 5.4: Deconvolved images constructed from the dispersion image in Figure 5.3a
with the MASW with values of ϵ equal to (a) 0.1 (b) 0.05, and (c) 0.01.
(d) A slice of deconvolved images at 10 Hz.
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Figure 5.5: Deconvolved images constructed from the dispersion image in Figure 5.3b
with the modified MASW with values of ϵ equal to (a) 0.1, (b) 0.05, and
(c) 0.01. (d) A slice of the deconvolved images at 10 Hz.
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Figure 5.6: Dispersion images obtained from simulated data with anelastic attenua-
tion as in Table 5.1, estimated with (a) the MASW and (b) the modified
MASW. Red lines are theoretical dispersion curves up to the eighth higher
mode. (c) and (d) are zoomed dispersion images for the MASW and the
modified MASW, respectively.
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Figure 5.7: Deconvolved images constructed from the dispersion image in Figure 5.6a
with the MASW [(a) and (b)] and in Figure 5.6b with the modified MASW
[(c) and (d)].
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Figure 5.8: Dispersion images of field data estimated with (a) the MASW and (b)
the modified MASW. (c) and (d) are zoomed dispersion images for the
MASW and the modified MASW, respectively.
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(a) Deconvolution with ε = 0.01%

(d) Deconvolution with ε = 0.01%   
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Figure 5.9: Deconvolved images constructed from the dispersion image in Figure 5.8a
with the MASW [(a), (b), and (c)] and in Figure 5.8b with the modified
MASW [(d) (e), and (f)].
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CHAPTER VI

Characteristics of the horizontal component of

Rayleigh waves in multimode analysis of surface

waves

6.1 Introduction

The surface wave method is a widely applied non-destructive method for estimat-

ing subsurface S-wave velocity structures, for example, for mapping bedrock (Miller

et al., 1999), soil liquefaction potential (Lin et al., 2004), pavement structures (Ry-

den and Lowe, 2004), and glaciers (Tsuji et al., 2012), and for understanding fault

geometry (Ikeda et al., 2013b). Socco et al. (2010) provide a comprehensive review

of the surface wave analysis technique. In onshore seismic reflection surveys, surface

waves are usually considered to be noise and are therefore eliminated. However, once

surface waves are identified by a surface wave analysis, they can be used for static

corrections to near-surface structures (Strobbia et al., 2010; Askari et al., 2013) or

removed from raw data (Strobbia et al., 2011).

Surface waves have different propagation velocities at different frequencies. The

propagation mode with the slowest propagation velocity is the fundamental mode,

all other propagation modes are referred to as higher modes. Most surface wave

analyses use, only the fundamental mode, but it is well known that higher modes
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gain in importance if a stiff layer either overlies a soft layer or is embedded between

soft layers (e.g. Gucunski and Woods , 1992; Tokimatsu et al., 1992b; Pan et al., 2013).

The sensitivities of higher modes of surface waves differ from the fundamental mode

sensitivity; when the wavelength is the same, higher mode data are more sensitive to

S-wave velocities in deeper layers compared with fundamental mode data (Xia et al.,

2003; Luo et al., 2007). Therefore, multimode analysis of surface waves can potentially

improve the resolution of S-wave velocity estimations and allow the investigation

depth to be increased.

Most studies obtain Rayleigh wave dispersion curves from the vertical compo-

nent of P-SV waves. Very few studies have investigated the horizontal component

of Rayleigh waves, which are included in the horizontal (radial) component of P-SV

waves. Theoretically, Rayleigh wave dispersion curves for the horizontal component

are the same as those for the vertical component. Dal Moro and Ferigo (2011) showed,

however, that the higher modes of Rayleigh waves estimated from horizontal compo-

nent data have a different energy distribution compared with those estimated from

vertical component data. Boaga et al. (2013) also demonstrated that the use of the

horizontal component of Rayleigh waves is effective in preventing mode misidentifi-

cation. These results indicate that the horizontal component of Rayleigh waves plays

an important role in multimode analysis of surface waves.

In this paper, we further investigate the characteristics of multimode Rayleigh

waves in vertical and horizontal component data to clarify the advantages of using

the horizontal component of Rayleigh waves. We conducted a numerical simulation

study to reveal the effects of source type and source depth on multimode Rayleigh

waves in layered models with and without a low-velocity layer. We then confirmed the

findings of the simulation study by applying surface wave analysis to three-component

seismic data acquired in Alberta, Canada.
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6.2 Methods and results: Multimode Rayleigh waves in mul-

ticomponent data

We first conducted a numerical simulation study to reveal the characteristics of

multimode Rayleigh waves in multicomponent data. We employed two kinds of lay-

ered models, Model A and Model B (Tables 6.1 and 6.2), in the simulation study.

Anelastic attenuation was considered by assigning quality factors Qp and Qs to each

layer. In Model A, P- and S-wave velocities increase with depth. In surface wave

exploration, usually only vertical component seismic data are acquired by a vertical

source at the surface. It is well known that with this kind of velocity model, the

fundamental mode of surface waves is dominant at most frequencies in the data ac-

quisition. In contrast, when a low-velocity layer is embedded among the layers as

in Model B, higher modes of surface waves have large amplitudes in seismic data

acquired in a near-surface seismic survey (e.g. Tokimatsu et al., 1992b; Pan et al.,

2013). Here, we employed the discrete wavenumber integral method (Bouchon and

Aki , 1977) to calculate synthetic waveforms for the simulated models. In the simu-

lations, 48 receivers set from 18 to 300 m from the source at a spacing of 6 m were

assumed. The source function was an 8-Hz Ricker wavelet, and the time duration

was 8 s.

To estimate Rayleigh wave dispersion curves from the vertical and horizontal (ra-

dial) components of numerically synthesized waveforms, we performed a multichannel

analysis of surface waves (MASW) (Park et al., 1998, 1999a). In the MASW method,

seismic data in the time-offset (t-x) domain are transformed into the frequency-offset

(f -x) domain by a Fourier transform. The dispersion image in the velocity-frequency

(c-f) domain is then obtained by stacking seismic data in the f -x domain over offset

x with a phase shift.
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6.2.1 Model A

6.2.1.1 Comparison of source types

We investigated the effects of source type on multimode Rayleigh waves in Model

A by using a vertical force and an explosive source are used as sources. The vertical

force simulates a sledge hammer, a vibrator, or an impactor used in a near-surface

seismic survey, whereas the explosive source simulates a dynamite source used in a

large-scale seismic reflection survey.

Figure 6.1 shows simulated waveforms and corresponding dispersion images esti-

mated by MASW for vertical and horizontal component data when the vertical force

was located 1 m below the surface. The theoretical dispersion curves shown in Figure

6.1 were computed by the compound matrix method (Saito, 1988; Saito and Kaba-

sawa, 1993; Ikeda and Matsuoka, 2013). For easy visualization, phase velocities with

maximum amplitude are plotted for each frequency. Note that the phase velocities

with second or third maximum for each frequency can be used in an inversion analysis

if they have a continuous dispersion trend. The wavelengths detectable by surface

wave analysis depend mainly on the distance between the minimum and maximum

offsets (spread length). In this study, we picked wavelengths up to twice as long as

the spread length.

It is apparent that surface waves are dominant in the simulated data. The esti-

mated dispersion curves are mostly consistent with the theoretical dispersion curve

of the fundamental mode. The energy of the dispersion curve estimated from the

horizontal component is shifted to the first higher mode at 2 Hz. Figure 6.2 shows

theoretical Rayleigh wave ellipticities and the vertical and horizontal amplitude re-

sponses up to the third higher mode for a vertical force at the surface. The ampli-

tude response of the fundamental mode is dominant in the vertical component. In

the horizontal component, however, the amplitude response of the first higher mode
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is dominant at about 2 Hz because the trough of the Rayleigh wave ellipticity for

the fundamental mode at this frequency causes the amplitude of the fundamental

mode in the horizontal component to be low. This result is consistent with the mode

transition in the dispersion curve at 2 Hz in the horizontal component data.

Figure 6.3 shows simulated waveforms and estimated dispersion images for an

explosive source buried at 1 m depth. Compared to the results for the vertical force,

higher mode components have slightly larger amplitudes, although the fundamental

mode is dominant in the vertical component data. In the horizontal component, the

energy of the first higher mode is dominant over a wider frequency range than was the

case with the vertical force, and the second higher mode is also dominant at about 5

Hz (Figure 6.3b).

6.2.1.2 Comparison of source depths

Explosive sources (e.g., dynamite) are usually buried under ground so that the

explosive energy will be transferred to the geological formation. In our simulations,

we therefore set explosive sources at depths of 8 and 15 m to evaluate the effect of

source depth. Figures 6.4 and 6.5 show the simulated waveforms and estimated dis-

persion curves when the explosive sources were set at 8 and 15 m depth, respectively.

In the vertical component data, the body waves had larger amplitudes at the greater

source depth. Therefore, we muted the body waves in the vertical component data

before applying MASW (red lines in Figures 6.4a and 6.5a). When the source was

located at 8 m depth, a number of higher mode signals could be clearly identified in

the horizontal component data at high frequencies, whereas the fundamental mode

was dominant in the vertical component data. Higher mode signals were larger in

both the horizontal and vertical components when the source was buried at 15 m

depth. However, the modes and their frequency ranges extracted from the horizon-

tal component data differed from those extracted from the vertical component data.
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These results demonstrate that additional mode information can be extracted when

horizontal component data are used along with vertical component data. Note that

several observed phase velocities exceeded the maximum S-wave velocity of the sim-

ulated model (1500 m/s); these might be explained by guided P-waves (Boiero et al.,

2013).

6.2.2 Model B

6.2.2.1 Comparison of source types

Figure 6.6 shows simulated waveforms and estimated dispersion images for Model

B when a vertical force was located at 1 m depth. Surface wave signals are dominant

in the synthesized data. A smooth mode transition can be observed in the estimated

dispersion curves of both components. These features are typical when a low-velocity

layer is embedded among the layers (e.g. Tokimatsu et al., 1992b; Pan et al., 2013)..

However, the dominant modes and transit frequencies in the horizontal component

data differ slightly from those in the vertical component data. Figure 6.7 shows

the theoretical Rayleigh wave ellipticities, and the vertical and horizontal amplitude

responses for a vertical force at the surface. The mode transition of the vertical

component data is consistent with that of the vertical amplitude response (Figure

6.7b). At about 2 Hz, the horizontal amplitude response of the fundamental mode

suddenly decreases and the first higher mode becomes dominant, because of the trough

in the Rayleigh wave ellipticity of the fundamental mode at this frequency (Figures

6.7a and 6.7d). Therefore, the fundamental mode vanishes at about 2 Hz in the

horizontal component data. The mode transition in the dispersion image at 7.5 Hz

also agrees with the horizontal amplitude response (Figure 6.7e).

Figure 6.8 shows simulated waveforms and estimated dispersion images when the

explosive was set at 1 m depth. Although the transit frequencies are slightly dif-

ferent from the results obtained with the vertical force, similar mode transitions are
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observed.

6.2.2.2 Comparison of source types

Figures 6.9 and 6.10 show simulated waveforms and estimated dispersion images

when the explosive sources were set at 8 and 15 m depths, respectively. When the

source was at 8 m depth, the dispersion image estimated from the vertical component

data is similar to that estimated when the explosive source was at 1 m depth (Figure

6.8a). In contrast, in the horizontal component data, the dominant modes are shifted

to higher order modes with high phase velocities. When the source location was at 15

m depth, we muted the strong body waves in the vertical component data (red line in

Figure 6.10a). The modes extracted from the vertical component data are shifted to

higher order modes but it is apparent that in horizontal component data the higher

modes have larger amplitudes with higher phase velocities, compared to the vertical

component data. Thus, additional mode information can also be extracted from the

horizontal component data with Model B.

6.3 Field example

We next applied a surface wave analysis to field data and compared the extracted

characteristics of the multicomponent Rayleigh waves inferred from the simulation

study.

6.3.1 Data acquisition

The field data were originally acquired for monitoring P-wave velocity changes

associated with steam-assisted gravity drainage in Alberta, Canada, by Japan Canada

Oil Sands Limited in 2002 and 2006 (Kato et al., 2008; Nakayama et al., 2008). We

applied a surface wave analysis to a shot gather of field data acquired in 2006. Figure

6.11 shows the position of the source and the configuration of the receivers around

115



the source. The receivers were three-component digital sensors incorporating micro-

electro-mechanical systems technology. The sampling interval was 1 ms and the

record length was 3 s. The dynamite source (0.l25 kg) was at 15 m depth. This

source configuration is similar to that for Models A and B with an explosive source at

15 m depth (Figures 6.5 and 6.10) in the simulation study. Although the maximum

offset between source and receivers was 815 m, we used only the receivers within 300

m from the source because of the 3-s record length.

6.3.2 Dispersion curve estimations

We assumed that this field had a horizontally layered structure, and estimated

one dispersion image from the seismic data acquired by the two-dimensionally dis-

tributed receivers (Figure 6.11) to improve the signal-to-noise ratio by stacking multi-

ple receivers in the MASW. We obtained the two horizontal components of the P-SV

waves and SH waves by converting the coordinatse of the two horizontal components

of north-south and east-west by considering the geometry between the source and

receivers. The observed shot gathers and dispersion images estimated by MASW for

the vertical and horizontal components of the P-SV waves are shown in Figure 6.11.

No Love waves were observed in the dispersion image of the horizontal component of

the SH waves (not shown) because SH waves are not produced by an explosive source.

Two modes can be clearly observed in the vertical component data, whereas higher

order modes can be observed in the horizontal component data.

Figure 6.13 shows the extracted dispersion curves of the two low-order modes for

each component. Because of the continuity of the observed dispersion curves, the

mode of the dispersion curve with higher phase velocities in the vertical component

data should be identical to the mode with lower phase velocities in the horizontal

component data. At low frequencies, the observed phase velocities include uncertainty

because their wavelengths are between one and two times the spread length (orange
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lines in Figure 6.13). The higher order mode extracted from the horizontal component

data could not be extracted from the vertical component data. Thus, additional

mode information was obtained by using the horizontal component data of the P-SV

waves. These characteristics of vertical and horizontal component data of multimode

Rayleigh waves agree with the Model A simulation performed with the same source

configuration (i.e., an explosive source at 15 m depth) (Figure 6.5).

6.4 Discussion

The results of the simulation study and field example indicate that analysis of the

horizontal component of the Rayleigh waves allows additional higher order mode in-

formation to be extracted when the explosive source is buried. Although the use of a

buried explosive source and three-component receivers is not common in near-surface

seismic surveys, it is possible to extract multimode Rayleigh waves from multicom-

ponent data originally acquired for large-scale seismic reflection seismic surveys as

shown in the previous section. Constructing near-surface velocity models by a sur-

face wave analysis can help improve static corrections in seismic reflection surveys

(Strobbia et al., 2010; Boiero et al., 2013; Askari et al., 2013).

To assess the importance of extracting multimode Rayleigh waves from both ver-

tical and horizontal component data when the explosive source is at 15 m depth, we

investigated the sensitivity of multimode dispersion curves of the simulation models

to S-wave velocity changes. We compared theoretical dispersion curves obtained by

changing the S-wave velocities within a range of ± 10% in each layer. Figures 6.14

and 6.15 show the results of sensitivity analyses for Models A and B, respectively.

Only continuous phase velocities were extracted from the estimated dispersion

images. With both models, higher modes of Rayleigh waves showed larger sensitivity

to S-wave velocity changes, compared to the fundamental mode. With Model A, the

dispersion curves of the first higher mode extracted from the horizontal component
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data showed sensitivity to S-wave velocity changes in the first and third layers, al-

though the phase velocities estimated from vertical component data showed a small

sensitivity to velocity changes in the third layer. With Model B, phase velocities

extracted from the vertical component data were mostly sensitive to S-wave velocity

changes in the first and second layers. However, higher modes extracted from the

horizontal component data showed sensitivity to velocity changes in the third layer

as well as in the first and second layers.

These results demonstrate that multimode Rayleigh waves extracted from vertical

and horizontal component data have the potential for improving S-wave velocity esti-

mations. A number of authors have demonstrated that the use of multimode surface

waves in inversions can improve S-wave velocity estimations (e.g. Xia et al., 2003;

Luo et al., 2007). Although there is ambiguity in the numbering of the observed

modes among studies, several inversion techniques can be efficiently applied with-

out mode identification (e.g. Forbriger , 2003; O’Neill et al., 2003; Ryden and Park ,

2006; Maraschini et al., 2010; Socco et al., 2011; Boiero et al., 2013). Higher modes

extracted from both vertical and horizontal component data could thus be used to im-

prove S-wave velocity estimations obtained by using appropriate multimode inversion

techniques.

6.5 Conclusions

To examine the utility of horizontal component data of Rayleigh waves, which

are usually neglected in surface wave analyses, we investigated the characteristics

of both the horizontal and vertical components of multimode Rayleigh waves. The

inferred characteristics of multimode Rayleigh waves suggest that the use of mul-

timode Rayleigh waves for retrieving complex S-wave velocity structures should be

encouraged.

First, we conducted a numerical simulation study by using layered models with and
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without a low-velocity layer to examine the effects of source type and source depth on

both components of multimode Rayleigh waves. When the source was located near the

surface, the dispersion curves extracted from the horizontal component data differed

from those of the vertical component data, but the difference is small except at low

frequencies. However, in both simulation models, higher order modes were dominant,

especially in horizontal component data, when the source depth of an explosive source

was increased. The component characteristics obtained by the simulations were also

observed in field data acquired by three-component receivers with a buried dynamite

source. The both simulation and field studies demonstrated that additional mode

information of Rayleigh waves can be extracted by the use of horizontal component

data acquired by an explosive source at depth. Sensitivity analysis of S-wave velocity

changes revealed that higher modes extracted from horizontal component data can

potentially increase the sensitivity of the analysis for to layers for which the sensitivity

of the vertical component data is small.

Data acquisition using an explosive source and three-component receivers is not

common in surface seismic survey. However, there are many existing data sets from

large-scale seismic reflection surveys that were acquired in this way. By using an

appropriate multimode inversion technique, we can efficiently use the horizontal com-

ponent of multimode Rayleigh waves when constructing near-surface S-wave velocity

models for static corrections in analyses of seismic reflection data.
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Table 6.1: Parameters of Model A.

Layer No.
Thickness

(m)
S-wave Velocity

(m/s)
P-wave Velocity

(m/s) Qs Qp

Density
(g/cm3)

1 30 200 1000 20 40 1.6
2 50 350 1500 30 60 1.8
3 100 600 2000 50 100 2.0
4 ∞ 1500 3000 75 150 2.2

Table 6.2: Parameters of Model B.

Layer No.
Thickness

(m)
S-wave Velocity

(m/s)
P-wave Velocity

(m/s) Qs Qp

Density
(g/cm3)

1 30 350 1500 30 60 1.8
2 20 200 1000 20 40 1.6
3 75 600 2000 50 100 2.0
4 ∞ 1500 3000 75 150 2.2
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Figure 6.1: The 30-Hz low-pass-filtered synthesized waveforms and dispersion images
for (a) vertical and (b) horizontal component data when the vertical force
was located at 1 m depth in Model A. Magenta circles are phase veloc-
ities with maximum amplitude for each frequency, and green lines are
theoretical dispersion curves.
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Figure 6.2: (a) Theoretical Rayleigh wave ellipticities and (b) vertical and (c) hori-
zontal amplitude responses up to the third higher mode for Model A.
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Figure 6.3: The 30-Hz low-pass-filtered synthesized waveforms and dispersion images
for (a) vertical and (b) horizontal component data when the explosive
source was located at 1 m depth in Model A. Magenta circles are phase
velocities with maximum amplitude for each frequency and green lines
are theoretical dispersion curves.
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Figure 6.4: The 30-Hz low-pass-filtered synthesized waveforms and dispersion images
for (a) vertical and (b) horizontal component data when the explosive
source was located at 8 m depth in Model A. Body waves of the vertical
component data are muted (red line). Magenta circles are phase veloc-
ities with maximum amplitude for each frequency, and green lines are
theoretical dispersion curves.
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Figure 6.5: The 30-Hz low-pass-filtered synthesized waveforms and dispersion images
for (a) vertical and (b) horizontal component data when the explosive
source was located at 15 m depth in Model A. Body waves of the ver-
tical component data are muted (red line). Magenta circles are phase
velocities with maximum amplitude for each frequency, and green lines
are theoretical dispersion curves.
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Figure 6.6: The 30-Hz low-pass-filtered synthesized waveforms and dispersion images
for (a) vertical and (b) horizontal component data when the vertical force
was located at 1 m depth in Model B. Magenta circles are phase veloc-
ities with maximum amplitude for each frequency and green lines are
theoretical dispersion curves.
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Figure 6.7: (a) Theoretical Rayleigh wave ellipticities and (b) vertical and (c) hori-
zontal amplitude responses up to the third higher mode for Model B. (d)
and (e) Enlarged view of the horizontal amplitude responses.

127



(a)

(b)

Frequency (Hz)

P
h

a
s
e

 V
e

lo
c
it
y
 (

m
/s

)

0 5 10 15

200

400

600

800

1000

1200

1400

1600

1800

100 200 300

0

0.5

1

1.5

2

2.5

3

Offset (m)

T
im

e
 (

s
)

Frequency (Hz)

P
h

a
s
e

 V
e

lo
c
it
y
 (

m
/s

)

0 5 10 15

200

400

600

800

1000

1200

1400

1600

1800

100 200 300

0

0.5

1

1.5

2

2.5

3

Offset (m)

T
im

e
 (

s
)

Figure 6.8: The 30-Hz low-pass-filtered synthesized waveforms and dispersion images
for (a) vertical and (b) horizontal component data when the explosive
source was located at 1 m depth in Model B. Magenta circles are phase
velocities with maximum amplitude for each frequency and green lines
are theoretical dispersion curves.

128



(a)

(b)

100 200 300

0

0.5

1

1.5

2

2.5

3

Offset (m)

T
im

e
 (

s
)

Frequency (Hz)

P
h

a
s
e

 V
e

lo
c
it
y
 (

m
/s

)

0 5 10 15

200

400

600

800

1000

1200

1400

1600

1800

100 200 300

0

0.5

1

1.5

2

2.5

3

Offset (m)

T
im

e
 (

s
)

Frequency (Hz)

P
h

a
s
e

 V
e

lo
c
it
y
 (

m
/s

)

0 5 10 15

200

400

600

800

1000

1200

1400

1600

1800

Figure 6.9: The 30-Hz low-pass-filtered synthesized waveforms and dispersion images
for (a) vertical and (b) horizontal component data when the explosive
source was located at 8 m depth in Model B. Magenta circles are phase
velocities with maximum amplitude for each frequency and green lines
are theoretical dispersion curves.
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Figure 6.10: The 30-Hz low-pass-filtered synthesized waveforms and dispersion im-
ages for (a) vertical and (b) horizontal component data when the explo-
sive source was located at 15 m depth in Model B. Body waves of the
vertical component data are muted (red line). Magenta circles are phase
velocities with maximum amplitude for each frequency, and green lines
are theoretical dispersion curves.
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Figure 6.12: The 10-Hz low-pass-filtered seismic data and dispersion images for (a)
vertical and (b) horizontal component data. Magenta circles are phase
velocities with maximum amplitude for each frequency.
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Figure 6.13: Estimated dispersion curves for the lower two modes in the vertical and
horizontal component data. The solid line represents a wavelength twice
as long as the spread length, and the dashed line represents a wavelength
the same length, and the dashed line represents a wavelength the same
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Figure 6.14: Sensitivity analysis results for the (a) first, (b) second, (c) third, and (d)
fourth layers of Model A. S-wave velocities of each layer were changed
within a range of ±10 % in the simulated model. Circles and crosses
are the observed phase velocities from the vertical and horizontal com-
ponents, respectively.
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Figure 6.15: Sensitivity analysis results for the (a) first, (b) second, (c) third, and (d)
fourth layers of Model B. S-wave velocities of each layer were changed
within a range of ± 10 % in the simulated model. Circles and crosses
are the observed phase velocities from the vertical and horizontal com-
ponents, respectively.
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CHAPTER VII

Window-controlled CMP crosscorrelation analysis

for surface waves in laterally heterogeneous media

7.1 Introduction

As a non-destructive method for obtaining S-wave velocity structures, the sur-

face wave method has been widely applied (e.g. Miller et al., 1999; Ryden and Lowe,

2004; Lin et al., 2004; Foti et al., 2009; Socco et al., 2010; Tsuji et al., 2012). The

surface wave method utilizes the dispersion characteristics of surface waves. Nazar-

ian and Stokoe (1984) introduced the spectral analysis of surface waves (SASW)

method, in which dispersion curves of surface waves can be estimated from a pair of

receivers. The accuracy of estimating dispersion curves is improved by using multi-

channel seismic data, for example, by multichannel analysis of surface waves (MASW)

(Park et al., 1998, 1999a) or by the f-k method (Foti , 2000, 2005). Strobbia and Foti

(2006) also developed the multi-offset phase analysis (MOPA) method to estimate

dispersion curves based on linear regression of phase versus offset. S-wave veloc-

ity structures can be estimated by inversion of observed dispersion curves of surface

waves. In forward modeling of surface wave dispersion curves for inversion analysis,

calculations of surface waves based on the theoretical approach of Thomson (1950)

and Haskell (1953) require the assumption of vertically one-dimensional structures.
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Therefore, two-dimensional S-wave velocity structures are usually built by assembling

one-dimensional structures inverted from local dispersion curves. As long as inversion

is applied assuming one-dimensional structures, the key to improving lateral resolu-

tion in surface wave analysis is to extract local dispersion curves corresponding to

one-dimensional velocity structures beneath local points.

Hayashi and Suzuki (2004) developed common midpoint crosscorrelation (CM-

PCC) analysis of surface waves, in which crosscorrelations with the same CMP are

gathered. Since midpoints of all the crosscorrelation pairs coincide with the CMP,

local dispersion curves can be estimated with high lateral resolution from crosscorre-

lation gathers by the CMPCC method. In another approach, Vignoli and Cassiani

(2010) improved the MOPA method by adding an analysis to recognize the knee

point of phase differences. Lin and Lin (2007) and Obando et al. (2010) made up

shot gathers with long receiver distances by using a walk away survey with phase

seaming approach.

Another strategy to improve lateral resolution in surface wave analysis is the

application of spatial windows to seismic data. Bohlen et al. (2004) applied a Gaussian

spatial window for the common receiver gather constructed by single receivers to pick

up a local wavefield. Grandjean and Bitri (2006) extended this approach to multi-

receiver gathers by stacking local wavefields. Similarly, Boiero and Socco (2010)

applied a moving window to seismic data and stacked the spectrum using the f-k

method. Boiero and Socco (2011) used a Gaussian window with a variable width

depending on the wavelength. Bergamo et al. (2012) provided a chart quantitatively

representing the relationship among Gaussian window widths, lateral resolution and

wavenumber resolution by applying the Rayleigh resolution criterion to the array

smoothing function (ASF).

In this paper, we describe the application of two kinds of spatial windows to CM-

PCC analysis to enhance the lateral resolution of dispersion curve estimations. The
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first spatial window uses the number of crosscorrelation pairs as a weighting function

for crosscorrelation gathers. The second removes crosscorrelation pairs with receiver

spacing greater than a threshold to improve the accuracy of phase velocity estima-

tions in terms of wavenumber resolution defined for given receiver configurations.

We also introduce the expected wavelength dependence of the window (Boiero and

Socco, 2011) into CMPCC analysis. The resulting window-controlled CMPCC anal-

ysis method is then applied to simulated data for a laterally heterogeneous structure.

We also demonstrate the application of the method to field data from Ehime Prefec-

ture, Japan, where lateral heterogeneity is expected from the presence of the Median

Tectonic Line.

7.2 Common midpoint crosscorrelation method

In this section, we first summarize the CMPCC method developed by Hayashi

and Suzuki (2004). We next describe the ASF in the CMPCC analysis in order

to evaluate wavenumber resolution for given receiver configurations related to the

accuracy of phase velocity estimations. Then we introduce the window-controlled

CMPCC analysis method.

7.2.1 Conventional CMPCC analysis

The concept of CMPCC analysis (Hayashi and Suzuki , 2004; Hayashi , 2008) is

shown schematically Figure 7.1. Data acquisition for the CMPCC method is similar

to that for a two-dimensional multi-channel seismic reflection survey. CMPs in surface

wave analysis are not defined at the midpoint between a source and a receiver, as in

reflection seismology, but at the midpoint between two receivers. Crosscorrelations

between possible pairs in each shot gather are calculated. If N receivers are employed

in data acquisition, NC2(= N(N −1)/2) crosscorrelation pairs can be generated from

each shot gather. Normalized crosscorrelations in the time domain with the same
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CMP are grouped and defined as a CMPCC gather (Figure 7.1b). All crosscorrelations

with the same receiver spacing at the same CMP are stacked when making CMPCC

gathers. A CMPCC gather includes phase differences extracted from multiple shot

data, whereas phase velocities are estimated from a single shot gather by MASW.

Moreover, all the crosscorrelations in the CMPCC gather have paths on the CMP

because the midpoints of crosscorrelations coincide with the CMP whereas not all

the observed waveforms used in MASW have paths on the midpoints between the

survey line corresponding to the CMP in the CMPCC analysis. Therefore, CMPCC

analysis can generate local dispersion curves on a CMP with higher lateral resolution

than the MASW method. Suppose that 75 receivers with 4 m receiver spacing are

used and that source intervals are 2 m. If the receivers entirely cover the survey

line, the number of crosscorrelation pairs in each CMPCC gather can be described

for all receiver spacings and distances from the CMP as shown in Figure 7.2. (We

employ this same geometry for the simulation study in the next section.) Then the

CMPCC gathers are transformed into the frequency domain by Fourier transform and

integrated over all receiver spacings with a phase shift. By taking absolute values of

integrated CMPCC gathers, the dispersion image U can be described as

U(c, ω) =

∣∣∣∣∣∣
∞∫

−∞

F (ω, x)eiωx/cdx

∣∣∣∣∣∣ , (7.1)

where c is the phase velocity, ω is the angular frequency, x is the receiver spacing,

and F is the Fourier transform of the stacked CMPCC gather over the same receiver

spacings in the frequency domain. Phase velocities can be defined where U has the

maximum value for a given frequency.

139



7.2.2 ASF in CMPCC analysis

To evaluate the accuracy of phase velocity estimates for given receiver configura-

tions in CMPCC analysis, we follow the approach for wavenumber resolution of the

ASF used in the f-k method (Boiero and Socco, 2011; Bergamo et al., 2012). Note

that the receiver spacing of CMPCC gathers has the same meaning as the offset of

shot gathers in the f-k method in the definition of wavenumber resolution. If we

assume that observed seismic waves are composed of only the fundamental mode of

surface waves and apply the weighting function W for x, F in equation 7.1 can be

described as

F (ω, x) = W (x)e−iωx/ctrue , (7.2)

where ctrue is the phase velocity of the fundamental mode. In conventional CMPCC

analysis, W = 1 for all receiver spacings x because stacked crosscorrelations are

normalized by the number of crosscorrelation pairs. In the following, however, the

number of crosscorrelation pairs is given as the weighting function W to enhance

lateral resolution. By substituting equation 7.2 into equation 7.1, we obtain

U(k, ω) =

∣∣∣∣∣∣
∞∫

−∞

W (x)ei(k−ktrue)xdx

∣∣∣∣∣∣ , (7.3)

where ktrue is the wavenumber for the fundamental mode of surface waves. From

equation 7.3, the dispersion image U can be considered as the absolute value of the

Fourier transform of the weighting function W in which the wavenumber is shifted to

ktrue. Thus, we can write equation 7.1 as

U(k, ω) = |ASF | ∗ P (k, ω), (7.4)
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ASF =

∞∫
−∞

W (x)eikxdx, (7.5)

where P is the theoretical spectrum for the fundamental mode of surface waves. In

other words, the dispersion image estimated by CMPCC analysis can be considered as

the convolution of the absolute value of the ASF with the theoretical spectrum as in

Figure 7.3, similar to the case in f-k analysis (Boiero and Socco, 2011; Bergamo et al.,

2012). As the receiver spacing in CMPCC analysis is a discrete number, equation 7.5

should be rendered by using summation as follows:

ASF =
N∑
j=1

W (xj)e
ikxj . (7.6)

By applying a similar procedure to MASW, we can also describe the estimated dis-

persion image by the convolution of the absolute value of the ASF with the theoretical

spectrum for MASW. In the conventional CMPCC, MASW, and f-k methods, W is

constant over x. However, Boiero and Socco (2011) and Bergamo et al. (2012) used

a Gaussian window for W in the f-k method to concentrate weight on local points to

enhance lateral resolution in local dispersion curve estimations.

7.2.3 Wavenumber resolution of the ASF

Suppose the number of pairs in the CMPCC gather is as described in Figure 7.2

and the number of crosscorrelation pairs is used as a weighting function in equations

7.2 and 7.6. For noise-free data, the dispersion image estimated by CMPCC analysis

can be described by the convolution of absolute values of the ASF with the theoretical

spectrum as in Figure 7.3a. Figures 7.3b and 7.3c depict the estimated dispersion

images when CMPCC gathers include data with receiver spacing less than 200 and

100 m, respectively. Although removing longer-spaced receiver pairs enhances the

lateral resolution of local dispersion curve estimations, it can be seen that it makes
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estimated dispersion images less clear.

Removing crosscorrelation pairs with longer receiver spacing while keeping the

accuracy of phase velocity estimations requires care in defining the resolution in terms

of maximum detectable wavelength or minimum detectable wavenumber. A maximum

detectable wavelength is experimentally defined by 40-50 % of the spread length (e.g.

O’Neill , 2003; Bodet et al., 2009). Another definition is based on the width of the

mainlobe of the ASF (Johnson and Dudgeon, 1993). In this study, we used the

full width of the mainlobe at one-half the peak value (full-width half-maximum or

FWHM) as the wavenumber resolution kmin shown as in Figure 7.3 as Wathelet et al.

(2008) did in ambient noise data analysis. The FWHM depends on not only the spread

length but also the weighting function W for receiver spacings x in equation 7.6.

The wavenumber resolution kmin is related to the minimum detectable wavenumber

and the minimum wavenumber distance between two modes, as demonstrated by

Bergamo et al. (2012) using kmin from the Rayleigh resolution criterion (Johnson and

Dudgeon, 1993). The wavenumber resolution can also be transformed into wavelength

resolution λmax(= 2π/kmin). As the maximum detectable wavelength is proportional

to the spread length, it would be also proportional to the maximum wavelength

λmax corresponding to the FWHM. Therefore, the maximum detectable wavelength

is defined as αλmax in this study.

7.2.4 Window-controlled CMPCC analysis

Lateral resolution can be improved by window-controlled CMPCC analysis in

which we consider the number of crosscorrelation pairs in each CMPCC gather (Figure

7.2a) as a spatial weighting function W . As the receiver spacing of crosscorrelations

becomes shorter, the number of crosscorrelation pairs increases, yielding improved

lateral resolution.

As a second step, we exclude crosscorrelation pairs with longer receiver spacing to
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further improve local dispersion curve estimations. Although this removal decreases

the accuracy of phase velocity estimations in terms of wavenumber resolution kmin

(Figure 7.3), we attempt to maintain the required accuracy through consideration of

wavenumber resolution kmin or wavelength resolution λmax.

When crosscorrelation pairs are removed from pairs with longer receiver spacing,

the ASF and λmax for each receiver configuration can be obtained. The following

relationship is proposed to remove as many crosscorrelation pairs as possible such that

the maximum detectable wavelength αλmax is not less than the observed wavelength

λobs.

λobs(f) < αλmax(f). (7.7)

Because wavelengths corresponding to local dispersion curves are themselves values

extracted by surface wave analysis, we use observed wavelengths from the CMPCC

analysis without removal of receiver pairs. The maximum detectable wavelength

depends on unknown effects in seismic data (e.g., from body waves, higher modes of

surface waves, magnitudes of lateral heterogeneity, or incoherent noise) and they are

not considered in determining the maximum wavelength λmax. Thus, several tests of

α should be carried out to determine the optimal value of α for each dataset.

Figure 7.4 shows the relationship between αλmax and maximum receiver spac-

ing for α = 1.0 and 0.7 when the receiver configuration described in Figure 7.2 is

employed. The maximum detectable wavelength αλmax usually decreases with de-

creasing maximum receiver spacings. If the observed wavelength is 100 m, maximum

receiver spacing can be defined as 124 and 184 m for α = 1.0 and 0.7, respectively.

Thus, the use of small values of α makes the spatial window wide.
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7.3 Simulation study

In this section, we apply window-controlled CMPCC analysis to a simulated model

with lateral heterogeneity from a synthetic dataset.

Figure 7.5 shows a part of the two-dimensional elastic velocity structure used

in this simulation. For simplicity, the simulated model is selected so that higher

modes of surface waves have little effect on the surface wave analysis. P-SV waves

are computed by a velocity-stress staggered grid using the finite-difference method

(Virieux , 1986) with an absorbing boundary condition (Cerjan et al., 1985). Sources

to normal stress are located on surface grids. The distance between the source and the

nearest receiver is 5 m. 75 receivers are used at a receiver spacing of 4 m. Source and

receiver locations are moved by 2 m and data acquisitions are repeated. Positions of

sources and receivers entirely cover the simulated model. The CMP is defined every

2 m. Other parameters are summarized in Table 7.1.

Figure 7.6a shows the theoretical distribution of dispersion curves at each CMP

for the simulated model. The theoretical local dispersion curves are calculated by

the compound matrix method (Saito, 1988; Saito and Kabasawa, 1993) and corre-

spond to the one-dimensional velocity structures beneath the horizontal points. We

applied window-controlled CMPCC analysis to the simulated data, using the num-

ber of crosscorrelation pairs (described as in Figure 7.2) as the weighting function in

equation 7.2 for each CMPCC gather. The maximum receiver spacing in CMPCC

gathers was 296 m; however, crosscorrelation pairs with receiver spacing greater than

200 m were excluded so as to cut off the effects of lateral heterogeneity at distances

greater than 100 m from the CMP. We used maximum wavelengths up to wavelengths

of 400 m in the CMPCC analysis. As the phase velocity of Rayleigh waves of the

fundamental mode approximately reflects the average S-wave velocity down to depths

of 1/2 to 1/4 wavelength (e.g. Hayashi , 2008; Socco et al., 2010), we infer that S-wave

velocity structures are robust down to about 100 m. Note that for the same wave-
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lengths, higher mode data are more sensitive to S-wave velocities in deeper layers

than fundamental mode data (Xia et al., 2003).

An example of CMPCC gather at 100 m horizontal distance is shown in Figure 7.7.

The observed dispersion curves (Figure 7.6b) at both ends of the simulated model,

where there is almost no lateral heterogeneity, are consistent with the theoretical

curves (Figure 7.6a). However, lateral variation of dispersion curves corresponding to

the slope of the simulated model, is not clear.

Next we excluded crosscorrelation pairs considering the maximum wavelength

(minimum wavenumber) for the ASF. The chart in Figure 7.8 shows the maximum

receiver spacing at 150 m horizontal distance when α is 0.6 in equation 7.7. For

the observed wavelengths in equation 7.7, we used the dispersion curve without con-

sideration of maximum wavelength for the ASF (Figures 7.6b and 7.8b). For the

wavelength of 33.4 m at 15.5 Hz, the maximum receiver spacing satisfying equation

7.7 can be defined as 68 m (Figures 7.8a and 7.8c). On the other hands, there was no

crossing point between 0.6λmax and the observed wavelength of 215.4 m at 4.88 Hz.

Although the resolution of observed wavelengths from the ASF was insufficient in our

definition, we used a maximum receiver spacing of 200 m for observed wavelengths

up to wavelengths of 400 m, to retain the investigation depth down to 100 m.

Maximum receiver spacings were originally 200 m for all frequencies and CMPs.

By applying the proposed window based on equation 7.7, maximum receiver spacings

for α = 0.5 and 0.6 (Figure 7.9) were considerably decreased. Figures 7.6c and

7.6d show the corresponding observed dispersion distributions from CMPCC analysis.

Lateral variations of dispersion curves due to lateral heterogeneity are well reproduced

by the window-controlled CMPCC analysis. The larger value of α clearly reveals the

lateral variation of dispersion curves. Figure 7.10 shows dispersion curves for receiver

spacing less than 200 m and four values of α between 0.4 and 0.7 at 100 m horizontal

distance, demonstrating that larger values of α yield dispersion curves consistent with
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the theoretical dispersion curve where there is lateral heterogeneity near the CMP.

On the other hand, larger values of α reduce the accuracy of phase velocity esti-

mations, in terms of maximum wavelength from the ASF, and it make the dispersion

image unclear. Our task, then, is to find an optimal value of α that is as large as pos-

sible compatible with suitable resolution of phase velocity estimations. Figure 7.11

shows observed and theoretical dispersion curves at 260 m horizontal distance, where

there is little lateral variation. We can perform validation tests of the accuracy of

estimated phase velocity for several values of α at this point, neglecting the effect of

lateral heterogeneity. Larger values of α produced fluctuations in dispersion curves,

especially at high frequencies. These fluctuations are caused by noise effects other

than lateral heterogeneity because there is almost no lateral variation in this CMP.

To suppress these noise effects, we have to apply smaller values of α. We determined

α = 0.5 to be the best compromise between lateral resolution and accuracy of phase

velocity estimations. Although it is difficult to find locations with no lateral vari-

ation in real datasets, we can predict lateral variation using quasi two-dimensional

dispersion curves without a frequency-dependent spatial window (e.g., Figure 7.6b).

Lateral heterogeneity of the simulated velocity model was well retrieved by inver-

sion of dispersion curves estimated by the window-controlled method (Ikeda et al.,

2013a)(Figure 7.12).

7.4 Application to field data

We applied window-controlled CMPCC analysis to a set of field data acquired in

Saijo City, Ehime Prefecture, Japan (Figure 7.13). Multi-channel seismic data along

a 1-km survey line were originally acquired for reflection survey in an investigation of

fault geometry on the Median Tectonic Line (MTL) (Minato et al., 2012). Because

the survey line was normal to the MTL, we can evaluate the dip-angle of the fault.

The data acquisition parameters are summarized in Table 7.2.
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CMPs for surface wave analysis were defined every 10 m along the survey line

after applying a linear approximation of the survey line for reflection survey as in

Figure 7.13c. Maximum receiver spacing in CMPCC gathers can range from 238 to

638 m because the number of receivers used in data acquisition ranged from 83 to 163

with receiver intervals of about 4 m. However, we used crosscorrelation pairs with

less than 200 m receiver spacing to cut off the effect of lateral variation from receiver

spacings greater than 200 m. We used maximum wavelengths up to wavelengths of

400 m, keeping the investigation depth down to about 100 m. We used the number

of crosscorrelation pairs as the weighting function in equation 7.2.

The CMPCC gather at 10 m horizontal distance is shown in Figure 7.14. For

easy visualization of surface waves, a 30 Hz low-pass filter was applied. Figure 7.15

shows three dispersion curves distributions estimated from our CMPCC analysis.

The abrupt lateral variation in this field, at ∼ 600 m horizontal distance, corresponds

to the lithological boundary generated by fault displacements. A lateral variation

between 200 and 450 m is also observed. Higher modes of surface waves are pre-

dominant from 220 to 320 m and at some points beyond 600 m, where jumping of

dispersion curves is observed. Maximum receiver spacings (Figure 7.16) are consid-

erably decreased in the window-controlled CMPCC analysis. Although the observed

dispersion curve at 360 m with receiver spacing less than 200 m shows fluctuations at

about 10 Hz, these are removed by applying frequency-dependent windows (Figure

7.17).

Next we determined the optimal value of the windowing factor α from the various

dispersion curves. Figure 7.18 shows the dispersion curves at 10 m where there is little

lateral heterogeneity. The figure shows that observed dispersion curves fluctuated

at higher values of α, although the dispersion curves given by window-controlled

CMPCC analysis with α = 0.7 are mostly stable. At 250 m (Figure 7.19), the

discontinuity in the observed dispersion curves indicates the predominance of higher
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mode of surface waves at around 8 Hz. As the amplitude of the fundamental mode

is relatively large and both modes are close in this frequency range, it is difficult

to clearly distinguish both modes by using windows with α = 0.6, 0.7, or 0.8. The

difficulty is similar at 260 m. Thus, we applied α = 0.5 at 250 and 260 m and α =

0.7 at other points in this field example.

After that preparation, we obtained two-dimensional S-wave velocity structures by

genetic algorithm inversion with dynamic mutation and elite selection (Yamanaka and

Ishida, 1996) based on the procedure of Tsuji et al. (2012). We constructed reference

S-wave velocity models with six layers by transforming 1.1 × observed phase velocity

into S-wave velocity and 1/3 × observed wavelength into depth (e.g. Heisey et al.,

1982). The thickness of each layer in reference models is 20 m. We carried out a multi-

mode inversion by using the amplitude response of surface waves (Harkrider , 1964,

1970), because higher modes were predominant in the observed dispersion curves (e.g.,

Figure 7.19). In the multi-mode inversion, theoretical phase velocities were defined

as velocities of the mode with the maximum amplitude for a given frequency (e.g.

Hayashi and Saito, 2004; Lu and Zhang , 2006; Tsuji et al., 2012). P-wave velocities

were obtained from S-wave velocities by using linear regression between P- and S-wave

velocities constructed from PS logging at the logging well in Figure 7.13c. Densities

were obtained from S-wave velocities through the empirical equation of Ludwig et al.

(1970). Other parameters for inversion are summarized in Table 7.3.

The inverted two-dimensional S-wave velocity structures and the S-wave velocities

measured by PS logging at the logging well are shown in Figure 7.20. Note that the

S-wave velocity structure from logging well is overlaid on the inverted S-wave velocity

structure at horizontal distance nearest to the survey line for the CMPCC analysis.

As expected from the observed dispersion curves (Figure 7.15), the inverted structures

have lateral variations between 200 and 450 m and at 600 m horizontal distance (Fig-

ure 7.20). The vertical velocity contrast may indicate the material boundary MTL
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(Okada, 1972). The depth of the high velocity contrast in the logging data is ap-

proximately consistent with that of the inverted velocity structures. Slight difference

comes from the fact that the logging well is around 20 m from the survey line. There

are some differences between the inverted models from the CMPCC analysis without

a frequency-dependent window (Figure 7.20a) and those from the window-controlled

CMPCC analysis with α = 0.5 and 0.7 (Figure 7.13b) at around 360 m horizontal

distance owing to lateral heterogeneity. However, there are almost no differences in

the inverted velocity models where lateral variation is small. In summary, the lateral

resolution of the estimated dispersion curves is improved with respect to the origi-

nal CMPCC analysis by applying window-controlled CMPCC analysis with enough

resolution to estimate phase velocity.

7.5 Conclusions

To improve the lateral resolution in CMPCC analysis of surface waves, we pro-

posed a window-controlled form of CMPCC analysis using two kinds of spatial win-

dows. First, the number of crosscorrelation pairs is used as a spatial weighting func-

tion in CMPCC gathers. Crosscorrelation pairs in CMPCC gathers are then removed

from pairs with longer receiver spacing. Although removing longer receiver pairs gen-

erally degrades dispersion images, we attempted to retain the required accuracy of

phase velocity estimations by considering the wavenumber resolution obtained from

the ASF. We introduced the coefficient α controlling the width of the window to define

detectable wavelengths considering noise effects other than lateral heterogeneity.

We applied window-controlled CMPCC analysis to a simulated model with lateral

heterogeneity, testing several values of α to determine the optimal value that retains

the required accuracy to estimate phase velocities. The lateral variation of local

dispersion curves for the simulated model was successfully improved by the window-

controlled CMPCC analysis.
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In an application of the method to field data, higher modes of surface waves were

predominant at some points in the observed dispersion curves. As the narrow spatial

window made it difficult to distinguish multi-mode dispersion curves, smaller values of

α were applied to some dispersion curves with the predominant higher mode. S-wave

velocity structures were then derived by inversion from the observed dispersion curves.

The depth of the high velocity contrast in the logging data was approximately agreed

with that of inverted velocity structures. The window-controlled CMPCC analysis

modified lateral variations of the inverted S-wave velocity structure without degrading

the accuracy of S-wave velocity estimations where lateral heterogeneity was small.

We conclude that window-controlled CMPCC analysis is effective in improving

lateral resolution of dispersion curve estimations with respect to the original CMPCC

analysis and subsequent two-dimensional S-wave velocity inversions.

150



Table 7.1: Parameters of P-SV finite-difference modeling for the simulated model.
Size of grid 1 m
Number of cell 1200(horizontal) × 300(vertical)
Source function 10Hz Ricker wavelet
Time interval 0.12 ms
Time step 10,000
The number of absorbing grids for each side 100

Table 7.2: Parameters of field data acquisition.
Length of survey line 1106 m
Source Impactor
Receiver Geophone
Natural frequency 30 Hz
Receiver interval About 4 m
Sampling interval 1.0 ms
Samples 2001
Channel number 82-163
CMP interval 10 m

Table 7.3: Parameters used in the GA inversion; γ is the average coefficient of varia-
tion (Yamanaka and Ishida, 1996).

Generation 100
Population size 100
Crossover probability 0.7
Dynamic mutation probability -
γ = 0.1 0.01
0.04 < γ < 0.1 0.05
γ 50.04 0.1
Trial 20
Search range of Vs and thickness

for the reference model, respectively. ±30 % and ±50 %
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Figure 7.11: Comparison of observed dispersion curves with receiver spacing less than
200 m and α = 0.4-0.7 at 260 m horizontal distance.
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200 m and α = 0.5-0.8 at 360 m horizontal distance.
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CMPCC gather is described in Figure 7.14.
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Figure 7.19: Comparison of observed dispersion curves with receiver spacing less than
200 m and α = 0.5-0.8 at 250 m horizontal distance.
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CHAPTER VIII

Conclusions

8.1 Conclusions

In this dissertation, we have studied surface wave analysis methods for obtaining

improved estimates of subsurface S-wave velocity structures.

In chapter 2, the theoretical computation method of Rayleigh waves on trans-

versely isotropic media was developed by extending the reduced delta matrix method

for isotropic media. It was demonstrated that the computational method has enough

accuracy in computing theoretical Rayleigh waves such as phase velocities, group ve-

locities, Rayleigh wave ellipticities, and amplitude responses at high frequencies. The

method also decreases the computational time compared to the standard delta matrix

method. This computational method will be useful in the inversion of surface waves

with consideration of transverse isotropy in horizontally layered media.

In chapter 3, we investigated the effect of Love wave contribution to the joint

inversion of spatial autocorrelation curves with HVSR curves. Although frequency-

dependent Love wave contribution could be extracted by the three-component SPAC

method, we failed to extract a Love wave contribution below the peak frequency of

HVSR curves because the vertical components of Rayleigh waves have small ampli-

tude at this frequency. Therefore, we needed to make an assumption about Love wave

contribution. The results of joint inversion revealed that the choice of the assump-
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tion of Love wave contribution is insensitive to the inverted velocity models down to

bedrock, although there is an ambiguity in estimating S-wave velocities of bedrock.

In chapter 4, we proposed two multimode inversion techniques in the SPAC

method considering the effect of different receiver spacings. One is multimode in-

version, in which theoretical effective phase velocities are compared with observed

velocities. We extended the method of computing theoretical effective phase veloc-

ities in order to consider the effect of different receiver spacings. The other is the

direct fitting inversion of SPAC curves for each receiver spacing. The latter approach

doesn’t generate errors associated with conversion from coherencies to phase veloci-

ties that exist in the former approach. We applied two inversion techniques to noise

synthetic data and successfully retrieved the S-wave velocity model. We then applied

the multimode inversion methods to field data. The direct-fitting inversion generated

S-wave velocity structures consistent with logging data without prior information.

On the other hand, the multimode inversion using effective phase velocities required

the prior information of S-wave velocities because large ambiguity was introduced in

conversion from coherencies to phase velocities at low frequencies.

In chapter 5, we proposed a deconvolution technique for retrieving multimode

surface waves. We also changed the procedure of the MASW to obtain the description

in the proximity of the summation of the convolution for each mode component when

multimode components were predominant. When two mode components were mixing,

applying the deconvolution analysis separated two modes from single peaks. Although

the estimated dispersion spectra with the modified MASW were contaminated by the

effect of anelastic attenuation, multimode surface waves could be retrieved by the

proposed method from simulated data by considering anelastic attenuation and field

data. Separating mixing modes by the deconvolution analysis contributed not only to

improving phase velocity estimations but also to identifying mode transition points,

which is important to prevent mode misidentification.
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In chapter 6, we investigated the characteristics of horizontal components of multi-

mode Rayleigh waves as well as vertical component data. When sources were located

near the surface, multimode Rayleigh waves extracted from horizontal component

data were similar to those from vertical component data except at low frequencies.

However, if the explosive sources were buried at deeper locations, the higher mode

components of Rayleigh waves had larger amplitudes with the increase of the source

depth. Higher order modes were especially dominant in horizontal component data.

The higher modes extracted from horizontal component data had some amount of

sensitivity for S-wave velocities, while there was small sensitivity in vertical compo-

nent data. Additional mode components were also estimated from the additional

use of the horizontal components of the field data. Although the use of a buried

explosive source is unusual in the near-surface seismic survey, there are plenty of ex-

isting data in which three-component data were observed by dynamite at the depth

of standard reflection seismic surveys. These results indicate the combined use of

multimode Rayleigh waves for horizontal component data contributes to constructing

S-wave velocity structures for statics correction in an analysis of seismic reflection.

In chapter 7, we proposed the window-controlled CMP cross-correlation analy-

sis to improve the lateral resolution of dispersion curve estimations. In the proposed

method, we applied wavelength-dependent spatial windows for cross-correlation gath-

ers to provide a weight to local points. Applying a shorter window generally decreases

the accuracy of phase velocity estimations. However, we reduced the window length

as much as possible, keeping enough accuracy to estimate phase velocities considering

wavenumber resolution for receiver configurations. We applied the window-controlled

CMPCC method for simulated data in laterally heterogeneous media. The lateral

variation of local dispersion curves can be successfully improved by the proposed

method. We then applied the method to field data for estimating the lateral varia-

tion of S-wave velocities associated with fault deformation. Higher modes of surface
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waves were predominant at some points. In this case, we used a longer window to

identify different modes of surface waves. The two-dimensional S-wave velocity struc-

ture was constructed by inversion of local dispersion curves estimated by the proposed

method without significant loss in estimating dispersion curves, indicating that lateral

variation of the S-wave velocity structure is improved by the proposed method.

In summary, we improved surface wave analysis methods to enhance the accuracy

of S-wave velocity structure estimations. We demonstrated the effectiveness of the

analysis methods by applying both numerically simulated data and field data.

8.2 Recommendation for future works

The surface wave method is being established as the seismic survey method for

estimating near-surface S-wave velocity structures owing to dramatic development

caused by social demand for characterizing local ground conditions.

One of the future prospects for surface wave is the joint analysis of surface wave

analysis with other data. Hayashi et al. (2005) demonstrated the joint analysis of a

surface wave method and micro-gravity survey. P-wave refraction data can be easily

combined with surface wave data (e.g. Ivanov et al., 2006; Dal Moro, 2008; Piatti

et al., 2013) because a unique receiver layout can be used taking some care about the

proper choice of time sampling (Socco et al., 2010; Piatti et al., 2013). Since surface

wave analysis has the potential to construct near-surface velocity models better than

other seismic methods, it can also be used jointly for supporting static estimation

and correction and for providing a constraint of near-surface velocity models in full

waveform inversion and improving PP-PS matching (Boiero et al., 2013). Construct-

ing S-wave velocity structures by the surface wave method contributes to estimating

the ratio between P- and S-wave velocities, which is indicative of the pore fluid effect.

The other prospect is the use of amplitude information on surface waves to obtain

quality factors (Q). Although near-surface quality factors are important in not only
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evaluating local site amplification but also extracting lithological information, there

is no nondestructive method for effectively estimating quality factors. In recent years,

Rix et al. (2000) and Lai et al. (2002) obtained shear damping ratios (S-wave quality

factor) using surface waves. Xia et al. (2002a, 2012) also inverted P-wave quality

factors Qp and S-wave quality factors Qs from amplitude information of Rayleigh

waves in addition to phase information. Xia et al. (2013a,b) further demonstrated

that S-wave quality factors can be easily derived from phase and amplitude infor-

mation of Love waves because Love waves are independent of P-wave velocities and

P-wave quality factors. In order to establish a method to obtain quality factors from

surface waves, we need to perform further case studies comparing inverted quality

factors with those from logging data.
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APPENDIX A

Haskell’s layer matrices

[An(z)]11 =
1

d5
(−d4C1 + d3C3)

[An(z)]12 =
1

c33d6
(−ϵ3S1 + ϵ1S3)

[An(z)]13 =
1

c33d6
(d2S1 − d1S3)

[An(z)]14 =
1

c44d5
(C1 − C3)

[An(z)]21 =
1

d5
(−d1d4S1 + d2d3S3)

[An(z)]22 =
1

c33d6
(−ϵ3d1C1 + ϵ1d2C3) = [An(z)]11

[An(z)]23 =
d1d2
c33d6

(C1 − C3)

[An(z)]24 =
1

c44d5
(d1S1 − d2S3)

[An(z)]31 =
1

d5
(−ϵ1d4S1 + ϵ3d3S3) = −[An(z)]24

[An(z)]32 =
ϵ1ϵ3
c33d6

(−C1 + C3) = −[An(z)]14

[An(z)]33 =
1

c33d6
(ϵ1d2C1 − ϵ3d1C3)

[An(z)]34 =
1

c44d5
(ϵ1S1 − ϵ3S3)
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[An(z)]41 =
c44d3d4

d5
(−C1 + C3) = −[An(z)]23

[An(z)]42 =
c44
c33d6

(−ϵ3d3S1 + ϵ1d4S3) = −[An(z)]13

[An(z)]43 =
c44
c33d6

(d2d3S1 − d1d4S3)

[An(z)]44 =
1

d5
(d3C1 − d4C3) = [An(z)]33
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APPENDIX B

Relationship among di

The following relationship is derived from Newton’s relations of equation 2.9:

c33c44ν
2
1ν

2
3 = (ρω2 − c44k

2)(ρω2 − c11k
2).

From this equation, we find the following relationships among di:

d1
d4

= c44ϵ1
d2
d3

= c44ϵ3
d6
d5

=
c44
c33

ϵ1ϵ3.
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APPENDIX C

Matrix elements in the delta matrix method

In the derivation of symmetry among b1212, b1312, b1313, b1412, b2312, b2412, and b3412,

the relationship among di in Appendix B is used.

b1212(z) =
1

c33d5d6
[(ϵ1d2d3 + ϵ3d1d4)− (ϵ1d2d4 + ϵ3d1d3)C1C3 + (ϵ1d1d4 + ϵ3d2d3)S1S3]

= 1− b1234(z)

b1213(z) =
1

c33d5d6
[d1d2(d3 + d4)(C1C3 − 1)− (d22d3 + d21d4)S1S3]

b1214(z) =
1

c44d5
(−d2C1S3 + d1C3S1)

b1223(z) =
1

c33d6
(d1C1S3 − d2C3S1)

b1224(z) =
1

c33c44d5d6
[(ϵ1d2 + ϵ3d1)(1− C1C3) + (ϵ1d1 + ϵ3d2)S1S3]

b1234(z) =
1

c33c44d5d6
[2d1d2(C1C3 − 1)− (d21 + d22)S1S3]

b1312(z) =
1

c33d5d6
[ϵ1ϵ3(d3 + d4)(1− C1C3) + (ϵ21d4 + ϵ23d3)S1S3]

= b1224(z)

b1313(z) =
1

c33d5d6
[(−(ϵ1d2d4 + ϵ3d1d3) + (ϵ1d2d3 + ϵ3d1d4)C1C3 − (ϵ1d1d4 + ϵ3d2d3)S1S3]

= C1C3 + b1234(z)

b1314(z) =
1

c44d5
(−ϵ3C1S3 + ϵ1C3S1)
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b1323(z) =
1

c33d6
(ϵ1C1S3 − ϵ3C3S1)

b1324(z) =
1

c33c44d5d6
[2ϵ1ϵ3(1− C1C3) + (ϵ21 + ϵ23)S1S3]

b1334(z) = −b1312(z)

b1412(z) =
c44
c33d6

(ϵ1d4C1S3 − ϵ3d3C3S1)

= b1223(z)

b1413(z) =
c44
c33d6

(−d1d4C1S3 + d2d3C3S1)

b1414(z) = C1C3

b1423(z) =
c44d5
c33d6

S1S3

b1424(z) = b1323(z)

b1434(z) = −b1412(z)

b2312(z) =
1

d5
(−ϵ3d3C1S3 + ϵ1d4C3S1)

= b1214(z)

b2313(z) =
1

d5
(d2d3C1S3 − d1d4C3S1)

b2314(z) =
c33d6
c44d5

S1S3

b2323(z) = b1414(z)

b2324(z) = b1314(z)

b2334(z) = −b2312(z)

b2412(z) =
c44

c33d5d6
[(ϵ1d2 + ϵ3d1)d3d4(C1C3 − 1)− (ϵ1d1d

2
4 + ϵ3d2d

2
3)S1S3]

= b1213(z)

b2413(z) =
c44

c33d5d6
[2d1d2d3d4(1− C1C3) + (d21d

2
4 + d22d

2
3)S1S3]

b2414(z) = b2313(z)

b2423(z) = b1413(z)
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b2424(z) = b1313(z)

b2434(z) = −b1213(z)

b3412(z) =
c44

c33d5d6
[2ϵ1ϵ3d3d4(C1C3 − 1)− (ϵ21d

2
4 + ϵ23d

2
3)S1S3]

= b1234(z)

b3413(z) = −b1213(z)

b3414(z) = −b1214(z)

b3423(z) = −b1223(z)

b3424(z) = −b1224(z)

b3434(z) = b1212(z)
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APPENDIX D

HAM03

The results for site HAM03 are similar to those for site BRD02. The triangle

array described in Figure 3.1b was used. Figure D.1 shows the observed SPAC and

HVSR curves and estimated values of β by the three-component SPAC method. The

lowest frequency of the estimated β is slightly higher than the peak frequency of the

HVSR curve.

By including HVSR curves in joint inversion with weighting w ≤0.7, ZLCC misfits

are significantly improved (Figure D.2). We have determined the optimal value to be

w =0.5 for this data. Figure D.3 shows the inverted velocity models by joint inversion

with w = 1.0 and w = 0.5. When only SPAC curves are considered in joint inversion,

inverted velocity models at depths deeper than 20 m are not resolved. On the other

hand, inclusion of HVSR curves constrains velocity contrast at about 22 m and it

indicates the existence of high S-wave velocities below 30 m. From independent SCPT

data, the depth of bedrock is estimated as 31.5 m which is significantly shallower

than the result of joint inversion. Further investigation is necessary to explain this

discrepancy; it could be due to gravels presenting a block to the cone penetrometer,

or could be due to a real variation in bedrock depth between the SCPT site and the

centre of the microtremor array.
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When we compare the observed values with the theoretical values corresponding

to the velocity models with minimum misfit functions, it can be seen that theoretical

HVSR curves are significantly improved by considering HVSR curves (Figure D.4).

Inclusion of the HVSR curves in inversion improves corresponding theoretical SPAC

curves at low frequencies with longer receiver spacing (x = 99.9 m) rather than

theoretical curves corresponding to x = 33.3 m.
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Figure D.1: The observed SPAC curves for HAM03 corresponding to (a) x = 19.2
and 33.3 and (b) x = 57.7 and 99.9 m. (c) The observed HVSR curve for
HAM03. Gray lines are the peak frequency of the observed HVSR curve.
The magenta line is the values of β estimated by the three-component
SPAC method.
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Figure D.3: Inverted velocity models by joint inversion for HAM03 when (a) w = 1.0,
(b)-(e) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively. Magenta lines
are the velocity models with minimum misfit functions for each inversion.
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Figure D.4: Comparison of theoretical SPAC curves for the inverted velocity models
with minimum misfit functions corresponding to (a) x = 33.3 and (b)
99.9 m and (c) HVSR curves with observed curves for HAM03 when (i)
w = 1.0, (ii)-(v) w = 0.5 with β = 1.0, 0.7, 0.4 and 3C, respectively.
Standard errors of SPAC curves are described in (a) and (b).

181



APPENDIX E

Dependence of effective phase velocities with a

distance

Here, we discuss how the distance between receivers influences to the theoretical

calculation of effective phase velocities by using a simulated velocity structure (Figure

4.3). Effective phase velocities from equation 4.9 using a geometry of observation

array and ones for r = 7.21, 14.4, 25 and 28.9 m from equation 4.8 are shown in

Figure E.1. It can be seen that effective phase velocities from equation 4.8 have some

differences associated with the receiver interval. The frequency ranges where effective

phase velocities can be calculated from equation 4.8 are restricted by the spatial

aliasing depending on the distance (dashed lines in Figure E.1. In the calculation

of effective phase velocities from equation 4.9, however, there is no effect on the

spatial aliasing at more than 20 Hz in addition to an agreement with observed values.

This advantage would be important in an inversion since theoretical phase velocities

have to be completely covered with the frequency range where phase velocities are

estimated.
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Figure E.1: Effects on the theoretical calculation of effective phase velocities depend-
ing on the distance between receivers using simulated data. Observed
phase velocities (black circles), theoretical phase velocities from equation
4.9 and ones from equation 4.8 for r = 7.21, 14.4, 25 and 28.9 m. Dashed
lines show the limit of the high frequency caused by the spatial aliasing.
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