<table>
<thead>
<tr>
<th>Title</th>
<th>Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats (Dissertation_全文)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhao, Mingming</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-03-24</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.k18159</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>ETD</td>
</tr>
</tbody>
</table>

Kyoto University
Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats

M. Zhao, Y. Li, J. Wang, K. Ebihara, X. Rong, K. Hosoda, T. Tomita & K. Nakao
Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan

Aim: Hypertension often coexists with insulin resistance. However, most metabolic effects of the antihypertensive agents have been investigated in normotensive animals, in which different conclusions may arise. We investigated the metabolic effects of the new angiotensin II type 1 receptor blocker azilsartan using the obese Koletsky rats superimposed on the background of the spontaneously hypertensive rats.

Methods: Male Koletsky rats were treated with azilsartan (2 mg/kg/day) over 3 weeks. Blood pressure was measured by tail-cuff. Blood biochemical and hormonal parameters were determined by enzymatic or ELISA methods. Gene expression was assessed by RT-PCR.

Results: In Koletsky rats, azilsartan treatment lowered blood pressure, basal plasma insulin concentration and the homeostasis model assessment of insulin resistance index, and inhibited over-increase of plasma glucose and insulin concentrations during oral glucose tolerance test. These effects were accompanied by decreases in both food intake and body weight (BW) increase. Although two treatments showed the same effect on BW gain, insulin sensitivity was higher after azilsartan treatment than pair-feeding. Azilsartan neither affected plasma concentrations of triglyceride and free fatty acids, nor increased adipose mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and its target genes such as adiponectin, aP2. In addition, azilsartan downregulated 11β-hydroxysteroid dehydrogenase type 1 expression.

Conclusions: These results show the insulin-sensitizing effect of azilsartan in obese Koletsky rats. This effect is independent of decreases in food intake and BW increase or of the activation of adipose PPARγ. Our findings indicate the possible usefulness of azilsartan in the treatment of metabolic syndrome.

Keywords: angiotensin II type 1 receptor, azilsartan, insulin, obesity, peroxisome proliferator-activated receptor

Introduction

Hypertension is one component of the metabolic syndrome. Hypertension often coexists with insulin resistance, glucose intolerance and hyperlipidaemia. It has been well documented that activation of the renin–angiotensin system is a common feature in patients with the metabolic syndrome [1]. Blockade of the renin–angiotensin system/angiotensin II type 1 receptor (AT1) signalling has been shown in clinical and experimental studies to improve the metabolic syndrome [1]. Some AT1 blockers (angiotensin II type 1 receptor blockers ARBs) have been shown to improve insulin sensitivity in rodents and humans [2–6]. However, most studies of the antihypertensive agents have been performed in normotensive animals, in which different conclusions from those in hypertensive objectives may arise.

Azilsartan (TAK-536) is a new ARB. A randomized, double-blind, placebo-controlled trial shows that, in patients with stages 1 and 2 hypertension, azilsartan at its maximal dose has superior efficacy to both olmesartan and valsartan at their maximal, approved doses without increasing adverse events, providing higher rates of hypertension control within the ARB class [7]. Radioligand binding and functional studies in vitro have shown that azilsartan inhibits human AT1 more potently than olmesartan, telmisartan, valsartan and irbesartan [8]. In normotensive KK-AY mice azilsartan has been found to be more effective than candesartan; it reduced plasma concentrations of glucose and fatty acids, decreased adipose tissue weight and adipocyte size and increased adipose expression of peroxisome proliferator-activated receptor (PPAR)γ and its target genes adiponectin and aP2; but did not affect blood pressure and plasma insulin concentrations [9]. The metabolic effects of the antihypertensive agent need to be further investigated in hypertensive objectives.

The Koletsky (fa/fa) rat carries a nonsense mutation in the leptin receptor and exhibits hyperphagia, obesity, hyperinsulinaemia/insulin resistance and hyperlipidaemia which are superimposed on the spontaneously hypertensive rat (SHR) background [6,10]. In the present study, we investigated the effects of azilsartan on metabolic abnormalities in the obese Koletsky rats.

Methods

Animals, Diet and Experimental Protocol

All animal procedures were in accordance with the ‘Principles of laboratory animal care’ (http://grants1.nih.gov/grants/olaw/
references/phspol.htm) and were approved by the Animal Ethics Committee, Kyoto University, Japan.

Male Wistar-Kyoto (WKY) rats, obese Koletsky (fa^ffa^d) rats and their lean (+/+) littermates (SHR) were generous gifts from Japan SLC, Inc., Shizuoka, Japan. Rats were housed in a temperature controlled facility (21 ± 1°C, 55 ± 5% relative humidity) with a 12-h light/dark cycle (two to three rats per cage). Animals were allowed free access to water and the standard diet (CLEA, Tokyo, Japan) for at least 1 week prior to starting the experiments at 10 weeks of age.

Experiment 1: Optimization of Azilsartan Dosage in Obese Koletsky Rats. Age-matched WKY rats and SHR were used as controls (n = 6 per group). As many as 24 obese Koletsky rats were divided into 4 groups (n = 6 per group): Koletsky azilsartan 0 mg/kg (control), Koletsky azilsartan 1 mg/kg, Koletsky azilsartan 2 mg/kg and Koletsky azilsartan 3 mg/kg. There were no differences in body weight (BW) among the Koletsky groups before treatments commenced. Animals in azilsartan-treated groups were administered azilsartan (1, 2 and 3 mg/kg, a generous gift from Takeda Co., Ltd., Japan, suspended in 5% Gum Arabic) by oral gavage once daily (9:00–10:00 hours) for 5 days. The WKY rats, SHR and Koletsky rats in control group received vehicle (5% Gum Arabic) alone. Rats were weighed every once 3–4 days to determine gavage volumes. To minimize the influence of measurement manipulation-induced stress on metabolic effects determined 2–3 weeks after treatments commenced in experiments 2 and 3, systolic blood pressure (SBP) was measured on day 5.

Experiment 2: Study of Metabolic Effects in Obese Koletsky Rats. In this experiment, 16 obese Koletsky rats were divided into two groups (n = 8 per group): Koletsky control (azilsartan 0 mg/kg) and Koletsky azilsartan (azilsartan 2 mg/kg). Eight lean (+/+) littermates (SHR) were used as controls. BWs were comparable between the Koletsky groups before treatments commenced. Animals in azilsartan group were administered azilsartan 2 mg/kg by oral gavage once daily (9:00–10:00 hours) for 21 days. The SHR and Koletsky control rats received vehicle (5% Gum Arabic) alone. Rats had free access to standard laboratory chow. Food intake was monitored daily (9:00–10:00 hours). The other procedures were the same as that described in experiment 2.

SBP Measurement

SBP was measured 2–6 h after administration of azilsartan or vehicle in conscious rats by a tail-cuff method (MK-2000ST; Muromachi Kikai Co Ltd, Tokyo, Japan). At least six readings were taken for each measurement.

OGTT

To reduce the difference in plasma insulin concentrations between groups, rats were fasted for 15 h with free access to water before OGTT. Rats received a glucose solution (4 g/kg in 10 ml) by the oral route. Blood samples were collected prior to and 20, 60 and 120 min after administration of glucose solution for determination of plasma glucose and insulin concentrations.

Blood Biochemical Determination

Plasma concentrations of glucose, triglyceride and NEFA were determined using commercial enzymatic methods (kits from Wako, Osaka, Japan). Plasma insulin (kit from Morinaga, Tokyo, Japan) and corticosterone (kit from Cayman Chemical, Ann Arbor, MI, USA) concentrations were determined by ELISA.

Histological Examination

A portion of eWAT was fixed with 10% formalin and embedded in paraffin. Ten micron sections were cut and stained with haematoxylin and eosin for examination of adipose tissue histology (IX-81, Olympus Corporation, Tokyo, Japan). The adipocyte cross-sectional area was measured using an ImageJ 1.43 analysing system.

Gene Expression Analysis

Total RNA was isolated from eWAT of individual rats using TRIzol (Invitrogen, Osaka, Japan). Single-stranded cDNA was synthesized from 1 µg of total RNA using SuperScript III First-Strand Synthesis System for RT-PCR, according to the manufacturer’s instructions (Invitrogen, Osaka, Japan). Quantitative RT-PCR was performed with an AB 7300 RT-PCR System using TaqMan (Applied Biosystems, Foster City, CA, USA). The sequences of primers and probes (Sigma-Genosys, Japan) used in the present study were as follows: PPARγ: sense, TGACCGAGGATCTCTCTAAAA; antisense, AGCAAACTCAACTTGGCTCAT; probe, CC
TGCGGAAGCCCTTTGGTGACT; adiponectin: sense, GGAC CAAGAACACCTGCTCT; antisense, TCCTGGFCACAATG GGATACC; probe, TTCTCTCCAGGAGTCCATCTCTGCCC; aP2: sense, TCCAGTGAAGACTTCAATGATTACA; antisense, GCACCATCAGGCACACTTT; probe, TGGAGATGCTCTCG CCACCCAG; 11β-hydroxysteroid dehydrogenase type 1 (11β- HSD1): sense, 5′-GCTGAAACAGCAATGGCAG-3′; antisense, 5′-GAAACATCCAGAGCAAACCTG-3′; probe, TGG CTGGGAAAATGACCCAACCTCTG; 18s: sense, GCAAAT ATTCCCATAGAAGC; antisense, CAAAGGGCAGGACT TAATCAAC; probe, AATTCCCATAGAAGCCTCATATA GCTT. Rat mitochondrial subunit 18s rRNA was selected as the endogenous control (housekeeping gene).

Data Analysis
All results are expressed as means ± s.e.m. Data obtained from experiments 1 and 2 were analysed by one-way analysis of variance (ANOVA). If a difference was detected (F-ratio), the Student–Newman–Keuls test was performed to locate the differences between groups. Data obtained from experiment 3 were analysed using the Student’s t-test. p < 0.05 was considered to be statistically significant.

Results
Optimization of Azilsartan Dosage in Obese Koletsky Rats
SHR and obese Koletsky rats appeared hypertensive compared to normal WKY controls; but there was no significant difference between SHR and obese Koletsky rats (figure 1). Azilsartan was administered by oral gavage (0–3 mg/kg once daily for 5 days); controls received vehicle alone. From the dose–response relationship, azilsartan (2 mg/kg) decreased SBP in obese Koletsky rats to that of normal rats, whereas the 3 mg/kg dose elicited hypotension (figure 1). From these findings azilsartan 2 mg/kg was selected for subsequent experiments.

Effects of Azilsartan Treatment on Glucose Metabolism in Obese Koletsky Rats
In this experiment, azilsartan 2 mg/kg showed similar blood pressure-lowering effect to that of above experiment (data not shown). In fasted obese animals plasma glucose concentrations were unchanged (figure 2A); however, plasma insulin concentrations (figure 2B) and the HOMA-IR index (figure 2C) were over fivefold higher than those in SHR. Azilsartan treatment did not affect basal plasma glucose concentrations, but decreased plasma insulin concentrations. The decline in insulin concentration also contributed to the observed decrease in the HOMA-IR index. Moreover, in the OGTT assessments, azilsartan modulated the abnormal increase in plasma glucose and insulin concentrations (figure 2D, E).

Effects of Azilsartan Treatment on Adiposity-associated Variables in Obese Koletsky Rats
The hyperphagia observed in obese Koletsky rats (an increase in food intake of 34% over SHR control) was attenuated by azilsartan treatment (figure 3A). Azilsartan also prevented the excess BW increase that was evident in untreated obese Koletsky rats (figure 3B). However, azilsartan treatment minimally affected the increased eWAT weight (figure 3C) and adipocyte size (figure 3D, E).

Effects of Azilsartan Treatment on Plasma Concentrations of Triglyceride, NEFA and Corticosterone in Obese Koletsky Rats
Compared to lean SHR-littermates, obese Koletsky rats exhibited increased fasted plasma glucose concentration (figure 4A), whereas NEFA concentration was unchanged (figure 4B). Treatment of obese Koletsky rats with azilsartan did not affect plasma concentrations of triglyceride or NEFA. Plasma corticosterone concentrations in obese Koletsky rats were over threefold higher than those in respective SHR control. Azilsartan treatment minimally affected plasma corticosterone concentrations (figure 4C).

Comparison of the Effects Between Azilsartan and Pair-feeding Treatments in Obese Koletsky Rats
The results in above experiments show that azilsartan at 2 mg/kg decreased food intake. To ensure that the actions of azilsartan were independent of effects on food intake, a comparison between azilsartan and pair-feeding experiments was performed. The obese rats in two groups consumed similar amounts of food (data not shown). In contrast with azilsartan treatment, pair-feeding did not affect SBP (pair-feeding: 175 ± 4 vs. azilsartan: 122 ± 2 mmHg, p < 0.05); there were

Figure 1. Systolic blood pressure (SBP) in male Wistar-Kyoto (WKY), spontaneously hypertensive rats (SHR) and obese Koletsky rats. Animals received azilsartan at different dosages or vehicle by oral gavage once daily. SBP was measured with a tail-cuff method 2–5 h after the treatment on day 5. Data are means ± s.e.m. (n = 6 each group). *p < 0.05 (analysis of variance).
Figure 2. Fasted plasma glucose (A) and insulin (B) concentrations (day 14), the index of the homeostasis model assessment of insulin resistance (C), and glucose (D) and insulin (E) concentrations during oral glucose tolerance testing (day 17, glucose dosage: 4 g/kg) in male obese Koletsky rats and their littersmates spontaneously hypertensive rat (SHR). Animals received azilsartan (2 mg/kg) or vehicle daily as described in the legend to figure 1. Data are means ± s.e.m. (n = 8 each group). *p < 0.05 (analysis of variance).

Gene Expression Profile in Obese Koletsky Rats

In adipose tissue there was no significant difference in PPARγ, aP2 and 11β-HSD1 expression between two genotypes, while adiponectin mRNA level was decreased in obese Koletsky rats than SHR (p < 0.05, data not shown). Azilsartan treatment did not significantly affect PPARγ and adiponectin mRNA expression, but downregulated aP2 and 11β-HSD1 expression in obese Koletsky rats (p < 0.05, data not shown).

Discussion

The present findings clearly show that, in addition to its potent antihypertensive property, azilsartan treatment also improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats. Azilsartan treatment decreased the hyperinsulinaemia, improved the HOMA-IR index and suppressed the over-increase in plasma glucose and insulin concentrations during OGTT. Thus, azilsartan treatment may diminish the risk of cardiovascular morbidity and mortality as a result of hypertension, especially in the presence of insulin resistance and hyperinsulinaemia in obesity and type 2 diabetes.

As azilsartan treatment attenuated hyperphagia and decreased BW increase in obese Koletsky rats, we evaluated the impact of decreases in both food intake and BW gain on metabolic parameters. Although there was no difference in BW and adiposity variables between azilsartan and pair-feeding treatments, pair-feeding did not mimic the insulin-sensitizing effect of azilsartan. From these considerations it appears that azilsartan treatment improves insulin sensitivity via additional mechanisms.

Adipose PPARγ is the master regulator of adipogenesis and is activated by the thiazolidinediones that are used clinically to stimulate the action of insulin [13]. PPARγ-activating ligands alter fat topography and adipocyte phenotype and activate genes that regulate fatty acid metabolism and triglyceride storage [14]. Thus, the treatment with rosiglitazone decreased plasma concentrations of glucose, triglyceride and NEFA, but increased BW in obese Zucker rats [15–17]. Azilsartan (6.58 mg/kg/day delivered orally in chow) has been shown to decrease BW, adipose tissue weight and adipocyte size in KK-A' mice, which was accompanied by a decrease in NEFA concentrations, as well as enhanced adipose expression of PPARγ and its target genes adiponectin, aP2 [9]. In the present study, however, azilsartan minimally affected eWAT weight, adipocyte size and basal plasma concentrations.
Figure 3. (A) Average food intake, (B) body weight, (C) epididymal white adipose tissue (eWAT) weight, (D) epididymal adipocyte size and (E) representative images showing histology of eWAT (haematoxylin and eosin staining, ×100) in male spontaneously hypertensive rat (SHR) and obese Koletsky rats. Animals received azilsartan (2 mg/kg) or vehicle daily for 21 days as described in the legend to figure 1. Food intake for 24 h was determined over a 14-day period with average food intake calculated accordingly. Data are means ± s.e.m. (n = 8 each group). *p < 0.05 (analysis of variance).

Figure 4. Fasted plasma concentrations of triglyceride (A), non-esterified fatty acids (NEFA) (B) and corticosterone (C) in male spontaneously hypertensive rat (SHR) and obese Koletsky rats on day 14. Animals received azilsartan (2 mg/kg) or vehicle daily as described in the legend to figure 1. Data are means ± s.e.m. (n = 8 each group).

of glucose, triglyceride and NEFA in obese Koletsky rats. Furthermore, azilsartan treatment did not upregulate PPARγ, adiponectin and aP2 expression in adipose tissue. Azilsartan at the concentrations up to 10^{-5} M did not show effect on PPARγ in the reporter gene assay in Chinese hamster ovary cells (data not shown). Thus, the effect of azilsartan on insulin sensitivity unlikely involves PPARγ activation in adipose tissue. Further investigations are now required to
assess whether the discrepancies between previous reports in mice and the present study conducted in obese rats are because of species differences (mouse vs. rat), blood pressure status (normotensive vs. hypertensive) and/or others. As azilsartan treatment showed minor effect on adipose tissue weight, significant attenuation of hepatomegaly, cardiac hypertrophy, renomegaly (our unpublished data) and/or others might mainly contribute to diminution of BW gain after the treatment in obese Koletsy rats.

The adipose enzyme, 11β-HSD1, which locally converts inactive glucocorticoids into bioactive forms [18], plays an important role in the development of visceral obesity and its associated metabolic disturbances [19–22]. Recently, 11β-HSD1 has been recognized as a potential therapeutic target for the treatment of metabolic syndrome as various 11β-HSD1 inhibitors have been shown to improve insulin sensitivity in ob/ob, db/db, KK-AY and high fat diet-induced obese mice [23–26]. Differentiation of 3T3-L1 cells caused a strong increase in 11β-HSD1 protein levels; combination of dexamethasone and insulin induced 11β-HSD1 expression [27]. In contrast, an 11β-HSD1 inhibitor KR-66344 downregulated expression of 11β-HSD1 and adipogenesis-related genes in cortisone-treated 3T3-L1 cells [26]. Recently, we have shown that ceramide, an intracellular lipid second messenger, is a novel regulator of 11β-HSD1 expression and activity in cultured preadipocytes [28]. It is known that angiotensin II interacts with ceramide production via its receptors, in which some cytokines, such as tumour necrosis factor-α, are involved [29]. In the present study, azilsartan treatment significantly downregulated expression of 11β-HSD1, as well as aP2 gene in adipose tissue of obese Koletsky rats. These results raise the possibility that azilsartan-elicited improvement of insulin sensitivity involves regulation of 11β-HSD1 activity. It needs to further investigate whether ceramide pathway is associated with azilsartan-elicited downregulation of adipose 11β-HSD1 expression.

Considered together, the present results show that treatment with the new ARB azilsartan improves glucose metabolism in obese spontaneously hypertensive Koletsky rats. This insulin-sensitizing effect is independent of decreases in food intake and BW increase or of the activation of PPARγ in adipose tissue. Our findings indicate the possible usefulness of azilsartan in the treatment of the metabolic syndrome.

Acknowledgements

We are grateful to Prof. Michael Murray’s suggestions of preparation of this manuscript. This work was supported by research grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology and the Japanese Ministry of Health, Labor and Welfare.

Conflict of Interest

The authors declared that they have no conflict of interest.

References