学位論文要約

Loss of SMAD4 From Colorectal Cancer Cells Promotes CCL15 Expression to Recruit CCR1+ Myeloid Cells and Facilitate Liver Metastasis

Yoshiro Itatani^{1,2}, Kenji Kawada^{2*}, Teruaki Fujishita^{1,4}, Fumihiko Kakizaki¹, Hideyo Hirai³, Takuya Matsumoto², Masayoshi Iwamoto², Susumu Inamoto², Etsuro Hatano², Suguru Hasegawa², Taira Maekawa³,Shinji Uemoto², Yoshiharu Sakai² and Makoto Mark Taketo^{1*}

Departments of Pharmacology¹, Surgery², and Transfusion Medicine & Cell Therapy³, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Division of Molecular Pathology⁴, Aichi Cancer Center, Aichi, Japan.

ABSTRACT

BACKGROUND & AIMS: Loss of the tumor suppressor SMAD4 is correlated with progression of colorectal cancer (CRC). In mice, colon tumors that express CCL9 recruit CCR1+ myeloid cells, which facilitate tumor invasion and metastasis by secreting matrix metalloproteinase (MMP) 9 ⁽¹⁾⁽²⁾.

METHODS: We used human CRC cell lines to investigate the ability of SMAD4 to regulate expression of CCL15, a human ortholog of mouse CCL9. We employed immunohistochemistry to compare levels of CCL15 and other proteins in 141 samples of human liver metastases.

RESULTS: In human CRC cell lines, knockdown of *SMAD4* increased CCL15 expression, whereas overexpression of SMAD4 decreased it. SMAD4 bound directly to the promoter region of *CCL15* gene to negatively regulate its expression; transforming growth factor- β (TGF- β) enhanced binding of SMAD4 to the *CCL15* promoter and transcriptional repression. In livers of nude mice, SMAD4-deficinet human CRC cells upregulated CCL15 to recruit CCR1+ cells

and promote the metastatic colonization. Analysis of clinical specimens showed a strong inverse correlation between levels of CCL15 and SMAD4; metastases that expressed CCL15 contained 3-fold more CCR1+ cells than those without CCL15. Patients with CCL15-expressing metastases showed significantly shorter disease-free survival (DFS) than those with CCL15-negative metastases. CCR1+ cells in the metastases expressed the myeloid cell markers CD11b and myeloperoxidase, and also MMP9.

CONCLUSIONS: In human CRC cells, loss of SMAD4 leads to upregulation of CCL15 expression. Human liver metastases with CCL15 expression contain higher numbers CCR1+ cells and these patients are associated with shorter DFS. Therapeutics that block CCL15 recruitment of CCR1+ cells may prevent metastasis of CRC to liver.

REFERENCES

- Kitamura T, Kometani K, Hashida H, et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 2007;39:467–475.
- Kitamura T, Fujishita T, Loetscher P, et al. Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proc Natl Acad Sci USA 2010;107:13063–13068.