<table>
<thead>
<tr>
<th>Title</th>
<th>CHOP deficiency attenuates steatohepatitis, fibrosis and carcinogenesis in mice fed an MCD diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Toriguchi, Kan</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-03-24</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.k18147</td>
</tr>
<tr>
<td>Right</td>
<td>学位規則第9条第2項により要約公開</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>none</td>
</tr>
</tbody>
</table>
Abstract

Background & Aims: Hepatic steatosis is a metabolic liver disease with the potential to progress to steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The aim of this study was to investigate the impact of CCAAT/enhancer-binding protein homologous protein (CHOP) deficiency in the development of steatosis-associated progression of HCC. **Methods:**

Eight-week-old wild type (WT) and CHOP knockout (CHOP⁻/⁻) mice were fed a normal or methionine-choline deficient (MCD) diet. Mice were sacrificed after 3 weeks, and steatosis, inflammation, apoptosis, and liver damage were assessed. We also evaluated fibrosis after 8 weeks of nutrition intervention. To explore the role of CHOP in liver carcinogenesis, 25 mg/kg of diethylnitrosamine (DEN) was injected intraperitoneally into 2-week-old mice, which were then fed the aforementioned diets from 8 to 24 weeks of age. CHOP expression in HCC patient livers was also evaluated.

Results: CHOP deficiency did not affect steatosis but significantly reduced apoptotic cells, inflammation scores, and serum liver enzymes. It also significantly suppressed total serum bilirubin levels, fibrotic area size, and mRNA expression of profibrotic cytokines. DEN-initiated carcinogenesis was promoted
by the MCD diet, while CHOP deficiency significantly attenuated the total number and maximum diameter of tumors and the Ki-67 labeling index. In human livers, CHOP expression was enhanced in parallel with NASH-to-HCC progression.

Conclusions: CHOP deficiency attenuated apoptosis, inflammation, fibrosis, and tumorigenesis under fat-loading conditions, indicating that a therapeutic strategy targeting CHOP might be effective for fat induced-liver injury and protecting against promotion of carcinogenesis in patients with liver steatosis.
References

4 Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 2010; 51: 1820-1832

7 Ong JP, Younossi ZM. Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis. 2007; 11: 1-16

14 Cazanave SC, Elmi NA, Akazawa Y, Bronk AF, Mott JL, Gores HJ. CHOP

G498-505.

29 Takizawa D, Kakizaki S, Horiguchi N, Yamazaki Y, Tojima H, Mori M. Constitutive active/androstane receptor promotes hepatocarcinogenesis in a mouse model of non-alcoholic steatohepatitis. Carcinogenesis 2011; 32:
Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome.

Hepatology 2003; 37: 917-923.

Obesity, inflammation, and liver cancer. J Hepatol. 2012; 56: 704-713.

Dietary trans-fatty acid induced NASH is normalized following loss of trans-fatty acids from hepatic lipid pools. Lipids 2012; 47: 941-951

Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140: 197-208

Diabetes and apoptosis: liver. Apoptosis 2009; 14: 1459-1471

41 Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005; 5:189-200

44 Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF,
et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 2003; 38: 1188-1198

45 Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006; 43: S45-53