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Summary: 

High-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry 

(MALDI IMS) is an emerging application for lipid research that provides a comprehensive and 

detailed spatial distribution of ionized molecules. Recent lipidomic approach has identified several 

phospholipids and phosphatidylinositols (PIs) are accumulated in breast cancer tissues and are 

therefore novel biomarker candidates. Because their distribution and significance remain unclear, we 

investigated the precise spatial distribution of PIs in human breast cancer tissues using 

high-resolution MALDI IMS. We evaluated tissues from 9 human breast cancers and one normal 

mammary gland by negative ion MALDI IMS at a resolution of 10 μm. We detected 10 PIs with 

different fatty acid compositions, and their proportions were remarkably variable in the malignant 

epithelial regions. High-resolution imaging enabled us to discriminate cancer cell clusters from the 

adjacent stromal tissue within epithelial regions; moreover, this technique revealed that several PIs 

were specifically localized to cancer cell clusters. These PIs were heterogeneously distributed within 

cancer cell clusters, allowing us to identify two different populations of cancer cells that 

predominantly expressed either PI(18:0/18:1) or PI(18:0/20:3). Tracing the expression level of PIs 

during cancer cell progression suggested that the latter population is associated with the invasion. 

Our study documents a novel model for phospholipid analysis of breast cancer tissues by using 

high-resolution MALDI IMS and identifies candidate PIs that can describe a specific phenotype of 

cancer cells. 
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Introduction 

Since Warburg’s report on the upregulation of glycolysis and the increase in lactate 

production in cancer cells (1), cancer-related metabolic processes have been studied intensively (2). 

In terms of lipid metabolism, de novo fatty acid synthesis is frequently upregulated in cancer cells, 

even in the early stages of cancer progression (2, 3). This “reprogramming” of lipid metabolism 

could be associated with the proliferation, membrane fluidity, and apoptosis of cancer cells by 

affecting membrane lipid remodeling (3). Recent studies demonstrated the accumulation of several 

phospholipids in breast cancer tissues and their association with sex hormone receptor expression, 

tumor grade, and prognosis (4, 5). 

Mass spectrometry (MS) is often used to investigate phospholipid profiles in living 

materials, and MALDI is the common ionization technique used for MS analysis. MALDI IMS is a 

new modality that facilitates the acquisition of mass spectra directly from tissue specimens and 

provides reconstructed density maps of detected ions (6). In contrast to conventional MS analysis, 

which requires lipid extraction, MALDI IMS does not destroy the histological structures of living 

materials, and the acquired mapping images can be compared with the corresponding histological 

images (7). Consequently, MALDI IMS is now used to investigate the localization of lipids in cancer 

tissue specimens (8). This technique also yields improved spatial resolution (less than 10 μm) and 

facilitates detailed two-dimensional analysis of phospholipids, even in very small samples (9-11). 

However, the best method of analysis and interpretation of the vast amount of data produced by 

high-resolution-IMS has not been established. 

Among the major classes of phospholipids, PIs are known for their involvement in 

intracellular signal transduction (12, 13). In particular, the PI3-kinase pathway, which regulates 

many cellular functions, including lipid metabolism, is frequently mutated or activated in breast 

cancer tissues (14, 15). Unlike other phospholipids, the fatty acid composition of PIs is limited, and 

the PI profile shows a characteristic pattern in mammalian cells (16, 17). Specific stimulation can 

induce alterations in the composition of PIs, which can modulate PI3K signaling (18, 19). Moreover, 

PIs are suitable for analysis by IMS because they can be ionized by negative mode MALDI without 
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exhibiting multiple ion peaks of adduct ions for the same molecule (20, 21). Based on this 

knowledge, we focused on the fatty acid composition of PIs and tried to examine their detailed 

spatial distribution in breast cancer tissues using high-resolution IMS. High-resolution imaging 

facilitated cancer cell-oriented analysis and identified the PIs showing a possible association with 

specific cancer cell phenotypes. 

 

 

Materials and Methods 

Human tissue samples 

Malignant breast cancer tissues from primary tumor sites and benign mammary gland 

tissues from a patient with fibrocystic mastopathy were collected by needle biopsy or surgical 

resection in the Department of Breast Surgery, Kyoto University Hospital. Prior written informed 

consents were obtained from all patients. All study protocols were approved by the Ethics 

Committee for Clinical Research, Kyoto University Hospital (authorization numbers G350 and 

G424). Each sample was quickly frozen in liquid nitrogen and stored at -80C until analysis. 

 

Sample preparation 

Serial 10-μm sections were prepared from each sample and mounted on 

indium-tin-oxide-coated glass slides (Sigma-Aldrich, St. Louis, MO). Each section was coated with 

9-aminoacridine hemihydrates (9-AA) (Acros Organics, Geel, Belgium), which served as the matrix 

for MALDI MS. Each slide was anchored in vacuum deposition equipment (SVC-700TM/700-2, 

SANYU ELECTRON, Tokyo, Japan) and mechanically coated with 9-AA evaporated at 220C. The 

time required for this vapor deposition process was 8 min. For hematoxylin and eosin (H&E) 

staining, 9-AA was removed from the slides by dipping them in methanol for 30 sec after the 

MALDI MS analysis. The H&E-stained sections were examined under an optical microscope 

(BZ-9000, Keyence, Osaka, Japan). 
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Atmospheric pressure MALDI IMS and MS/MS analysis 

MALDI IMS analysis was performed on a high-resolution microscopic imaging mass 

spectrometer (RK27-4050C, Shimadzu, Kyoto, Japan; the prototype model of iMScope) equipped 

with a 355-nm Nd:YAG laser (22). MS data were acquired in negative mode in the 500.0 - 1200.0 

m/z range by using an external calibration method. The region of interest was determined from the 

microscopic view of the slides; mass spectra were obtained at a spatial resolution of 10 μm. We used 

the same instrument for MS/MS analysis; the lipid class and fatty acid composition of the observed 

peaks were determined based on the spectrum pattern of the ion peaks of the product. Using SIMtool 

software (Shimadzu, Kyoto, Japan), we normalized the MS data to the total ion current to eliminate 

variations in ionization efficiency. 

 

Acquisition of separate mass spectra from epithelial regions and stromal regions 

The averaged mass spectra in epithelial regions and the surrounding stromal regions were 

extracted separately with BioMap software (Novartis, Basel, Switzerland). The accurate location of 

each region was determined by H&E staining. The regions for the acquisition of mass spectra were 

selected manually. The stromal regions were defined as the areas within approximately 100 μm of 

the edge of the epithelial region. To estimate the patterns of each mass spectrum, the proportion of 

each PI ion peak was calculated as a ratio to the sum of mass intensities of all detected PIs. 

Statistical differences were analyzed using the Welch’s t-test. Differences of p < 0.05 were 

considered statistically significant. 

 

Hierarchical clustering 

To examine the inter-individual similarities of the spatial distribution of PIs, we digitalized 

their localization as the ratio of the intensity of each PI in epithelial regions to the intensity of each 

PI in stromal regions. The proportion of each PI was substituted as its relative intensity. The ratio 

was transformed to log2 scale, and hierarchical clustering was performed to evaluate correlations 

using MultiExperiment Viewer software (version 4.8.1. Dana-Farber Cancer Institute, Boston, MA) 
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(23). Similarities were assessed with the Pearson correlation coefficient. 

 

Generating ion density maps and overlaying the maps on H&E staining images 

 The averaged ion density map of each PIs was generated using BioMap software. The size 

and transparency of the ion density maps were adjusted, and they were overlaid on the corresponding 

H&E images with GIMP 2.6.11 software (Free Software Foundation, Boston, MA). 

 

Histological diagnosis for H&E staining and immunohistochemistry 

The histological diagnosis was performed by examination of H&E-stained tissues by senior 

pathologists in the Department of Diagnostic Pathology, Kyoto University Hospital. Intrinsic breast 

cancer subtypes were determined by immunohistochemistry for estrogen and progesterone receptors, 

human epidermal growth factor receptor 2, and basal markers. 

 

Comparison of PI expression between different cell clusters 

 The averaged mass spectra were obtained from each cell cluster using BioMap software. 

The number of cells in each cluster was counted manually in the H&E staining images. For the 

comparison of PI expression, each signal intensity was divided by the number of cells to eliminate 

the effect of cellular density. The results are presented as the mean of intensities from three 

independent cell clusters ± standard deviation (S.D.). Statistical differences were analyzed using the 

two-tailed Student’s t-test. Differences of p < 0.05 were considered statistically significant. 

 

 

Results 

Patient backgrounds and clinicopathological features 

Table 1 shows the clinicopathological features of the 10 patients recruited for this study. 

Breast cancer tissues were obtained from patients with luminal (Lu1-3, n=3), triple-negative (TN1-5, 

n=5), and Her2-positive (one patient) breast cancers. A benign mammary gland was obtained from a 
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patient with fibrocystic mastopathy (MP). All cancer patients had invasive ductal carcinoma with T1 

or T2 tumors. Lymph node metastasis was diagnosed in two triple-negative (TN3 and 4) patients and 

a premenopausal patient with luminal disease (Lu3). The patient recorded as TN4 presented with 

distant metastasis. Based on immunohistochemical results for basal markers, all 5 triple-negative 

cancers were of the basal-like phenotype (Table S1). 

 

Identification of PI molecular species with different fatty acid compositions by negative ion 

MALDI IMS and MS/MS analysis 

Fifty ion peaks that exhibited the highest intensities were screened in all cases, and we 

identified 10 ion peaks that represented PIs at m/z 807.5, 809.5, 833.5, 835.5, 837.5, 861.5, 863.5, 

885.5, 887.5, and 889.5. MS/MS analysis confirmed their lipid classes and fatty acid compositions 

(Table 2 and Fig. S1). All identified PIs had one saturated and one unsaturated fatty acid. The 

observed saturated fatty acids were C16:0 and C18:0, and the unsaturated fatty acids were C16:1, 

C18:1, C18:2, C20:2, C20:3, and C20:4. The degree of unsaturation of each PI was defined by the 

degree of unsaturation of the fatty acids. 

 

Cancer epithelia exhibit different mass spectra patterns of PIs than non-malignant duct 

epithelium and surrounding stromal tissues 

In mammalian cells, PIs carrying stearic (C18:0) and arachidonic acid (C20:4) in the acyl 

chain are the most abundant PIs (16, 17). We found that the averaged mass spectra of the benign 

epithelial region showed the largest ion peak at m/z 885.5, corresponding to PI(18:0/20:4) (n=1) (Fig. 

1A and Fig. 1B). The mass spectra acquired from the stromal region showed the same pattern; the 

ion peak at m/z 885.5 was also the largest among the observed peaks (Fig. 1A and Fig. 1C). 

The averaged mass spectra of malignant epithelial regions showed different patterns from 

those of the non-malignant epithelial region (n=9) (Fig. 1D and Fig. 1E). PIs other than 

PI(18:0/20:4) exhibited large ion peaks, some of which were larger than that of PI(18:0/20:4) (Fig. 

1E and Fig. S2). The averaged mass spectra obtained from the stromal area retained a pattern nearly 
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the same as the typical pattern found in the non-malignant condition; the ion peak of PI(18:0/20:4) 

was predominant (Fig. 1F and Fig. S3). These findings suggest that the proportion of PIs with 

different fatty acid compositions was changed in malignant epithelial regions in a manner different 

from their surrounding stromal cells. 

 

Screening of PIs that demonstrate the characteristic localization in breast cancer tissues 

As shown in Fig. 2A, the averaged proportion of each PI among all detected PIs was 

significantly altered in malignant epithelial regions as compared to the single sample of a benign 

epithelial region. The averaged proportion of PI(18:0/20:4), which was the predominant PI in the 

benign epithelial region, significantly decreased 33.3±3.3% in the malignant epithelial regions 

(Table S2). As a result, PIs other than PI(18:0/20:4) accounted for a large percentage in these regions. 

In malignant stromal regions, the differences from the non-malignant conditions were small, and few 

of them altered significantly (Table S2). 

Hierarchical clustering identified the distinctive features of PIs in breast cancer cases by 

organizing their spatial information and inter-individual differences. The PIs tended to cluster 

according to their degree of unsaturation (Fig. 2B). The breast cancer tissues showed two distinct 

clusters labeled G1 and G2. The benign mammary gland (MP) branched separately from these 

clusters. The classified PIs had different localization patterns in the G1- and G2-subgroups. In the 

G1 subgroup, PI(16:0/18:1) and PI(18:0/18:1), which were classified in the single cluster, showed 

the highest specificity to epithelial regions. In contrast, PI(18:0/20:4) showed the highest specificity 

to stromal regions in the G1-subgroup. PI(18:0/20:3), which was classified with PI(18:0/20:4), 

showed the highest specificity to the epithelial regions in the G2-subgroup. The results of the cluster 

analysis suggested that the distributions of PI(16:0/18:1), PI(18:0/18:1), PI(18:0/20:3), and 

PI(18:0/20:4) effectively characterized the inter-individual differences among breast cancer tissues 

and divided them into two distinct subgroups.  

 

Ion density maps of IMS confirmed the characteristic localization of PIs 
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Based on our hierarchical clustering results, we evaluated the ion density maps of 

PI(18:0/18:1), PI(18:0/20:3), and PI(18:0/20:4), which commonly have C18:0 as their saturated fatty 

acyl chain. 

In the benign mammary gland, the ion signals of PI(18:0/18:1) were preferentially localized 

in the epithelial area, whereas PI(18:0/20:3) and PI(18:0/20:4) were uniformly distributed both in the 

epithelium and in the surrounding stromal area (Fig. 3). 

These PIs altered their localization patterns in malignant cancer tissues. In breast cancer 

tissues categorized in the G1-subgroup, the ion signals of PI(18:0/18:1) were preferentially localized 

to the epithelial regions and exhibited strong intensities; however, in the G2-subgroup, they showed 

neither specific localization nor signal upregulation (Fig. 3; green). In contrast, the ion signals of 

PI(18:0/20:3) were preferentially localized to epithelial regions and exhibited strong intensities in the 

G2-subgroup but did not show specific localization in the G1-subgroup (Fig. 3; blue). The strong ion 

signals of PI(18:0/20:4) were detected in the stromal regions in both the G1- and G2-subgroups. 

They were almost undetectable in the epithelial regions in the G1-subgroup but retained strong 

signals in the epithelial region in the G2-subgroup. These findings suggested that the accumulation 

of PI(18:0/18:1) occurred in the epithelial regions of the G1-subgroup, whereas the upregulation of 

PI(18:0/20:3) and PI(18:0/20:4) occurred in the epithelial regions of the G2-subgroup. Because the 

accumulation of PI(18:0/20:4) was observed uniformly in the stromal regions in breast cancer tissues, 

the upregulation of PI(18:0/18:1) and PI(18:0/20:3) was identified as a malignant epithelial 

region-specific process, and the expression patterns of PI(18:0/18:1) and PI(18:0/20:3) indicated the 

particular phenotype of the cancer cells. 

 

The distribution of PI(18:0/18:1) and PI(18:0/20:3) in the epithelial region describes the 

heterogeneity of cancer cell populations 

 Because PI(18:0/18:1) and PI(18:0/20:3) seemed to exhibit a reciprocal pattern in their 

distribution, we attempted to evaluate their distributions within epithelial regions in a more detailed 

fashion. The averaged relative intensities of PI(18:0/20:3) in malignant epithelial regions were 
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negatively associated with that of PI(18:0/18:1) (r = -0.72) (Fig. 4A). The merged image of ion 

density maps showed the heterogeneous distribution of these two molecules (Fig. 4B). The ion 

signals of PI(18:0/20:3) tended to be localized adjacent to the stromal regions and rarely overlapped 

with those of PI(18:0/18:1), which tend to be localized in the center of the cancer cell clusters. The 

overlaying image on the corresponding H&E staining confirmed that the ion signals of PI(18:0/20:3) 

in the epithelial edge matched with those in the cancer cells in contact with the stroma and not with 

the stromal cells (Fig. 4C). These findings suggested that the ratio of PI(18:0/20:3) and PI(18:0/18:1) 

in the averaged mass spectra in the epithelial region represents the ratio of the two different cellular 

populations: cancer cells expressing PI(18:0/20:3) and cancer cells expressing PI(18:0/18:1). Their 

localization also indicated that the phenotype of the former population is associated with their 

contact with the stroma.  

 

Tracking PI expression levels through cancer cell development and progression 

A patient in the G2 subgroup (TN5) harbored a small cluster of invasive ductal carcinoma 

(IDC) within a ductal carcinoma in situ (DCIS). Because a single tissue section from this patient 

contained normal duct epithelium, hyperplastic ductal epithelium, DCIS, and IDC, we assessed the 

cellular expression of PI(18:0/20:3), PI(18:0/18:1), and PI(18:0/20:4) throughout cancer progression 

using a section from this patient. 

MS imaging showed that PI(18:0/18:1) was preferentially localized to the hyperplastic duct 

epithelium. In contrast, PI(18:0/20:3) was preferentially localized both in DCIS and in IDC (Fig. 5A). 

The signals of PI(18:0/20:4) were distributed in DCIS and IDC lesions as well as in stromal cells 

(Fig. S4). Looking at the estimated amounts of these PIs, PI (18:0/18:1) was transiently accumulated 

in hyperplastic cells and decreased in DCIS and IDC (Fig. 5B). The amount of PI(18:0/20:3) 

gradually increased in accordance with disease progression, and it showed the largest increase from 

DCIS to IDC (38.1±5.3, p < 0.05). Although the amount of PI(18:0/20:4) also increased in 

accordance with cancer progression, a significant difference was not observed during any steps of 

progression (Table S3). These findings suggested that the accumulation of PI(18:0/20:3) occurs in 
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cancer cells during the process of invasion and contact with the stromal component. In addition, 

because the G2-subgroup, in which PI(18:0/20:3)-expressing cells were predominant, manifested a 

high incidence of nodal metastasis (Table 1 and Fig. 2B), we posited that cancer cells expressing 

PI(18:0/20:3) had a propensity to invade into stromal components, resulting in nodal metastasis. 

 

 

Discussion 

In the present study, we report for the first time the unique spatial distribution of PIs with 

different fatty acid compositions in breast cancer tissues as determined by high-resolution IMS. 

Moreover, we identified PI(18:0/20:3) as a possible marker for specific populations of breast cancer 

cells. Since the accumulation of PI(18:0/20:3) showed the association with the stromal contact and 

nodal status, we developed a plausible hypothesis that the accumulation of PI(18:0/20:3) in breast 

cancer cells may account for their cellular invasion capacity. This hypothesis could be supported by 

the fact that the accumulation of PI(18:0/20:3) could affect not only cellular membrane fluidity but 

also the activity of PI3K signaling pathway (24-28). This is a preliminary study with a limited 

number of cases, and whether PI(18:0/20:3) expression is directly related to cellular invasion 

remains to be tested. However, high-resolution IMS raised intriguing possibility that the alteration of 

lipid metabolites, as a consequence of the complicated physiological process, can directly reflect 

tumor invasiveness or sensitivity to PI3K inhibition, which cannot be satisfactorily predicted by the 

existing clinicopathological features. 

We demonstrated several methodological advantages of high-resolution IMS compared with 

the conventional lipidomic studies on cancer tissues. Conventional IMS (resolution greater than 10 

μm) can roughly distinguish histologically different regions, such as epithelial regions and stromal 

regions. However, this lower-resolution imaging failed in discriminating the intricate histological 

structures assembled by cancer epithelial cells which were composed of heterogeneous populations 

(29, 30). High-resolution IMS could exclude stromal cells from epithelial regions and identify cancer 

cell heterogeneity. Especially, the diversity of PIs has not been previously described in human breast 
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cancer tissues by a conventional MS analysis (4, 31). Our results show for the first time the stromal 

component of breast cancer tissues is predominantly occupied with PI(18:0/20:4) without significant 

inter-individual differences. Because breast cancer tumors often contain abundant stromal 

components, the PI(18:0/20:4) within stroma may disrupt the detection of other PIs (32). 

Our results also suggest that differences in cellular density seemed to distort the true picture 

of molecular distribution when interpreting the ion density map of IMS. High-resolution IMS can 

acquire the mass profiles by targeting small clusters containing only epithelial cells (average of 35 

cells in this study), which enables us to estimate the amount of each PIs adjusted by cellular density. 

As a result, it revealed the significant increase in PI(18:0/20:3) from DCIS- to IDC-lesions, which 

was difficult to recognize from ion density images alone. The ion intensity produced by the MALDI 

technique could be affected by other factors, such as tissue conditions, the affinity for the matrix, and 

ion suppression by other ionized molecules (25). However, studies that compared the MALDI IMS 

ion intensity and the results of quantitative analyses of electrospray ionization MS showed that 

MALDI IMS ion intensities were representative of the relative amount of PIs when comparisons 

were carried out between the same lipid classes (33-35). 

In conclusion, high-resolution MALDI IMS identified the detailed spatial distribution of PIs 

with different fatty acid compositions in breast cancer specimens. It facilitated a cancer cell-oriented 

analysis and revealed the accumulation of PI(18:0/20:3) as a phenotype of cancer cells that might be 

associated with their invasion capacity. Moreover, our study demonstrated a useful model for lipid 

research in breast cancer tissues using a new modality.
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Figure Legends 

 

Fig. 1 

Averaged mass spectra obtained from benign and malignant mammary glands 

(A)-(C) Representative image of a benign mammary gland. H&E staining (A), averaged mass 

spectrum obtained from the epithelial regions (B), and the stromal regions (C) are shown.  

(D)-(F) Representative image of malignant mammary glands. H&E staining (D), averaged mass 

spectrum obtained from the epithelial regions (E), and the stromal regions (F) are shown. 

Epithelial regions are encircled by dotted lines. The x- and y- axes represent m/z and the 

signal intensity, respectively. Scale bar, 100 μm. 

 

Fig. 2 

The distribution of PIs exhibited two distinctive features in breast cancer tissues 

(A) Comparison of mass spectrum patterns between benign and malignant mammary glands. 

Circle graph shows the averaged proportion of each PI among all examined cases (%). The p values 

indicate significant differences from the benign condition. *p < 0.05. 

(B) Hierarchical clustering of PI distributions. The heat map shows the localization pattern of 

each PI. The two breast cancer tissue subgroups are identified as G1 and G2. 

 

Fig. 3 

MS imaging showing the distributions of PIs that characterize the two breast cancer tissue 

subgroups 

 MS images showing the distribution of PI(18:0/18:1) (green), PI(18:0/20:3) (blue), and 

PI(18:0/20:4) (red). Representative images of breast cancer tissues were selected from the G1- and 

G2-subgroups. The corresponding H&E staining image is also shown. The epithelial regions are 

encircled by white dotted lines. Scale bar, 100 μm. 
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Fig. 4 

The distribution of PI(18:0/20:3) and PI(18:0/18:1) defines the two different populations of 

cancer cells 

(A) Correlation of the relative intensities of PI(18:0/20:3) and PI(18:0/18:1). The circle dots 

and the crystal dots indicate breast cancer cases classified in the G1- and G2-subgroup, respectively. 

r; correlation coefficient. 

(B) Heterogeneous distribution of PI(18:0/20:3) and PI(18:0/18:1) in cancer cell clusters. The 

dotted lines in the H&E staining image indicate the border between cancer cell clusters and adjacent 

stroma. The green and red signals indicate PI(18:0/20:3) and PI(18:0/18:1), respectively. The ion 

density map is overlaid on H&E staining. Scale bar, 100 μm. 

 

Fig. 5 

The association of PI(18:0/20:3) expression with cancer cell progression 

(A) MS images of PI(18:0/18:1) and PI(18:0/20:3) and merged images of the two molecular 

species. The corresponding H&E staining image is also shown. The red, blue, and green circles 

indicate the hyperplastic epithelium, DCIS, and IDC, respectively. Scale bar, 100 μm. 

(B) The stepwise change in the intensity of PIs in normal epithelium, hyperplastic epithelium, 

DCIS, and IDC. The p values indicate significant differences from the previous stage of progression. 

*p < 0.05. Error bar, S.D. 
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Table 1.  Patient backgrounds and clinicopathological features            

                        

ID   TN1 TN2 TN3 TN4 TN5 Her2 Lu1 Lu2 Lu3 MP 

Age   74 79 72 62 86 71 50 67 42 66 

Menopausal status post post post post post post post post pre post 

Pathology   IDC IDC IDC IDC IDC IDC IDC IDC IDC FC 

Pathological T   2 2 1 2 2 2 2 2 1   

Nodal status   - - + + - - - - +   

Clinical M   0 0 0 1 0 0 0 0 0   

Stage   IIA IIA IIA IV II IIA IIA IIB IIIC   

Intrinsic subtype   Basal Basal Basal Basal Basal Her2 Luminal Luminal Luminal   

Histological Grade 3 2 3 2 3 3 2 3 2   

ER (%)   0 0 0 0 0 0 100 100 100   

PgR (%)   0 0 0 0 0 0 100 100 80   

Her2 status   - - - - - + - - -   

Sampling method   SR SR SR SR SR SR SR NB SR NB 

Abbreviations: IDC, invasive ductal carcinoma; FC, fibrocystic mastopathy; ER, estrogen receptor; PgR; progesteron 

receptor, SR; surgical resection, NB; needle biopsy. 
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  Table 2. Lipid class and fatty acid compositon identified by MS/MS analysis   

          

  Precursor ion (m/z) Lipid class Fatty acid composition   

  807.5 PI 16:0/16:1   

  809.5 PI 16:0/16:0   

  833.5 PI 16:0/18:2   

  835.5 PI 16:0/18:1   

  837.5 PI 16:0/18:0   

  861.5 PI 18:0/18:2   

  863.5 PI 18:0/18:1   

  885.5 PI 18:0/20:4   

  887.5 PI 18:0/20:3   

  889.5 PI 18:0/20:2   

  Abbreviation: PI, phosphatidylinositol.     
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Table S1.  Immunohistochemistry results for basal markers 

    EGFR p63 CK5/6 Vimentin 

TN1   + - + - 

TN2   + - + + 

TN3   + - + † - 

TN4   + + + † - 

TN5   - - + - 

†, partial cancer cell staining 

Abbreviations: EGFR, epidermal growth factor receptor; CK, cytokeratin. 
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Table S2. Differences in averaged proportions of PIs (Malignant- vs benign-region). 

 
Epithelium 

 
Stroma 

  Difference (%) S.E. p value 
 

Difference (%) S.E. p value 

PI (16:0/16:1) 1.6  1.0  0.15    2.3  1.1  0.09  

PI (16:0/16:0) 2.1  1.0  0.06  
 

2.9  0.7  <0.05 

PI (16:0/18:2) 1.4  0.7  0.06  
 

1.0  1.0  0.36  

PI (16:0/18:1) 7.0  2.8  <0.05 
 

0.7  1.0  0.50  

PI (16:0/18:0) 3.4  1.3  <0.05 
 

1.4  0.6  0.06  

PI (18:0/18:2) 0.4  1.6  0.80  
 

0.6  0.7  0.45  

PI (18:0/18:1) 3.4  2.3  0.18  
 

-1.3  2.1  0.59  

PI (18:0/20:4) -33.3  3.6  <0.05 
 

-8.3  3.6  0.05  

PI (18:0/20:3) 8.1  4.4  0.10  
 

0.5  1.7  0.77  

PI (18:0/20:2) 5.8  1.0  <0.05 
 

0.2  0.9  0.80  

Abbreviations: S.E., Standard error. 
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Table S3. Differences in signal intensities during the progression. 

 
PI (18:0/18:1) 

 
PI (18:0/20:3)   PI (18:0/20:4) 

  Difference  p value 
 

Difference p value 
 

Difference p value 

IDC vs DCIS 9.1  0.06    39.0  <0.05   12.0  0.39  

DCIS vs Hyperplasia -19.1  <0.05 
 

17.0  <0.05 
 

25.2  0.20  

Hyperplasia vs Normal 25.0  <0.05   5.9  0.06    25.1  0.11  

Abbreviations: DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma. 

 


