Association between polyclonal and mixed mycobacterial *Mycobacterium avium* complex infection and environmental exposure

Kohei Fujita¹, Yutaka Ito¹, Toyohiro Hirai¹, Takeshi Kubo², Koichi Maekawa³, Kaori Togashi², Satoshi Ichiyama⁴, and Michiaki Mishima¹

¹Department of Respiratory Medicine, ²Diagnostic Imaging and Nuclear Medicine, ⁴Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan ³Division of Respiratory Medicine, Takeda General Hospital, Kyoto, Japan

Correspondence: Yutaka Ito, M.D., Ph.D.

Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54, Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan; TEL: +81-75-751-3830; FAX: +81-75-751-4643; E-mail: yutaka@kuhp.kyoto-u.ac.jp

Authors' contributions:

K. F. collected and analyzed data, and drafted the manuscript.

Y. I. was principally responsible for study design, recruited patients, collected and interpreted data, and critically revised the manuscript.

T. H. recruited patients, collected and interpreted data, and revised the manuscript.

T. K. collected and analyzed data and revised the manuscript.

K. M. collected data.

S. I., K. T., and M. M. contributed to interpretation of data.

Financial support: This study was supported by Grants-in-Aid for Scientific Research by the Japanese Society for the Promotion of Science (24591479)

Running head: Factors associated with polyclonal MAC infection

Classification of the article: 11.5: Non-tuberculous Mycobacterial Disease

Key words: variable number of tandem repeats; environmental exposure; soil; asthma

Word count for the body of the manuscript: 3962 words

This article has an online data supplement, which is accessible from this issue's table of

content online at www.atsjournals.org.

1 Abstract

2	Rationale: Polyclonal and mixed mycobacterial Mycobacterium avium complex (MAC)
3	infection is observed in pulmonary MAC disease. Human living environments contain
4	multiple species or genotypes of non-tuberculous mycobacterial strains and are considered
5	sources of infection.
6	Objectives: To investigate the association of environmental exposure with polyclonal and
7	mixed mycobacterial infection in pulmonary MAC disease after adjustments for potential
8	confounding diseases and conditions, and radiographic findings.
9	Methods: We collected two separate sputum samples from 102 patients and single sputum
10	samples from 18 patients in whom the second MAC strain was not isolated in our prospective
11	cohort of pulmonary MAC disease. MAC isolates from sputum samples and patients'
12	residential soils were used for variable number of tandem repeats (VNTR) analyses.
13	Polyclonal and mixed mycobacterial MAC infections were defined as having different VNTR
14	genotypes and other mycobacterial species, respectively. Monoclonal MAC infection was
15	defined as all isolates showing a single VNTR genotype. Associations of the type of infection
16	with clinical and radiographic findings, and environmental exposure were measured.
17	Measurements and Main Results: Polyclonal and mixed mycobacterial MAC and monoclonal
18	infections were observed in 42 and 78 patients, respectively. By stepwise regression analysis,
19	patients with polyclonal and mixed mycobacterial MAC infections were associated with

- 20 history of asthma [odds ratio (OR) 11.56, 95% confidence interval (CI) 1.41–255.77,
- 21 P=0.021], high soil exposure (≥2 hours per week, OR 4.31, 95% CI 1.72–11.45, P<0.01),
- shower use in a bathroom (OR 4.57, 95% CI 1.28–23.23, P=0.018) and swimming in a pool
- 23 (OR 9.69, 95% CI 1.21–206.92, P<0.01).
- 24 Conclusions: Environmental exposure was associated with polyclonal and mixed
- 25 mycobacterial MAC infection in pulmonary MAC disease.
- 26
- 27 Word count for the abstract: 266 words

28 Introduction

29	In recent years, more attention has been focused on pulmonary Mycobacterium avium
30	complex (MAC) disease because of its increasing prevalence (1-3). Non-tuberculous
31	mycobacteria including MAC are widely distributed in water and soils in human living
32	environments (4-12) which are considered sources of infection (13).
33	Several studies have demonstrated that polyclonal MAC or mixed mycobacterial
34	infections have been observed in acquired immunodeficiency syndrome (AIDS) patients with
35	disseminated MAC disease (14-17). Albeit et al. initially reported that two AIDS patients with
36	bacteremic <i>M. avium</i> infections were concurrently infected with two distinct genotypes of
37	strains (14). In the same cohort, von Reyn et al. reported hospital hot water as the source of M .
38	avium infection (5). Wallace et al. reported that polyclonal MAC infection was also observed
39	in human immunodeficiency virus (HIV)-negative patients with pulmonary MAC disease (18)
40	and that new infections were observed after completing macrolide therapy (19).
41	We previously reported that high soil exposure was an independent risk factor for
42	pulmonary MAC disease (20) and that about one-half of patients' residential soil contained
43	one or more variable number of tandem repeats (VNTR) genotypes of MAC strains, with
44	residential soils likely sources of MAC infection (12). Therefore, environmental exposure
45	may lead to polyclonal MAC infection in patients with pulmonary MAC disease, but the
46	association is unknown. We investigated the incidence of polyclonal MAC or mixed

47	mycobacterial MAC infection in patients with pulmonary MAC disease and its association
48	with environmental exposure after adjustments of confounding diseases and conditions, and
49	radiographic findings. Some of the results of these studies have been previously reported in
50	abstract form (21).
51	
52	
53	Methods
54	Study population
55	Between January 2007 and April 2013, we enrolled 218 pulmonary MAC patients (169
56	pulmonary M. avium patients, 48 M. intracellulare patients, and 1 unspecified MAC patient)
57	who met the American Thoracic Society guidelines for diagnosis of MAC infection at Kyoto
58	University Hospital (22) in our prospective consecutive cohort. We excluded 10 patients who
59	did not want to participate in the study, 64 patients for whom clinical <i>M. avium</i> or <i>M.</i>
60	intracellulare strains were unavailable, 10 patients who were transferred to another hospital, 9
61	patients who discontinued hospital visits, and 5 patients who died during the study period.
62	Finally, 120 pulmonary MAC patients (94 M. avium patients and 26 M. intracellulare
63	patients) were analyzed in this study.(Figure 1). We included 71 of 100 patients with
64	pulmonary MAC disease in our previous study and 1 non-infected patient who developed
65	pulmonary MAC disease after the previous study (12) into this study. The remaining 29

66

patients were excluded, because they had no follow-up or did not provide sputum samples. No

67	patient had evidence of HIV infection or active malignant disease. All patients signed a
68	written consent form. The institutional review of Kyoto University board approved this
69	prospective study.
70	Data collection
71	All patients completed a standardized questionnaire about underlying diseases and conditions,
72	smoking status, alcohol usage, and experience of environmental exposure, such as soil
73	exposure from farming and gardening, or any activities involving soil exposure and types of
74	soil (farm, yard, and potting soil) to which patients had been exposed, and water exposure
75	from taking baths, showering, washing dishes, and swimming in a pool. (20) We defined a
76	drinking habit as a patient who drank alcohol at least once each week. As we previously
77	reported that patients with pulmonary MAC diseased experienced significantly more soil
78	exposure (2 or more hours per week) than controls (12, 20), high soil exposure was defined as
79	2 or more hours per week of these activities. Japanese individuals, especially the elderly,
80	usually fill a bathtub with hot water and scoop the hot water without using a shower when
81	washing their bodies. We asked about the usual use of a shower when taking a bath,
82	swimming habits, and where the patients went swimming (pool, river, lake, or sea).
83	Gastroesophageal reflux disease symptoms were assessed by self-reported questionnaires (23,
84	24). Severe pneumonia was defined as hospitalization for pneumonia. We collected the last

85	laboratory data before or while collecting sputum samples. High-resolution computed
86	tomography (HRCT) images (contiguous, 2 mm-thick lung images) of the 119 patients were
87	obtained. Blind readings of these HRCT images were performed by one board-certified
88	thoracic radiologist who had no prior knowledge of the patient profiles or the results of
89	laboratory data.
90	Clinical and soil MAC strains subjected to VNTR analyses
91	We collected two separate sputum samples at separate hospital visits from 102 patients (M .
92	avium in 81 patients and M. intracellulare in 21 patients). Single sputum samples were
93	analyzed in 18 patients (M. avium in 13 patients and M. intracellulare in 5 patients) because
94	the second MAC strain was not isolated during the follow-up periods. Soil samples from 72
95	patients in our previous study (12) were used for this study. Patients collected approximately 5
96	g of soil from their residences to which they had been exposed and mailed the soil samples to
97	Kyoto University Hospital. The choice of soil samples and depth of soil were left to the
98	individual patients. Soil samples were processed as previously reported (25). After cultivation
99	using the BACTEC MGIT 960 system [Becton Dickinson and Company (BD), NJ, USA],
100	positive cultures were subjected to either PCR analysis for the identification of <i>M. avium</i> or <i>M.</i>
101	intracellulare using the COBAS TaqMan MAI test (Roche Diagnostics, Basel, Switzerland),
102	or DNA-DNA hybridization for identification of other non-tuberculous mycobacteria species
103	of clinical isolates using DDH Mycobacteria Kyokuto (Kyokuto Pharmaceutical Industrial

104	Co., Tokyo, Japan). Positive cultures were routinely subcultured on Kudo PD agar (Japan
105	BCG Laboratory, Tokyo, Japan) in our microbiological laboratory. Joined multiple colonies
106	on the agar were picked for VNTR analysis and subcultured on Middlebrook 7H11 agar (BD)
107	to separate single colonies. When single DNA bands were seen at every VNTR allele from the
108	joined, multiple colonies, two distinct single colonies were selected to confirm that each of
109	the two VNTR profiles showed the same single genotype. When multiple, separate DNA
110	bands were seen at any VNTR allele from the multiple MAC colonies, multiple, distinct,
111	single colonies were selected until a determination of each of the multiple VNTR genotypes
112	could be made.
113	VNTR analysis procedure
114	Primer sets for 15 M. avium VNTR loci and 16 M. intracellulare VNTR loci were used in the
114 115	Primer sets for 15 <i>M. avium</i> VNTR loci and 16 <i>M. intracellulare</i> VNTR loci were used in the VNTR analysis as described previously (26, 27, Tables E1 and E2). The PCR amplification
115	VNTR analysis as described previously (26, 27, Tables E1 and E2). The PCR amplification
115 116	VNTR analysis as described previously (26, 27, Tables E1 and E2). The PCR amplification condition for <i>M. avium</i> was as follows: 1 cycle of 95°C for 10 min, followed by 38 cycles of
115 116 117	VNTR analysis as described previously (26, 27, Tables E1 and E2). The PCR amplification condition for <i>M. avium</i> was as follows: 1 cycle of 95°C for 10 min, followed by 38 cycles of 98°C for 10 s, 68°C for 30 s, and 72°C for 1 min, and then 1 cycle of 72°C for 7 min. For <i>M</i> .
115 116 117 118	VNTR analysis as described previously (26, 27, Tables E1 and E2). The PCR amplification condition for <i>M. avium</i> was as follows: 1 cycle of 95°C for 10 min, followed by 38 cycles of 98°C for 10 s, 68°C for 30 s, and 72°C for 1 min, and then 1 cycle of 72°C for 7 min. For <i>M.</i> <i>intracellulare</i> , the PCR condition was 1 cycle of 95°C for 10 min, followed by 38 cycles of
 115 116 117 118 119 	VNTR analysis as described previously (26, 27, Tables E1 and E2). The PCR amplification condition for <i>M. avium</i> was as follows: 1 cycle of 95°C for 10 min, followed by 38 cycles of 98°C for 10 s, 68°C for 30 s, and 72°C for 1 min, and then 1 cycle of 72°C for 7 min. For <i>M.</i> <i>intracellulare</i> , the PCR condition was 1 cycle of 95°C for 10 min, followed by 38 cycles of 98°C for 10 s, 64°C for 30 s, and 72°C for 1 min, and then 1 cycle of 72°C for 7 min. PCR

123	DNA High Resolution kit,	with a built-in OM500 method	and the following parameters:
-----	--------------------------	------------------------------	-------------------------------

- sample injection voltage at 5 kV for 10 s and a separation voltage at 5 kV for 500 s, and with
- 125 BioCalculator Software. An alignment marker (15 bp/3 kb) and a 100 bp DNA size marker
- 126 (Takara Bio, Shiga, Japan) were run simultaneously with the samples for size estimation of
- 127 the allelic ladders (28). Finally, the calculated values were rounded to the closest whole

128 number.

129 Definition of monoclonal and polyclonal MAC infections

- 130 Polyclonal MAC infection was defined when the VNTR analysis for the same *M. avium*
- 131 strains or *M. intracellulare* strains, respectively, revealed a change at 1 or more out of the 15
- 132 M. avium VNTR loci or 16 M. intracellulare VNTR loci; mixed mycobacterial MAC
- 133 infection was defined when other mycobacterial species were isolated. Monoclonal MAC
- infection was defined when all the colonies isolated from sputum samples represented a single

135 VNTR pattern.

136 Statistical analysis

- 137 JMP version 9.0.0 (SAS Institute, NC, USA) was used for all statistical analyses. Group
- 138 comparisons were made using the Chi-square test, Fisher's exact test, and Wilcoxon test.
- 139 More than two group comparisons were made by analysis of variance. Variables were
- included in stepwise regression analysis if the probability values were less than 0.05 by
- 141 univariate analysis. Odds ratios (ORs) and their respective 95% confidence intervals (CIs)

142	were computed as estimates of relative risk. A P value less than 0.05 was considered
143	statistically significant.
144	
145	
146	Results
147	Genetic diversity of MAC infection
148	Seventy-eight of 120 patients (65.0%) had a monoclonal MAC infection: 64 patients (82.1%)
149	were infected with <i>M. avium</i> , and 14 patients (17.9%) were infected with <i>M. intracellulare</i> .
150	Among 60 patients provided two different samples, 59 patients had two or more positive
151	MAC cultures in a single year around the time of the second sputum sample collection, and
152	one patient had a single positive <i>M. intracellulare</i> culture after sputum conversion. Eighteen
153	patients provided single sputum samples and showed single genotypes in each of the samples.
154	They were classified into monoclonal infection (Tables E3 and E4, Figures E1 and E2).
155	Twenty-seven of 120 patients (22.5%) had a polyclonal MAC infection: 20 patients
156	(74.1%) were infected with <i>M. avium</i> , and 7 patients (25.9%) were infected with <i>M</i> .
157	intracellulare. All patients provided two sputum samples containing MAC strains and had two
158	or more positive MAC cultures in a single year around the time of the second sputum
159	sampling event. Sixteen patients with an <i>M. avium</i> infection and 5 patients with an <i>M.</i>
160	intracellulare infection had different VNTR genotypes of MAC strains from each of the two

161	separate sputum samples (subsequent infections in independent events). One patient with an
162	M. avium infection and one patient with an M. intracellulare infection had two different
163	VNTR genotypes of strains from one sputum sample (simultaneous polyclonal infections).
164	Three patients with an <i>M. avium</i> infection and one patient with an <i>M. intracellulare</i> infection
165	all had two different VNTR genotypes of strains from one sputum sample and another VNTR
166	genotype of a strain from another sputum sample (in total, three different VNTR genotypes
167	from two sputum samples) (Tables E3 and E4, Figures E1 and E2).
168	Fifteen patients had mixed mycobacterial MAC infections. M. avium strains changed
169	to M. intracellulare in six patients, to M. abscessus in two patients, M. fortuitum in one
170	patient, and to an unidentified Mycobacterium spp. in one patient. M. intracellulare strains
171	changed to M. avium in two patients, to M. abscessus in two patients, and to an unidentified
172	Mycobacterium spp. in one patient. Except for the last patient, all patients had two or more
173	positive cultures of the same mycobacterial species in a single year around the time of the
174	second sputum sampling event.
175	In total, 42 patients (35.0%) were included in the polyclonal and mixed
176	mycobacterial MAC infection group. Both patients with monoclonal MAC infections and
177	polyclonal and mixed mycobacterial MAC infections had similar sampling intervals of their
178	two sputum cultures (22.2±13.8 months vs. 24.2±17.7, respectively, P=0.89, Table 1).
179	We found 107 M. avium VNTR genotypes of M. avium strains, consisting of one

180	genotype from each of 64 monoclonal infections, two genotypes from each of 17 subsequent
181	polyclonal infections, and three genotypes from each of 3 subsequent and simultaneous
182	polyclonal infections. Eighty-four genotypes were singletons, and 23 genotypes sharing
183	identical genotypes were classified into nine different genotypes (types 2, 18, 21, 24, 26, 44,
184	61, 71, and 73, Table E3, Figure E1). Eventually, we found 93 different <i>M. avium</i> VNTR
185	genotypes among the 107 genotypes (86.9% diversity). Twenty-nine M. intracellulare VNTR
186	genotypes consisted of one genotype from each of 14 monoclonal infections, two genotypes
187	from each of six subsequent polyclonal infections, and three genotypes from one subsequent
188	and simultaneous infection. Twenty-five genotypes were singletons and four genotypes were
189	classified into two different genotypes (types 2 and 10, Table E4, Figure E2). Eventually, 27
190	different genotypes were found among the 29 genotypes (93.1% diversity). <i>M. avium</i> and <i>M.</i>
191	intracellulare strains from 15 patients with mixed mycobacterial MAC infections were not
192	analyzed for VNTR genotypes.
193	Characteristics of pulmonary MAC patients with monoclonal MAC and
194	polyclonal/mixed mycobacterial MAC infections
195	Patients with polyclonal and mixed mycobacterial MAC infections were more often male and
196	had a higher prevalence of asthma than those with monoclonal MAC infections in univariate
197	analysis (42.9% vs. 15.4%, respectively, OR 4.13, 95% CI 1.73–9.81, P<0.01; 16.7% vs. 1.3%,

respectively, OR 15.40, 95% CI 1.82–129.98, P=0.013, Table 2). No significant differences

199	were found in body mass index, duration of MAC disease from diagnosis to enrollment of the
200	study, other underling diseases and conditions, use of immunosuppressants, smoking status,
201	alcohol drinking habits, or laboratory findings. Seven patients currently used inhaled
202	corticosteroids: fluticasone in one patient, budesonide in one patient, and a combination of
203	fluticasone and salmeterol in five patients. The median daily dose of inhaled corticosteroids
204	was 500 μ g/day equivalents of fluticasone (200–500 μ g/day). Seven patients with asthma and
205	six patients using inhaled corticosteroids had subsequent polyclonal infections.
206	In both patients with monoclonal MAC and polyclonal and mixed mycobacterial
207	MAC infections, nodules and bronchiectasis were the most common findings, and either the
208	right middle lobe or left lingular area was predominantly involved (97.4% and 90.5%,
209	respectively). Cavitation (cavitary form and cavitary and nodular bronchiectasis form) was
210	more common among patients with monoclonal MAC infections than those with polyclonal
211	and mixed mycobacterial MAC infections in univariate analysis (44.2% vs. 21.4%, P=0.014).
212	There was no significant difference in the distribution of lung involvement or abnormalities of
213	the thoracic skeleton between patients with monoclonal MAC and polyclonal/mixed
214	mycobacterial MAC infections (Table 3).
215	Among 43 patients with cavitation, 34 patients had monoclonal MAC infections: 4
216	patients (11.8%) had a history of smoking, 14 patients (41.2%) had a drinking habit, 3 (8.8%)
217	patient had a previous history of tuberculosis, and 1 patient (2.9%) had chronic obstructive

218	pulmonary disease (COPD). Of the remaining nine patients who had polyclonal and mixed
219	mycobacterial MAC infections, no patient had a history of smoking, two (22.2%) patients had
220	a drinking habit, and two patients (22.2%) had a previous history of tuberculosis.
221	Among 102 patients who provided two sputum samples, 64 (62.7%) patients
222	received treatment. Eight patients were treated prior to collecting the two samples. The
223	remaining 56 patients provided the first sample before or after starting treatment; 41 and 15
224	patients provided the second samples during treatment and after discontinuing treatment,
225	respectively. Among the former 41 patients, 14 patients (34.1%) converted sputum and 23
226	patients did not convert sputum. Among the 23 patients who provided the second samples
227	after treatment, 9 patients (39.1%) converted and relapsed, and 14 patients did not convert
228	sputum. Among the 38 patients without treatment, 26 (68.4%) patients maintained positive
229	cultures, 12 patients converted sputum, and 5 patients relapsed. Eventually, 7 of 38 patients
230	(18.4%) converted sputum. Among the 18 patients who provided a single sample, 11 patients
231	received treatment and 7 patients did not receive treatment. All 18 patients converted sputum
232	without relapse.
233	Association between types of MAC infection and environmental exposure
234	Patients with polyclonal and mixed mycobacterial MAC infections experienced significantly
235	higher soil exposure, used a bathroom shower more frequently, and swam more frequently in

a pool than patients with monoclonal MAC infections (61.9% vs. 30.8%, respectively, P<0.01;

237	90.5% vs. 70.5%, respectively, P=0.013; 16.7% vs. 1.3%, respectively, P<0.01, respectively,
238	Table 4). Duration of soil exposure and experience of soil exposure before the diagnosis of
239	pulmonary MAC disease and during the follow-up periods were not different between patients
240	with polyclonal and mixed mycobacterial MAC infections and those with monoclonal MAC
241	infections. Eight patients swam in a pool two to eight times per month. Six of the eight
242	patients (75.0%) experienced swimming before the diagnosis of pulmonary MAC.
243	Association of types of soil or recovery of MAC strain with characteristic of patients or
244	types of MAC infection
245	Fifty, 45, and 20 patients experienced high soil exposure (≥ 2 hours/week), low soil exposure
246	(< 2 hours/week) and no exposure, respectively. Among the 95 patients with any soil exposure,
247	6, 36, and 53 patients, respectively, were involved with farm, potting, and yard soils. When
248	the characteristics and environmental exposure of the patients were stratified with the types of
249	soil, patients with high soil exposure were involved with more farm and potting soils (66.7%
250	in farm soil, 66.7% in potting soil, and 41.5% in yard soil, P= 0.05).
251	M. avium and M. intracellulare strains were recovered from 33 (45.8%) of 72 soil
252	samples (3 farm soil samples, 25 potting soil samples, and 37 yard soil samples); 22 samples
253	(30.6%) contained monoclonal strains, and 11 samples (15.3%) contained polyclonal strains.
254	Types of MAC infection, either monoclonal MAC or polyclonal and mixed mycobacterial
255	MAC infection, were not associated with types of soils (farm, potting, or yard soils), soil

256	without MAC strains, soil with monoclonal MAC strains, or soil with polyclonal MAC strains
257	(Table 5). Clinical MAC and corresponding soil isolates with identical VNTR genotypes were
258	identified from three patients with polyclonal infections and two patients with monoclonal
259	infections. All five patients experienced high soil exposure (MA18-1a/bP, MA30a/bP,
260	MA64a/bP, and MA77a/bP in Table E3 and MI21a/bP in Table E4).
261	Factors associated with polyclonal/mixed mycobacterial MAC infection
262	In the multivariate stepwise regression analysis, history of asthma (OR 11.56, 95% CI
263	1.41–255.77, P=0.021), high soil exposure (OR 4.31, 95% CI 1.72-11.45, P<0.01), shower
264	use in a bathroom (OR 4.57, 95% CI 1.28–23.23, P=0.018), and swimming in a pool (OR 9.69,
265	95% CI 1.21–206.92, P=0.032) were significantly associated with polyclonal and mixed
266	mycobacterial MAC infection (Table 6). We also found similar frequencies in each variable in
267	M. avium and M. intracellulare infection. All significant variables were associated with
268	polyclonal and mixed mycobacterial MAC infection due to M. avium infection, whereas no
269	variables reached statistical significance in cases of <i>M. intracellulare</i> infection due to the
270	small number of patients (Tables E5, E6, and E7).
271	
272	

273 **Discussion**

274 This is the first study to demonstrate that polyclonal and mixed mycobacterial infection in

275	pulmonary MAC disease is significantly associated with environmental exposure after
276	adjusting for confounding clinical and radiographic findings.
277	We demonstrated that high soil exposure was most significantly associated with
278	polyclonal and mixed mycobacterial MAC infection after adjusting for confounding clinical
279	and radiographic findings (Tables 4 and 6). All five patients with identical VNTR genotypes
280	of pairs of MAC clinical and soil strains experienced high soil exposure. These patients
281	experienced a long duration of soil exposure both before and after development of pulmonary
282	MAC disease and were considered to have repetitive soil exposure from their residences. In a
283	recent study, Wallace et al. showed that the <i>M. intracellulare</i> strain was absent from
284	household water and biofilm samples and that pulmonary M. intracellulare patients are
285	thought to acquire their pathogens from environmental sources other than household water
286	(29). Because the <i>M. intracellulare</i> strain was isolated from soil (11, 12), soil could be a
287	possible source of <i>M. intracellulare</i> infection.
288	Furthermore, we found both shower use in a bathroom and swimming in a pool were
289	associated with polyclonal and mixed mycobacterial MAC infection. MAC is an
290	environmental organism in water and has been found in a showerhead in a bathroom and a spa
291	pool (7-9). A previous study reported that <i>M. avium</i> was recovered from showerheads and
292	shower water in bathrooms that were genetically related to clinical isolates (8). Spraying
293	plants with a spray bottle was also reported to be associated with pulmonary MAC disease

312

294	(30). As we focused on susceptible hosts in this study, our findings cannot automatically be
295	extended to the general population. However, repetitive exposure to soil or water is likely to
296	cause new MAC or mixed mycobacterial infections in susceptible hosts.
297	Wallace et al. reported that monoclonal MAC infection was predominantly observed
298	in cavitary disease (18). Although few patients had typical cavitary disease (male smokers
299	with COPD or a previous history of tuberculosis) in our cohort, patients with monoclonal
300	infections were more common than those with polyclonal and mixed mycobacterial MAC
301	infections (Table 1, 2, and 3). Moreover, monoclonal infection was associated with female
302	sex and cavitation (cavitary form and cavitary and nodular bronchiectasis form) (Tables 2, 3,
303	and 5). Cavitary disease was often concomitant with nodules or bronchiectasis in our cohort
304	as well as another cohort of pulmonary MAC disease in Japan (31). Because there have been
305	a decreasing number of patients with tuberculosis and its associated morbidity, typical
306	cavitary disease caused by previous events of tuberculosis has been greatly reduced. In the
307	United States in the 1980s, patients with pulmonary MAC disease were predominantly
308	elderly males with chronic lung disease and cavitary disease, whereas in the 2000s, the
309	patient demographic changed to elderly women (32, 33). Nodular infiltrates and cylindrical
310	bronchiectasis can progress to fibrocavitary disease that is indistinguishable from
311	pre-existing bronchiectatic lung disease (34).

Various host traits, including asthma (35, 36), COPD (30, 36), gastroesophageal

313	reflux disease (37), severe pneumonia (30), abnormalities of the thoracic skeleton such as thin
314	scoliosis and pectus excavatum (38), and use of immunosuppressing agents (30, 35) or
315	inhaled corticosteroids (35, 36), have been reported as risk factors for non-tuberculous
316	mycobacterial pulmonary diseases. Although we found that a history of asthma was
317	significantly associated with polyclonal and mixed mycobacterial MAC infection, the number
318	of asthma patients was very low in each group. (Tables 2 and 6)
319	In addition to pulsed-field gel electrophoresis and restriction fragment length
320	polymorphisms (5-9, 11, 13-16), VNTR analysis has become one of the most widely used
321	genotyping methods and has the following advantages: easy to perform, time saving, cost
322	efficient, and acceptable discriminatory power (26-28, 39, 40). The VNTR analysis showed
323	good discriminatory power (86.9% diversity of <i>M. avium</i> genotypes and 93.1% diversity of <i>M</i> .
324	intracellulare genotypes) in this study.
325	There were some limitations in our study. First, if we collected more than two
326	sputum samples or colonies during the study period, more patients might have been diagnosed
327	with polyclonal infections. However, different clones were rarely found between two separate
328	cultures when those cultures contained the identical clone (15). Although we collected joined,
329	multiple colonies from each sample, we determined only one or two genotypes. Second, as we
330	collected the second samples about 2 years apart from the first samples without any
331	consideration of clinical significance, we could not distinguish infection from colonization.

332	However, as the patients primarily had two or more positive mycobacterial cultures in a single
333	year around the time of the second sputum sample collection, we consider that almost all of
334	the second strains were actual infections. Third, our sample size was insufficient to show host
335	traits other than asthma that was associated with polyclonal and mixed mycobacterial MAC
336	infection. Finally, because we collected soil samples from 60.0% of the participants but no
337	water samples, our microbiological findings may support a limited picture of the route of
338	transmission. Soil samples were self-collected by patients, and choice of soil samples and
339	depth of soil were left to the individual patients. It was quite possible that relevant groups
340	made different choices of soils. Actually, patients with high soil exposure were involved with
341	farm and potting soils, probably due to planting or gardening. However, we reported that the
342	types of soil did not affect recovery of MAC strains (12). Furthermore, we showed that types
343	of MAC infection were not associated with types of soil, presence of MAC strains, and
344	clonality (Table 5). As MAC is ubiquitous environmental bacteria, we considered that patient
345	characteristics or behavioral activities would predict polyclonal and mixed mycobacterial
346	MAC infection more than the results of the source of infection.
347	In conclusion, we demonstrate a strong association between environmental exposure
348	and polyclonal and mixed mycobacterial MAC infection in patients with pulmonary MAC
349	disease after adjusting for confounding clinical and radiographic findings, which would
350	provide beneficial information of patients' care for preventing repetitive MAC infection in

351 susceptible patients.

- 353 (1) Marras TK, Chedore P, Ying AM, Jamieson F. Isolation prevalence of pulmonary
- non-tuberculous mycobacteria in Ontario, 1997-2003. *Thorax* 2007;62:661-666.
- (2) Prevots DR, Shaw PA, Strickland D, Jackson LA, Raebel MA, Blosky MA, Montes de
- 356 Oca R, Shea YR, Seitz AE, Holland SM, Olivier KN. Nontuberculous mycobacterial lung
- disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med
- 358 2010;182:970-976.
- 359 (3) Morimoto K, Iwai K, Uchimura K, Okumura M, Yoshiyama T, Yoshimori K, Ogata H,
- 360 Kurashima A, Gemma A and Kudoh S. A steady increase in nontuberculous mycobacteriosis
- 361 mortality and estimated prevalence in Japan. Ann Am Thorac Soc. 2013. [Epub ahead of
- 362 print].
- 363 (4) Falkinham JO,3rd. Surrounded by mycobacteria: nontuberculous mycobacteria in the
- human environment. J Appl Microbiol 2009;107:356-367.
- 365 (5) von Reyn CF, Maslow JN, Barber TW, Falkinham JO 3rd, Arbeit RD. Persistent
- 366 colonisation of potable water as a source of *Mycobacterium avium* infection in AIDS. *Lancet*
- 367 1994; 343: 1137-1141.
- 368 (6) Falkinham JO,3rd, Norton CD, LeChevallier MW. Factors influencing numbers of
- 369 Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking
- 370 water distribution systems. *Appl Environ Microbiol* 2001;67:1225-1231.

- 371 (7) Lumb R, Stapledon R, Scroop A, Bond P, Cunliffe D, Goodwin A, Doyle R, Bastian I.
- 372 Investigation of spa pools associated with lung disorders caused by *Mycobacterium avium*
- complex in immunocompetent adults. *Appl Environ Microbiol*. 2004;70:4906-490.
- 374 (8) Nishiuchi Y, Maekura R, Kitada S, et al. The recovery of Mycobacterium
- avium-intracellulare complex (MAC) from the residential bathrooms of patients with
- 376 pulmonary MAC. *Clin Infect Dis* 2007; 45: 347-351.
- 377 (9) Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic
- 378 pathogens enriched in showerhead biofilms. Proc Natl Acad Sci USA
- 379 2009;106:16393-16399.
- 380 (10) Falkinham JO,3rd. Nontuberculous mycobacteria from household plumbing of patients
- with nontuberculous mycobacteria disease. *Emerg Infect Dis* 2011; 17: 419-424.
- 382 (11) De Groote MA, Pace NR, Fulton K, Falkinham JO, 3rd. Relationships between
- 383 Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting
- 384 soils. *Appl Environ Microbiol* 2006;72:7602-7606.
- 385 (12) Fujita K, Ito Y, Hirai T, Maekawa K, Imai S, Tatsumi S, Niimi A, Iinuma Y, Ichiyama S,
- 386 Mishima M. Genetic relatedness of *Mycobacterium avium-intracellulare* complex isolates
- from patients with pulmonary MAC disease and their residential soils. *Clin Microbiol Infect*
- 388 2013;19:537-541.
- (13) Falkinham JO 3rd. Ecology of nontuberculous mycobacteria--where do human infections

- come from? *Semin Respir Crit Care Med.* 2013;34:95-102.
- 391 (14) Arbeit RD, Slutsky A, Barber TW, Maslow JN, Niemczyk S, Falkinham JO, 3rd,
- 392 O'Connor GT, von Reyn CF. Genetic diversity among strains of Mycobacterium avium
- 393 causing monoclonal and polyclonal bacteremia in patients with AIDS. J Infect Dis
- 394 1993;167:1384-1390.
- 395 (15) Slutsky AM, Arbeit RD, Barber TW, Rich J, von Reyn CF, Pieciak W, Barlow MA,
- 396 Maslow JN. Polyclonal infections due to Mycobacterium avium complex in patients with
- 397 AIDS detected by pulsed-field gel electrophoresis of sequential clinical isolates. J Clin
- 398 *Microbiol* 1994;32:1773-1778.
- 399 (16) Picardeau M, Varnerot A, Lecompte T, Brel F, May T, Vincent V. Use of different
- 400 molecular typing techniques for bacteriological follow-up in a clinical trial with AIDS
- 401 patients with *Mycobacterium avium* bacteremia. *J Clin Microbiol* 1997;35:2503-2510.
- 402 (17) Kirschner P, Vogel U, Hein R, Böttger EC. Bias of culture techniques for diagnosing
- 403 mixed Mycobacterium genavense and Mycobacterium avium infection in AIDS. J Clin
- 404 *Microbiol* 1994;32:828-831.
- 405 (18) Wallace RJ, Jr, Zhang Y, Brown BA, Dawson D, Murphy DT, Wilson R, Griffith DE.
- 406 Polyclonal *Mycobacterium avium* complex infections in patients with nodular bronchiectasis.
- 407 Am J Respir Crit Care Med 1998;158:1235-1244.

	408	(19)) Wallace Jr	RJ,	Zhang	Υ,	Brown-Elliott BA,	Yakrus MA,	Wilson	RW, Mar	ın L,	Couch L
--	-----	------	--------------	-----	-------	----	-------------------	------------	--------	---------	-------	---------

- 409 Girard WM, Griffith DE. Repeat positive cultures in *Mycobacterium intracellulare* lung
- 410 disease after macrolide therapy represent new infections in patients with nodular
- 411 bronchiectasis. J Infect Dis 2002;186:266-273.
- 412 (20) Maekawa K, Ito Y, Hirai T, Kubo T, Imai S, Tatsumi S, Fujita K, Takakura S, Niimi A,
- 413 Iinuma Y, Ichiyama S, Togashi K, Mishima M. Environmental risk factors for pulmonary
- 414 *Mycobacterium avium-intracellulare* complex disease. *Chest* 2011;140:723-729.
- 415 (21) Fujita K, Ito Y, Hirai T, Kubo K, Maekawa K, Togashi K, Ichiyama S, Mishima M.
- 416 Association between polyclonal *Mycobacterium avium* complex infection and environmental
- 417 exposure. Presented at the American Thoracic Society International Conference. May 17–22,
- 418 2013, Philadelphia, Pennsylvania. Abstract.
- 419 (22) Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland
- 420 SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF,
- 421 Wallace RJ, Jr, Winthrop K, ATS Mycobacterial Diseases Subcommittee, American Thoracic
- 422 Society, Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis,
- 423 treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care
- 424 *Med* 2007;175:367-416.
- 425 (23) Kusano M, Shimoyama Y, Sugimoto S, Kawamura O, Maeda M, Minashi K,
- 426 Kuribayashi S, Higuchi T, Zai H, Ino K, Horikoshi T, Sugiyama T, Toki M, Ohwada T, Mori

427	M. Development and	l evaluation of FSSG:	frequency scale	for the symptoms	s of GERD. J
-----	--------------------	-----------------------	-----------------	------------------	--------------

- 428 *Gastroenterol.* 2004;39:888-891.
- 429 (24) Carlsson R, Dent J, Bolling-Sternevald E, Johnsson F, Junghard O, Lauritsen K, Riley S,
- 430 Lundell L. The usefulness of a structured questionnaire in the assessment of symptomatic
- 431 gastroesophageal reflux disease. *Scand J Gastroenterol*. 1998;33:1023-1029.
- 432 (25) Parashar D, Chauhan DS, Sharma VD, Chauhan A, Chauhan SV, Katoch VM.
- 433 Optimization of procedures for isolation of mycobacteria from soil and water samples
- 434 obtained in northern India. *Appl Environ Microbiol* 2004;70:3751-3753.
- 435 (26) Inagaki T, Nishimori K, Yagi T, Ichikawa K, Moriyama M, Nakagawa T, Shibayama T,
- 436 Uchiya K, Nikai T, Ogawa K. Comparison of a variable-number tandem-repeat (VNTR)
- 437 method for typing *Mycobacterium avium* with mycobacterial interspersed
- 438 repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing. J Clin
- 439 *Microbiol* 2009;47:2156-2164.
- 440 (27) Ichikawa K, Yagi T, Inagaki T, Moriyama M, Nakagawa T, Uchiya K, Nikai T, Ogawa
- 441 K. Molecular typing of *Mycobacterium intracellulare* using multilocus variable-number of
- 442 tandem-repeat analysis: identification of loci and analysis of clinical isolates. *Microbiology*
- 443 2010;156:496-504.
- 444 (28) Kikuchi T, Watanabe A, Gomi K, Sakakibara T, Nishimori K, Daito H, Fujimura S,
- 445 Tazawa R, Inoue A, Ebina M, Tokue Y, Kaku M, Nukiwa T. Association between

- 446 mycobacterial genotypes and disease progression in *Mycobacterium avium* pulmonary
- 447 infection. *Thorax.* 2009;64:901-907.
- 448 (29) Wallace RJ Jr, Iakhiaeva E, Williams MD, Brown-Elliott BA, Vasireddy S,
- 449 Vasireddy R, Lande L, Peterson DD, Sawicki J, Kwait R, Tichenor WS, Turenne C,
- 450 Falkinham JO 3rd. Absence of *Mycobacterium intracellulare* and presence of
- 451 Mycobacterium chimaera in household water and biofilm samples of patients in the
- 452 United States with *Mycobacterium avium* complex respiratory disease. J Clin
- 453 *Microbiol.* 2013;51:1747-52.
- 454 (30) Dirac MA, Horan KL, Doody DR, Meschke JS, Park DR, Jackson LA, Weiss NS,
- 455 Winthrop KL, Cangelosi GA. Environment or host?: A case-control study of risk factors for
- 456 *Mycobacterium avium* complex lung disease. *Am J Respir Crit Care Med* 2012;186:684-691.
- 457 (31) Hayashi M, Takayanagi N, Kanauchi T, Miyahara Y, Yanagisawa T, Sugita Y.
- 458 Prognostic factors of 634 HIV-negative patients with *Mycobacterium avium* complex lung
- 459 disease. Am J Respir Crit Care Med 2012;185:575-583.
- 460 (32) O'Brien RJ, Geiter LJ, Snider DE Jr. The epidemiology of nontuberculous mycobacterial
- diseases in the United States: results from a national survey. *Am Rev Respir Dis* 1987;
- 462 135:1007–14.

463	(33) Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL. Nontuberculous	

- 464 mycobacterial disease prevalence and risk factors: a changing epidemiology. *Clin Infect Dis*
- 465 2009;49:e124-9.
- 466 (34) Aksamit TR. Mycobacterium avium complex pulmonary disease in patients with
- 467 pre-existing lung disease. Clin Chest Med. 2002;23:643-53
- 468 (35) Fritscher LG, Marras TK, Bradi AC, Fritscher CC, Balter MS, Chapman KR.
- 469 Nontuberculous mycobacterial infection as a cause of difficult-to-control asthma: a
- 470 case-control study. *Chest* 2011;139:23-27.
- 471 (36) Andrejak C, Nielsen R, Thomsen VO, Duhaut P, Sorensen HT, Thomsen RW. Chronic
- respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis.
- 473 *Thorax* 2013;68:256-262.
- 474 (37) Thomson RM, Armstrong JG, Looke DF. Gastroesophageal reflux disease, acid
- suppression, and Mycobacterium avium complex pulmonary disease. Chest
- 476 2007;131:1166-1172.
- 477 (38) Kim RD, Greenberg DE, Ehrmantraut ME, Guide SV, Ding L, Shea Y, Brown MR,
- 478 Chernick M, Steagall WK, Glasgow CG, Lin J, Jolley C, Sorbara L, Raffeld M, Hill S, Avila
- 479 N, Sachdev V, Barnhart LA, Anderson VL, Claypool R, Hilligoss DM, Garofalo M,
- 480 Fitzgerald A, Anaya-O'Brien S, Darnell D, DeCastro R, Menning HM, Ricklefs SM, Porcella
- 481 SF, Olivier KN, Moss J, Holland SM. Pulmonary nontuberculous mycobacterial disease:

- 482 prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med
- 483 2008;178:1066-1074.
- 484 (39) Matsumoto T, Koshii Y, Sakane K, Murakawa T, Hirayama Y, Yoshida H, Kurokawa M,
- 485 Tamura Y, Nagai T, Kawase I. A novel approach to automated genotyping of *Mycobacterium*
- 486 *tuberculosis* using a panel of 15 MIRU VNTRs. *J Microbiol Methods* 2013 [Epub ahead of
- 487 print]
- 488 (40) Iakhiaeva E, McNulty S, Brown Elliott BA, Falkinham JO 3rd, Williams MD, Vasireddy
- 489 R, Wilson RW, Turenne C, Wallace RJ Jr. MIRU-VNTR of Mycobacterium intracellulare for
- 490 strain comparison with establishment of a PCR data base. *J Clin Microbiol* 2013; 51:409-416.

491 Table 1. Genetic diversity of pulmonary *Mycobacterium avium* complex infections

	Patients with	Patients with	Patients with mixed
	monoclonal	polyclonal	mycobacterial
	MAC infections	MAC infections	MAC infections
	(n=78)	(n=27)	(n=15)
M. avium	64 (82.1)	20 (74.1)	[†] 10 (66.7)
M. intracellulare	14 (17.9)	7 (25.9)	[‡] 5 (33.3)
Sputum sampling intervals, month	22.2±13.8	24.	2±17.7

492 *Definition of abbreviations*: MAC = *Mycobacterium avium* complex.

493 Data show number (%) of patients or mean \pm standard deviation.

[†]*M. avium* change to *M. intracellulare* 6; *M. abscessus* 2; *M. fortuitum* 1; *Mycobacterium* spp.

495 1.

⁴⁹⁶ ^{*t*}*M. intracellulare* change to *M. avium* 2; *M. abscessus* 2; *Mycobacterium* spp. 1.

497 Table 2. Characteristics of patients with monoclonal infections and polyclonal and mixed

498 mycobacterial *Mycobacterium avium* complex infections in pulmonary MAC disease

Variable	Patients with	Patients with	Р
	monoclonal	polyclonal and	value
	MAC infections	mixed mycobacterial	
		MAC infections	
	(n=78)	(n=42)	
Age, years	63.0 (55.8–70.0)	65.0 (60.0–71.3)	0.21
Gender, male	12 (15.4)	18 (42.9)	< 0.01
Body mass index, kg/m ²	18.7 (17.4–20.5)	19.1 (17.1–21.6)	0.36
Duration of MAC disease, years	5.5 (3.0-9.0)	6.0 (4.0-8.0)	0.73
Underlying disease			
Lung disease	19 (24.4)	13 (31.0)	0.44
COPD	4 (5.1)	1 (2.4)	0.66
Asthma	1 (1.3)	7 (16.7)	< 0.01
Previous tuberculosis	7 (9.0)	4 (9.2)	>0.99
Severe pneumonia	20 (25.6)	5 (11.9)	0.077
Previous malignant disease	14 (18.0)	6 (14.3)	0.61
Diabetes mellitus	3 (3.9)	2 (4.8)	>0.99
Liver disease	4 (5.1)	1 (2.4)	0.66
Renal disease	2 (2.6)	0 (0.0)	0.54
Autoimmune disease	10 (12.8)	4 (11.7)	0.77
Rheumatoid arthritis	5 (6.4)	4 (9.5)	0.72
Gastroesophageal reflux disease symptoms	22 (28.2)	10 (23.8)	0.60
Immunosuppressing agents	4 (5.3)	4 (9.5)	0.45
Inhaled corticosteroids	2 (2.6)	5 (11.9)	0.050
Smoking status (never)	66 (84.6)	30 (71.4)	0.085
Alcohol drinking habit	33 (42.3)	15 (35.7)	0.48
Laboratory findings			
White blood cell, $\times 10^3/\mu L$	5.60 (4.48-6.76)	5.40 (4.58-6.53)	0.74
Hemoglobin, g/dL	12.7 (12.0–13.9)	13.3 (12.3–14.7)	0.077
Hematocrit, %	38.8 (36.7–41.4)	40.3 (37.5-44.3)	0.070
Platelet, $\times 10^{6}/\mu L$	2.14 (1.73–2.47)	1.98 (1.55–2.51)	0.37
C-reactive protein, mg/dL	0.20 (0.0-0.98)	0.10 (0.0-0.40)	0.20
Erythrocyte sedimentation rate, mm/hour	17.5 (10.0–38.8)	13.0 (5.0–35.0)	0.22
Total protein, g/dL	7.2 (6.8–7.5)	6.9 (6.7–7.5)	0.33

Albumin, g/dL	4.1 (3.8–4.3)	4.1 (3.9–4.4)	0.40
Treatment for MAC disease			
Not receiving treatment	[†] 29 (37.2)	16 (38.1)	0.92
Receiving treatment	[‡] 49 (62.8)	26 (61.9)	

499 *Definition of abbreviations*: COPD = chronic obstructive pulmonary disease; MAC =

- 500 Mycobacterium avium complex.
- 501 Data show either number (%) of patients or median (interquartile ranges). An alcohol drinking
- 502 habit was defined as at least one drink per week. [†]Seven patients who provided a single
- sample were included. [‡]Eleven patients who provided a single sample were included.

- Table 3. High-resolution computed tomography features of patients with monoclonal
- 505 Mycobacterium avium complex infections and polyclonal and mixed mycobacterial infections

Variable	Patients with	Patients with	Р
	monoclonal	polyclonal and	value
	MAC infections	mixed mycobacterial	
		MAC infections	
	(n=77)	(n=42)	
Radiographic pattern			
Nodular and bronchiectasis form	36 (46.8)	26 (61.9)	0.11
Cavitary form	16 (20.8)	5 (11.9)	0.32
Cavitary + nodular and bronchiectasis form	18 (23.4)	4 (9.5)	0.084
Unclassified form	7 (9.0)	7 (16.7)	0.22
HRCT findings			
Nodule	70 (90.9)	39 (92.9)	0.71
Bronchiectasis	69 (89.6)	35 (83.3)	0.32
Cavity	34 (44.2)	9 (21.4)	0.014
Consolidation	55 (71.4)	30 (71.4)	>0.99
Location			
Right upper lobe	48 (62.3)	26 (61.9)	0.96
Right middle lobe	68 (88.3)	36 (85.7)	0.68
Right lower lobe	51 (66.2)	25 (59.5)	0.54
Left upper lobe	35 (45.5)	19 (45.2)	0.98
Lingular	63 (81.8)	34 (81.0)	0.91
Left lower lobe	43 (55.8)	19 (45.2)	0.27
Thoracic abnormality			
Scoliosis	20 (25.6)	12 (28.6)	0.73
Pectus excavatum	9 (11.5)	6 (14.3)	0.66

506 *Definition of abbreviations*: HRCT = High-resolution computed tomography, MAC =

507 *Mycobacterium avium* complex.

508 Data show number (%) of patients. One patient did not undergo HRCT.

509 Table 4. Environmental exposures of patients with monoclonal Mycobacterium avium

510 complex infections and polyclonal and mixed mycobacterial infections

Variable	Patients with monoclonal MAC infections	Patients with polyclonal and mixed mycobacterial MAC infections	P value
	(n=78)	(n=42)	
Soil exposure			
High (≥ 2 hours per week)	24 (30.8)	26 (61.9)	< 0.01
*Duration of soil exposure	16.8 (50-50.0)	19.2 (2.0-54.0)	0.87
[¶] Soil exposure before diagnosis	21 (87.5)	22 (84.6)	0.63
[§] Soil exposure during the followed-up periods	21 (87.5)	23 (88.5)	0.85
Water exposure			
Bathing (≥ 2 per day)	1 (1.3)	0 (0.0)	>0.99
Shower use in a bathroom	55 (70.5)	38 (90.5)	0.013
Dish washing (≥ 2 per day)	60 (76.9)	27 (64.3)	0.20
Swimming in a pool	1 (1.3)	7 (16.7)	< 0.01

511 *Definition of abbreviations:* MAC = *Mycobacterium avium* complex.

512 Data show number (%) of patients. Soil exposure includes farming and gardening, or any

513 activities involving soil exposure.

514 Table 5. Recovery of *Mycobacterium avium* complex strains from soil samples at the

515 residences of patients with pulmonary MAC disease

Type of soil samples	Patients with	Patients with polyclonal	Р
	monoclonal	and mixed mycobacterial	value
	MAC infections	MAC infections	
	(n=46)	(n=26)	
Farm	2 (4.3)	3 (11.5)	0.24
Potting	16 (34.8)	12 (46.1)	
Yard	28 (60.9)	11 (42.3)	
No MAC strain	22 (47.8)	17 (65.4)	
Monoclonal MAC strains	17 (37.0)	5 (19.2)	0.27
Polyclonal MAC strains	7 (15.2)	4 (15.4)	
MAC strains of identical VNTR	3 (6.5)	2 (7.7)	>0.99
genotypes with one clinical isolates	5 (0.5)	2(1.1)	

516 *Definition of abbreviations*: MAC = *Mycobacterium avium-intracellulare* complex; VNTR =

517 variable number of tandem repeats.

518 Table 6. Factors associated with polyclonal and mixed mycobacterial infections of pulmonary

519 Mycobacterium avium complex disease

Variable	Univariate analysis		Multivariate analysis	
	OR (95% CI)	Р	OR (95% CI)	Р
Male gender	4.13 (1.73–9.81)	< 0.01	2.94 (0.98–9.12)	0.054
History of asthma	15.40 (1.82–129.98)	0.013	11.56 (1.41–255.77)	0.021
No cavitation	2.90 (1.22-6.88)	0.014	2.50 (0.91-7.48)	0.075
High soil exposure	3.66 (1.19–11.70)	< 0.01	4.31 (1.72–11.45)	< 0.01
Shower use in a bathroom	3.73 (1.19–11.70)	0.018	4.57 (1.28–23.23)	0.018
Swimming in a pool	15.40 (1.82–129.98)	< 0.01	9.69 (1.21–206.92)	0.032

520 *Definition of abbreviations*: CI = confidence interval; OR = odds ratio.

- 521 Cavitation includes cavitary form and cavitary and nodular bronchiectasis form.
- 522 All values were included in multivariate analysis if the probability values were less than 0.05
- 523 by univariate analysis.

- 524 Figure legends
- 525 Figure 1. Flow chart of the study.
- 526 MAC = *Mycobacterium avium* complex

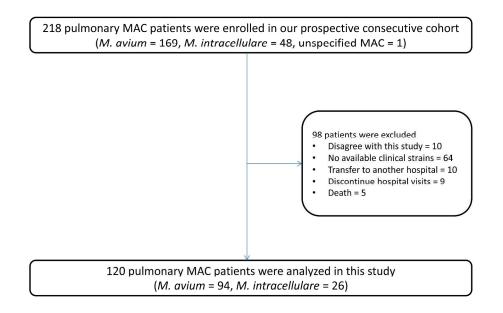


Figure 1. Flow chart of the study. MAC = *Mycobacterium avium* complex

254x165mm (300 x 300 DPI)

1 Association between polyclonal and mixed mycobacterial *Mycobacterium avium* complex

2 infection and environmental exposure

ONLINE DATA SUPPLEMENT

- 4 Kohei Fujita¹, Yutaka Ito¹, Toyohiro Hirai¹, Takeshi Kubo², Koichi Maekawa³, Kaori Togashi²,
- 5 Satoshi Ichiyama⁴, and Michiaki Mishima¹
- 6

3

- 8 Figure E1. *M. avium* phylogenetic tree
- 9 The phylogenetic tree was constructed by variable number of tandem repeats. Phylip software
- 10 ver. 3.69 was used for analysis. Black, red, and blue fonts indicate monoclonal, polyclonal,
- 11 and both monoclonal and polyclonal infection, respectively.

- 12 Figure E2. *M. intracellulare* phylogenetic tree
- 13 The phylogenetic tree was constructed by variable number of tandem repeats. Phylip software
- 14 ver. 3.69 was used for analysis. Black and red fonts indicate monoclonal and polyclonal
- 15 infection, respectively.

1 Table E1. Primer sets for *M. avium* VNTR analysis

VNTR locus	PCR primer sequences	PCR product size (bp)	Repeat unit size (bp)
MATR-1	5':GAACGTTGGGCCGAATGCGA	334	53
	5':GTGTCGGACCCCTCCCGTAA		
MATR-2	5':TTGAGCAGCTCGTAAAGCGT	300	53
	5':CGCGCTCAAGGAGATGGTTC		
MATR-3	5':CCAATCACAACGGCACCATC	460	53
	5':TCCTCGACAATCAGCACACT		
MATR-4	5':GACAATGGCATGCCGATCCT	274	53
	5':CGCTACGGCCTTCTCCATCT		
MATR-5	5':CTTGCAGCAGGACGATCAGG	307	58
	5':GTGGTCGAAGTCGCTGTTGG		
MATR-6	5':TCGCAGGAAACCAACCTCAA	384	58
	5':GCGTGATCGACTCGAAGACC		
MATR-7	5':CCGAGGAAGAGACGAAACCC	391	57
	5':TCGTCACCCACAACATGCAG		
MATR-8	5':CAGGTCCAGGGCATGTTTCC	334	57
	5':TCCCGATAATCCGTTGCATGAC		
MATR-9	5':CTGTTGGAGCGCAGCCGTTT	435	55
	5':ACCCAGTCGTCGACGGTGTT		
MATR-11	5':TGGCTGCTGTTCAATTGGATG	559	55
	5':TCGTCGGTCAATTGCACCTT		
MATR-12	5':TGATGGCGACCACCGACAAGG	542	57
	5':TGGATGCGGCCGACCAACA		
MATR-13	5':CCTCGAAGGTGGCGGACTTG	347	56
	5':ACCAGGATGGTGCCCAAACC		
MATR-14	5':TGGTCGCCGCACACCTACT	447	58
	5':GCCCTTACTGGGCAGGTCCTTC		
MATR-15	5':GGAAGGCAGCAAGGGTCAAC	422	57
	5':TCAGGTCCAGCGACAGCTTC		
MATR-16	5':GTGGTCAGCACCCGGAGAGT	418	59
	5':ACCACCGACTGCTCGACCTT		

2 Definition of abbreviations: VNTR = variable number of tandem repeat; MATR = Mycobacterium

3 *avium* tandem repeat. *M. avium* strain 104 was used as reference.

4 Table E2. Primer sets for *M. intracellulare* VNTR analysis

VNTR locus	PCR primer sequences	PCR product size (bp)	Repeat unit size (bp)
MITR-1	5':TCGCCGAGGACTTCGTCT	273	57
	5':GTCACCACGAGGAAGATCG		
MITR-2	5':AGGGTGGTGAACGCGTAG	299	57
	5':CTCTGGCAGCCCGATACC		
MITR-3	5':AGAGGTGCTGCCGATTACAC	222	58
	5':TCCTTGTCCGGTTCCTTTTG		
MITR-4	5':AGGCTTCAATTCGGGTGAC	271	55
	5':TTCCGACCACCTACATCGAG		
MITR-5	5':GACGACGACGGTGTTGGT	223	54
	5':GATCGTCTCGCTGGTGGAC		
MITR-6	5':GGTCGATCCGGTCAGCTC	228	56
	5':CACCTTGATGGGCGATGT		
MITR-7	5':TTTCATGGTTCGCCCTCTAC	274	53
	5':GTTCGTCGGAGGTCATGGT		
MITR-8	5':TCAAACTCATTTGCGCTGAG	270	57
	5':CGACATCTGGTTCTTCGACTC		
MITR-9	5':GGTCACTGGCTTCTCTCCTG	256	56
	5':CACAGCTACGCCGCAGAC		
MITR-10	5':GGCTGGTTCTTCTGGTGAC	353	57
	5':CGCGTCAAGGAACGTCAT		
MITR-11	5':TGTTGCGCTGAGGTCATATC	189	57
	5':ACAGGTTGTCGGTCATTGGT		
MITR-12	5':AGACCAACCCAGAAAAGTGC	245	53
	5':GTCGTGATACGCCGAATTG		
MITR-13	5':GTTCAGCGAGCCGGTATCT	292	50
	5':AGCTCTCGCAGCTTGGTTC		
MITR-14	5':ATGCCGGTTAGTCTCTCACG	258	56
	5':GCTCGTCGATCCAGAAAGAG		
MITR-15	5':GCAAACGCAGTGGTACTCAG	219	58
	5':GATGATGCCGAGCACCTG		
MITR-16	5':GGACGCTTTGTATCCGAGTT	265	55
	5':ACCGTGTCGGTGACTTGAAC		

5 *Definition of abbreviations*: VNTR = variable number of tandem repeat; MITR = Mycobacterium

6 *intracellulare* tandem repeat. *M. intracellulare* ATCC 13950 was used as reference.

Patient ID	Isolate	MATR															
		genotype	1	2	3	4	5	6	7	8	9	11	12	13	14	15	16
MACstudy1	MA1-1aP	Type1	3	1	2	2	3	2	1	1	2	2	3	0	2	2	3
MACstudy1	MA1-1bP	Type1	3	1	2	2	3	2	1	1	2	2	3	0	2	2	3
MACstudy2	MA2-1aP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy2	MA2-1bP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy2	MA2-2aP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy2	MA2-2bP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy3	MA3-1aP	Туре3	2	1	1	1	2	2	6	2	3	2	3	0	2	2	3
MACstudy3	MA3-1bP	Туре3	2	1	1	1	2	2	6	2	3	2	3	0	2	2	3
MACstudy6	MA6-1aP	Type4	2	0	1	1	2	1	6	2	3	2	3	0	2	2	3
MACstudy6	MA6-1bP	Type4	2	0	1	1	2	1	6	2	3	2	3	0	2	2	3
MACstudy6	MA6-2aP	Type4	2	0	1	1	2	1	6	2	3	2	3	0	2	2	3
MACstudy6	MA6-2bP	Type4	2	0	1	1	2	1	6	2	3	2	3	0	2	2	3
MACstudy8	MA8-1aP	Type5	2	1	5	1	2	1	3	2	1	2	3	0	2	2	3
MACstudy8	MA8-1bP	Type5	2	1	5	1	2	1	3	2	1	2	3	0	2	2	3
MACstudy8	MA8-2aP	Type5	2	1	5	1	2	1	3	2	1	2	3	0	2	2	3
MACstudy8	MA8-2bP	Type5	2	1	5	1	2	1	3	2	1	2	3	0	2	2	3
MACstudy9	MA9-1aP	Туре6	2	0	5	1	2	1	6	2	1	2	3	2	2	2	3
MACstudy9	MA9-1bP	Туре6	2	0	5	1	2	1	6	2	1	2	3	2	2	2	3
MACstudy9	MA9-2aP	Туре6	2	0	5	1	2	1	6	2	1	2	3	2	2	2	3

1 Table E3. VNTR profiles of *Mycobacterium avium* strains isolated from patients with *M. avium* infection

Page	46	of	69
------	----	----	----

MACstudy9	MA9-2bP	Type6	2	0	5	1	2	1	6	2	1	2	3	2	2	2	3
MACstudy10	MA10-1aP	Туре7	2	0	5	1	2	1	1	2	2	2	3	2	2	2	3
MACstudy10	MA10-1bP	Type7	2	0	5	1	2	1	1	2	2	2	3	2	2	2	3
MACstudy10	MA10-2aP	Туре7	2	0	5	1	2	1	1	2	2	2	3	2	2	2	3
MACstudy10	MA10-2bP	Туре7	2	0	5	1	2	1	1	2	2	2	3	2	2	2	3
MACstudy11	MA11-1aP	Type8	2	3	1	1	2	1	1	1	0	1	3	1	2	2	2
MACstudy11	MA11-1bP	Type8	2	3	1	1	2	1	1	1	0	1	3	1	2	2	2
MACstudy11	MA11-2aP	Туре9	4	2	4	0	3	2	3	1	0	1	3	1	2	2	2
MACstudy11	MA11-2bP	Туре9	4	2	4	0	3	2	3	1	0	1	3	1	2	2	2
MACstudy12	MA12-1aP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy12	MA12-1bP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy12	MA12-2aP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy12	MA12-2bP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy13	MA13-1aP	Type11	3	1	1	1	2	2	6	2	2	2	3	0	3	2	3
MACstudy13	MA13-1bP	Type11	3	1	1	1	2	2	6	2	2	2	3	0	3	2	3
MACstudy13	MA13-2aP	Type11	3	1	1	1	2	2	6	2	2	2	3	0	3	2	3
MACstudy13	MA13-2bP	Type11	3	1	1	1	2	2	6	2	2	2	3	0	3	2	3
MACstudy14	MA14-1aP	Type12	3	2	3	2	3	1	1	2	2	1	3	2	1	2	3
MACstudy14	MA14-1bP	Type12	3	2	3	2	3	1	1	2	2	1	3	2	1	2	3
MACstudy14	MA14-2aP	Type13	0	0	2	1	1	1	4	2	1	1	2	0	2	2	3
MACstudy14	MA14-2bP	Type13	0	0	2	1	1	1	4	2	1	1	2	0	2	2	3
MACstudy16	MA16-1aP	Type14	1	0	5	1	2	2	2	2	2	2	3	1	2	2	3
MACstudy16	MA16-1bP	Type14	1	0	5	1	2	2	2	2	2	2	3	1	2	2	3

 $\mathbf{2}$

MACstudy16	MA16-2aP	Type14	1	0	5	1	2	2	2	2	2	2	3	1	2	2	3
MACstudy16	MA16-2bP	Type14	1	0	5	1	2	2	2	2	2	2	3	1	2	2	3
MACstudy17	MA17-1aP	Type15	2	1	4	1	2	2	2	2	2	2	2	2	3	2	3
MACstudy17	MA17-1bP	Type16	2	1	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy17	MA17-2aP	Type17	4	3	2	1	2	2	2	1	2	2	3	2	2	2	3
MACstudy17	MA17-2bP	Type17	4	3	2	1	2	2	2	1	2	2	3	2	2	2	3
MACstudy18	MA18-1aP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy18	MA18-1bP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy18	MA18-2aP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy18	MA18-2bP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy20	MA20-1aP	Type19	2	0	1	1	2	2	2	2	3	2	3	2	2	2	3
MACstudy20	MA20-1bP	Type19	2	0	1	1	2	2	2	2	3	2	3	2	2	2	3
MACstudy20	MA20-2aP	Type19	2	0	1	1	2	2	2	2	3	2	3	2	2	2	3
MACstudy20	MA20-2bP	Type19	2	0	1	1	2	2	2	2	3	2	3	2	2	2	3
MACstudy23	MA23-1aP	Type20	1	1	1	1	2	2	1	2	2	1	3	2	2	2	3
MACstudy23	MA23-1bP	Type20	1	1	1	1	2	2	1	2	2	1	3	2	2	2	3
MACstudy23	MA23-2aP	Type20	1	1	1	1	2	2	1	2	2	1	3	2	2	2	3
MACstudy23	MA23-2bP	Type20	1	1	1	1	2	2	1	2	2	1	3	2	2	2	3
MACstudy28	MA28-1aP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy28	MA28-1bP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy28	MA28-2aP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy28	MA28-2bP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy29	MA29-1aP	Type22	1	0	4	1	1	1	6	2	2	2	3	0	3	2	3

Page	48	of	69
------	----	----	----

MACstudy29	MA29-1bP	Type23	1	0	4	1	2	0	4	1	2	2	3	0	3	2	3
MACstudy29	MA29-2aP	Type24	1	0	4	1	2	0	4	1	2	1	3	0	2	2	2
MACstudy29	MA29-2bP	Type24	1	0	4	1	2	0	4	1	2	1	3	0	2	2	2
MACstudy30	MA30-1aP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy30	MA30-1bP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy30	MA30-2aP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy30	MA30-2bP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy31	MA31-1aP	Type26	2	0	5	2	2	1	6	2	2	2	3	0	2	2	1
MACstudy31	MA31-1bP	Type26	2	0	5	2	2	1	6	2	2	2	3	0	2	2	1
MACstudy31	MA31-2aP	Type27	2	0	5	2	2	1	6	2	2	2	3	0	2	2	3
MACstudy31	MA31-2bP	Type27	2	0	5	2	2	1	6	2	2	2	3	0	2	2	3
MACstudy32	MA32-1aP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy32	MA32-1bP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy32	MA32-2aP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy32	MA32-2bP	Type18	1	1	1	1	2	1	1	1	3	1	3	0	3	2	2
MACstudy33	MA33-1aP	Type28	1	0	1	0	1	0	0	0	2	2	3	1	3	2	2
MACstudy33	MA33-1bP	Type28	1	0	1	0	1	0	0	0	2	2	3	1	3	2	2
MACstudy33	MA33-2aP	Type29	2	2	1	1	2	1	1	2	3	1	3	0	3	2	2
MACstudy33	MA33-2bP	Type29	2	2	1	1	2	1	1	2	3	1	3	0	3	2	2
MACstudy34	MA34-1aP	Type30	1	1	1	1	2	2	1	1	3	1	3	0	3	2	3
MACstudy34	MA34-1bP	Type30	1	1	1	1	2	2	1	1	3	1	3	0	3	2	3
MACstudy34	MA34-2aP	Type30	1	1	1	1	2	2	1	1	3	1	3	0	3	2	3
MACstudy34	MA34-2bP	Type30	1	1	1	1	2	2	1	1	3	1	3	0	3	2	3

MACstudy35	MA35-1aP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy35	MA35-1bP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy35	MA35-2aP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy35	MA35-2bP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy36	MA36-1aP	Type31	2	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy36	MA36-1bP	Type31	2	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy36	MA36-2aP	Type31	2	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy36	MA36-2bP	Type31	2	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy38	MA38-1aP	Type32	1	1	1	2	2	1	1	1	3	1	3	0	3	2	2
MACstudy38	MA38-1bP	Type32	1	1	1	2	2	1	1	1	3	1	3	0	3	2	2
MACstudy38	MA38-2aP	Type32	1	1	1	2	2	1	1	1	3	1	3	0	3	2	2
MACstudy38	MA38-2bP	Type32	1	1	1	2	2	1	1	1	3	1	3	0	3	2	2
MACstudy39	MA39-1aP	Туре33	2	0	4	1	2	1	4	2	2	2	3	0	2	2	3
MACstudy39	MA39-1bP	Туре33	2	0	4	1	2	1	4	2	2	2	3	0	2	2	3
MACstudy40	MA40-1aP	Type34	1	1	1	1	2	2	5	2	3	1	3	0	3	2	3
MACstudy40	MA40-1bP	Type34	1	1	1	1	2	2	5	2	3	1	3	0	3	2	3
MACstudy40	MA40-2aP	Type34	1	1	1	1	2	2	5	2	3	1	3	0	3	2	3
MACstudy40	MA40-2bP	Type34	1	1	1	1	2	2	5	2	3	1	3	0	3	2	3
MACstudy41	MA41-1aP	Type35	1	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy41	MA41-1bP	Type35	1	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy41	MA41-2aP	Type35	1	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy41	MA41-2bP	Type35	1	0	1	1	2	1	2	2	3	2	3	0	3	2	3
MACstudy43	MA43-1aP	Type35	2	1	1	1	2	1	5	5	1	1	3	0	1	2	3

 $\mathbf{5}$

Page	50	of	69
------	----	----	----

MACstudy43	MA43-1bP	Type36	2	1	1	1	2	1	5	5	1	1	3	0	1	2	3
MACstudy43	MA43-2aP	Type36	2	1	1	1	2	1	5	5	1	1	3	0	1	2	3
MACstudy43	MA43-2bP	Type36	2	1	1	1	2	1	5	5	1	1	3	0	1	2	3
MACstudy47	MA47-1aP	Type37	1	1	1	1	2	1	1	1	4	1	3	0	2	2	2
MACstudy47	MA47-1bP	Type37	1	1	1	1	2	1	1	1	4	1	3	0	2	2	2
MACstudy48	MA48-1aP	Type27	2	0	5	2	2	1	6	2	2	2	3	0	2	2	1
MACstudy48	MA48-1bP	Type27	2	0	5	2	2	1	6	2	2	2	3	0	2	2	1
MACstudy48	MA48-2aP	Type38	1	2	1	1	2	1	1	1	4	1	3	0	2	2	2
MACstudy48	MA48-2bP	Type38	1	2	1	1	2	1	1	1	4	1	3	0	2	2	2
MACstudy50	MA50-1aP	Type39	2	0	1	2	2	2	1	2	2	2	3	0	2	2	3
MACstudy50	MA50-1bP	Type39	2	0	1	2	2	2	1	2	2	2	3	0	2	2	3
MACstudy50	MA50-2aP	Type40	0	0	3	0	2	0	5	2	2	1	2	2	2	2	3
MACstudy50	MA50-2bP	Type40	0	0	3	0	2	0	5	2	2	1	2	2	2	2	3
MACstudy51	MA51-1aP	Type41	3	1	0	4	2	1	0	2	2	0	3	1	2	2	2
MACstudy51	MA51-1bP	Type41	3	1	0	4	2	1	0	2	2	0	3	1	2	2	2
MACstudy51	MA51-2aP	Type42	2	2	2	2	3	2	2	1	4	1	3	0	3	2	2
MACstudy51	MA51-2bP	Type42	2	2	2	2	3	2	2	1	4	1	3	0	3	2	2
MACstudy52	MA52-1aP	Type43	1	0	5	1	2	1	6	2	3	2	3	2	2	2	3
MACstudy52	MA52-1bP	Type43	1	0	5	1	2	1	6	2	3	2	3	2	2	2	3
MACstudy56	MA56-1aP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy56	MA56-1bP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy56	MA56-2aP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy56	MA56-2bP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2

MACstudy5'	7 MA57-1aP	Type44	3	0	1	1	2	2	6	2	2	2	3	0	2	2	3
MACstudy5'	7 MA57-1bP	Type44	3	0	1	1	2	2	6	2	2	2	3	0	2	2	3
MACstudy5'	7 MA57-2aP	Type44	3	0	1	1	2	2	6	2	2	2	3	0	2	2	3
MACstudy5'	7 MA57-2bP	Type44	3	0	1	1	2	2	6	2	2	2	3	0	2	2	3
MACstudy58	8 MA58-1aP	Type45	2	0	1	1	2	2	2	2	3	1	3	2	2	2	3
MACstudy58	8 MA58-1bP	Type45	2	0	1	1	2	2	2	2	3	1	3	2	2	2	3
MACstudy58	8 MA58-2aP	Type45	2	0	1	1	2	2	2	2	3	1	3	2	2	2	3
MACstudy58	8 MA58-2bP	Type45	2	0	1	1	2	2	2	2	3	1	3	2	2	2	3
MACstudy6) MA60-1aP	Type45	2	0	1	1	2	2	2	2	3	1	3	2	2	2	3
MACstudy6) MA60-1bP	Type45	2	0	1	1	2	2	2	2	3	1	3	2	2	2	3
MACstudy6	l MA61-1aP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy6	l MA61-1bP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy6	l MA61-2aP	Type46	1	2	1	1	2	1	1	1	2	1	3	0	2	2	2
MACstudy6	l MA61-2bP	Type46	1	2	1	1	2	1	1	1	2	1	3	0	2	2	2
MACstudy62	2 MA62-1aP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy62	2 MA62-1bP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy62	2 MA62-2aP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy62	2 MA62-2bP	Type2	1	1	1	2	2	1	1	1	2	1	3	0	2	2	2
MACstudy6.	3 MA63-1aP	Type47	2	0	1	1	2	2	6	2	2	2	3	2	2	2	3
MACstudy6.	3 MA63-1bP	Type47	2	0	1	1	2	2	6	2	2	2	3	2	2	2	3
MACstudy6.	3 MA63-2aP	Type47	2	0	1	1	2	2	6	2	2	2	3	2	2	2	3
MACstudy6.	3 MA63-2bP	Type47	2	0	1	1	2	2	6	2	2	2	3	2	2	2	3
MACstudy64	4 MA64-1aP	Type48	2	0	1	1	2	2	1	2	3	2	3	2	2	2	3

MACstudy64	MA64-1bP	Type48	2	0	1	1	2	2	1	2	3	2	3	2	2	2	3
MACstudy64	MA64-2aP	Type49	1	2	1	1	2	1	1	2	2	1	3	0	2	2	2
MACstudy64	MA64-2bP	Type49	1	2	1	1	2	1	1	2	2	1	3	0	2	2	2
MACstudy65	MA65-1aP	Type50	2	0	1	1	2	2	1	2	2	2	3	2	2	2	3
MACstudy65	MA65-1bP	Type50	2	0	1	1	2	2	1	2	2	2	3	2	2	2	3
MACstudy65	MA65-2aP	Type50	2	0	1	1	2	2	1	2	2	2	3	2	2	2	3
MACstudy65	MA65-2bP	Type50	2	0	1	1	2	2	1	2	2	2	3	2	2	2	3
MACstudy66	MA66-1aP	Type51	2	1	5	1	2	2	2	2	2	2	3	2	3	2	3
MACstudy66	MA66-1bP	Type51	2	1	5	1	2	2	2	2	2	2	3	2	3	2	3
MACstudy66	MA66-2aP	Type52	2	2	3	2	3	2	2	2	4	3	3	0	3	2	2
MACstudy66	MA66-2bP	Type52	2	2	3	2	3	2	2	2	4	3	3	0	3	2	2
MACstudy69	MA69-1aP	Туре53	3	1	2	2	2	1	2	2	4	3	4	0	2	2	3
MACstudy69	MA69-1bP	Туре53	3	1	2	2	2	1	2	2	4	3	4	0	2	2	3
MACstudy69	MA69-2aP	Туре53	3	1	2	2	2	1	2	2	4	3	4	0	2	2	3
MACstudy69	MA69-2bP	Туре53	3	1	2	2	2	1	2	2	4	3	4	0	2	2	3
MACstudy70	MA70-1aP	Type54	1	1	3	2	3	3	2	1	2	2	3	2	2	2	2
MACstudy70	MA70-1bP	Type54	1	1	3	2	3	3	2	1	2	2	3	2	2	2	2
MACstudy70	MA70-2aP	Type55	3	3	5	2	3	2	6	2	4	2	3	2	3	2	2
MACstudy70	MA70-2bP	Type55	3	3	5	2	3	2	6	2	4	2	3	2	3	2	2
MACstudy72	MA72-1aP	Type56	1	1	1	2	2	1	1	2	3	1	3	0	3	2	3
MACstudy72	MA72-1bP	Type56	1	1	1	2	2	1	1	2	3	1	3	0	3	2	3
MACstudy72	MA72-2aP	Type56	1	1	1	2	2	1	1	2	3	1	3	0	3	2	3
MACstudy72	MA72-2bP	Type56	1	1	1	2	2	1	1	2	3	1	3	0	3	2	3

MACstudy73	MA73-1aP	Type57	2	0	1	1	2	2	1	2	2	1	3	2	2	2	3
MACstudy73	MA73-1bP	Type57	2	0	1	1	2	2	1	2	2	1	3	2	2	2	3
MAV study 73	MA73-2aP	Type58	2	3	0	1	2	0	6	4	3	3	3	0	2	2	3
MAV study 73	MA73-2bP	Type59	3	2	2	1	2	2	1	2	3	1	3	4	2	2	3
MACstudy74	MA74-1aP	Type60	2	0	5	1	2	1	4	2	2	2	3	0	2	2	3
MACstudy74	MA74-1bP	Type60	2	0	5	1	2	1	4	2	2	2	3	0	2	2	3
MACstudy75	MA75-1aP	Type61	2	0	5	0	2	1	4	2	2	2	3	2	3	2	2
MACstudy75	MA75-1bP	Type61	2	0	5	0	2	1	4	2	2	2	3	2	3	2	2
MACstudy75	MA75-2aP	Type61	2	0	5	0	2	1	4	2	2	2	3	2	3	2	2
MACstudy75	MA75-2bP	Type61	2	0	5	0	2	1	4	2	2	2	3	2	3	2	2
MACstudy76	MA76-1aP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy76	MA76-1bP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy76	MA76-2aP	Туре63	2	0	2	2	2	2	1	1	2	1	3	0	2	2	2
MACstudy76	MA76-2bP	Туре63	2	0	2	2	2	2	1	1	2	1	3	0	2	2	2
MACstudy77	MA77-1aP	Type64	2	0	2	2	2	2	2	2	2	2	3	2	3	2	3
MACstudy77	MA77-1bP	Type64	2	0	2	2	2	2	2	2	2	2	3	2	3	2	3
MACstudy77	MA77-2aP	Type64	2	0	2	2	2	2	2	2	2	2	3	2	3	2	3
MACstudy77	MA77-2bP	Type64	2	0	2	2	2	2	2	2	2	2	3	2	3	2	3
MACstudy79	MA79-1aP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy79	MA79-1bP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy79	MA79-2aP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy79	MA79-2bP	Type21	1	2	1	2	2	1	1	1	2	1	3	0	3	2	2
MACstudy80	MA80-1aP	Type65	2	0	1	2	2	1	2	2	2	2	3	1	2	2	3

Page	54	of	69
------	----	----	----

MACstudy80	MA80-1bP	Type65	2	0	1	2	2	1	2	2	2	2	3	1	2	2	3
MACstudy80	MA80-2aP	Туребб	1	2	5	1	2	1	1	4	1	1	3	1	3	2	2
MACstudy80	MA80-2bP	Type67	2	2	4	2	3	1	1	4	1	2	3	1	3	2	2
MACstudy84	MA84-1aP	Type68	-	0	1	-	2	2	1	2	1	2	3	2	2	2	3
MACstudy84	MA84-1bP	•••	1	0	1	1	2	2	1	2	1	2	3	2	2	2	3
2		Type68		÷	-	-			-		-	_	-				
MACstudy84	MA84-2aP	Type68	1	0	1	1	2	2	1	2	1	2	3	2	2	2	3
MACstudy84	MA84-2bP	Type68	1	0	1	1	2	2	1	2	1	2	3	2	2	2	3
MACstudy87	MA87-1aP	Type69	4	2	3	2	2	3	2	3	4	3	4	3	4	3	4
MACstudy87	MA87-1bP	Type69	4	2	3	2	2	3	2	3	4	3	4	3	4	3	4
MACstudy87	MA87-2aP	Type70	2	1	3	1	2	1	5	2	2	2	4	0	3	2	3
MACstudy87	MA87-2bP	Type70	2	1	3	1	2	1	5	2	2	2	4	0	3	2	3
MACstudy88	MA88-1aP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy88	MA88-1bP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy88	MA88-2aP	Type71	1	1	1	1	1	0	1	2	0	2	3	0	3	2	2
MACstudy88	MA88-2bP	Type71	1	1	1	1	1	0	1	2	0	2	3	0	3	2	2
MACstudy89	MA89-1aP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy89	MA89-1bP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy89	MA89-2aP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy89	MA89-2bP	Type62	1	1	1	2	2	1	1	1	4	1	3	0	3	2	2
MACstudy90	MA90-1aP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy90	MA90-1bP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy90	MA90-2aP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy90	MA90-2bP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3

MACstudy91	MA91-1aP	Type72	2	0	1	1	2	2	2	2	2	2	3	0	3	2	2
MACstudy91	MA91-1bP	Type72	2	0	1	1	2	2	2	2	2	2	3	0	3	2	2
MACstudy91	MA91-2aP	Type72	2	0	1	1	2	2	2	2	2	2	3	0	3	2	2
MACstudy91	MA91-2bP	Type72	2	0	1	1	2	2	2	2	2	2	3	0	3	2	2
MACstudy92	MA92-1aP	Type73	2	0	5	1	2	1	6	2	2	2	3	0	2	2	3
MACstudy92	MA92-1bP	Type73	2	0	5	1	2	1	6	2	2	2	3	0	2	2	3
MACstudy92	MA92-2aP	Type74	2	1	1	1	2	2	2	2	3	2	3	2	3	2	3
MACstudy92	MA92-2bP	Type74	2	1	1	1	2	2	2	2	3	2	3	2	3	2	3
MACstudy93	MA93-1aP	Type75	2	1	2	1	2	1	2	1	3	1	3	0	3	2	2
MACstudy93	MA93-1bP	Type75	2	1	2	1	2	1	2	1	3	1	3	0	3	2	2
MACstudy93	MA93-2aP	Type75	2	1	2	1	2	1	2	1	3	1	3	0	3	2	2
MACstudy93	MA93-2bP	Type75	2	1	2	1	2	1	2	1	3	1	3	0	3	2	2
MACstudy94	MA94-1aP	Type76	1	1	1	2	2	2	1	2	1	1	3	0	3	2	3
MACstudy94	MA94-1bP	Type76	1	1	1	2	2	2	1	2	1	1	3	0	3	2	3
MACstudy94	MA94-2aP	Type76	1	1	1	2	2	2	1	2	1	1	3	0	3	2	3
MACstudy94	MA94-2bP	Type76	1	1	1	2	2	2	1	2	1	1	3	0	3	2	3
MACstudy96	MA96-1aP	Type77	2	1	1	1	2	1	1	1	3	1	3	0	2	2	2
MACstudy96	MA96-1bP	Type77	2	1	1	1	2	1	1	1	3	1	3	0	2	2	2
MACstudy96	MA96-2aP	Type77	2	1	1	1	2	1	1	1	3	1	3	0	2	2	2
MACstudy96	MA96-2bP	Type77	2	1	1	1	2	1	1	1	3	1	3	0	2	2	2
MACstudy98	MA98-1aP	Type78	2	0	3	1	2	2	1	2	3	2	3	0	2	2	3
MACstudy98	MA98-1bP	Type78	2	0	3	1	2	2	1	2	3	2	3	0	2	2	3
MACstudy99	MA99-1aP	Type79	2	1	1	1	3	2	1	4	6	2	3	1	3	2	2

Page	56	of	69
------	----	----	----

MACstudy99	MA99-1bP	Type80	2	2	2	1	3	1	1	1	3	2	3	1	3	2	2
MACstudy99	MA99-2aP	Type80	2	2	2	1	3	1	1	1	3	2	3	1	3	2	2
MACstudy99	MA99-2bP	Type80	2	2	2	1	3	1	1	1	3	2	3	1	3	2	2
MACstudy103	MA103-1aP	Type81	2	1	5	1	2	1	1	2	3	2	3	0	3	2	3
MACstudy103	MA103-1bP	Type81	2	1	5	1	2	1	1	2	3	2	3	0	3	2	3
MACstudy103	MA103-2aP	Type81	2	1	5	1	2	1	1	2	3	2	3	0	3	2	3
MACstudy103	MA103-2bP	Type81	2	1	5	1	2	1	1	2	3	2	3	0	3	2	3
MACstudy105	MA105-1aP	Type82	1	1	1	1	2	1	1	2	3	1	3	0	3	2	2
MACstudy105	MA105-1bP	Type82	1	1	1	1	2	1	1	2	3	1	3	0	3	2	2
MACstudy105	MA105-2aP	Type82	1	1	1	1	2	1	1	2	3	1	3	0	3	2	2
MACstudy105	MA105-2bP	Type82	1	1	1	1	2	1	1	2	3	1	3	0	3	2	2
MACstudy106	MA106-1aP	Type83	1	1	1	1	2	2	1	2	3	2	3	2	2	2	3
MACstudy106	MA106-1bP	Type83	1	1	1	1	2	2	1	2	3	2	3	2	2	2	3
MACstudy106	MA106-2aP	Type83	1	1	1	1	2	2	1	2	3	2	3	2	2	2	3
MACstudy106	MA106-2bP	Type83	1	1	1	1	2	2	1	2	3	2	3	2	2	2	3
MACstudy108	MA108-1aP	Type84	1	1	1	0	2	1	2	2	3	1	2	0	2	2	2
MACstudy108	MA108-1bP	Type84	1	1	1	0	2	1	2	2	3	1	2	0	2	2	2
MACstudy109	MA109-1aP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy109	MA109-1bP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy109	MA109-2aP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy109	MA109-2bP	Type10	2	0	1	1	2	2	2	2	2	2	3	2	2	2	3
MACstudy112	MA112-1aP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy112	MA112-1bP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2

MACstudy113	MA113-1aP	Type85	2	1	5	1	2	1	2	1	2	2	3	2	3	2	3
MACstudy113	MA113-1bP	Type85	2	1	5	1	2	1	2	1	2	2	3	2	3	2	3
MACstudy114	MA114-1aP	Туре86	0	0	5	1	2	1	1	2	3	2	3	2	3	2	1
MACstudy114	MA114-1bP	Type86	0	0	5	1	2	1	1	2	3	2	3	2	3	2	1
MACstudy115	MA115-1aP	Туре73	2	0	5	1	2	1	6	2	2	2	3	0	2	2	3
MACstudy115	MA115-1bP	Туре73	2	0	5	1	2	1	6	2	2	2	3	0	2	2	3
MACstudy115	MA115-2aP	Туре73	2	0	5	1	2	1	6	2	2	2	3	0	2	2	3
MACstudy115	MA115-2bP	Туре73	2	0	5	1	2	1	6	2	2	2	3	0	2	2	3
MACstudy117	MA117-1aP	Type87	2	2	2	2	3	3	2	1	3	1	3	0	3	2	3
MACstudy117	MA117-1bP	Type87	2	2	2	2	3	3	2	1	3	1	3	0	3	2	3
MACstudy117	MA117-2aP	Type87	2	2	2	2	3	3	2	1	3	1	3	0	3	2	3
MACstudy117	MA117-2bP	Type87	2	2	2	2	3	3	2	1	3	1	3	0	3	2	3
MACstudy118	MA118-1aP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy118	MA118-1bP	Type25	1	1	1	1	2	1	1	1	2	1	3	0	3	2	2
MACstudy123	MA123-1aP	Type88	2	0	1	1	2	2	2	2	2	1	3	1	2	2	3
MACstudy123	MA123-1bP	Type88	2	0	1	1	2	2	2	2	2	1	3	1	2	2	3
MACstudy123	MA123-2aP	Type88	2	0	1	1	2	2	2	2	2	1	3	1	2	2	3
MACstudy123	MA123-2bP	Type88	2	0	1	1	2	2	2	2	2	1	3	1	2	2	3
MACstudy127	MA127-1aP	Туре89	3	2	2	2	3	3	3	2	3	1	3	2	2	2	3
MACstudy127	MA127-1bP	Туре89	3	2	2	2	3	3	3	2	3	1	3	2	2	2	3
MACstudy127	MA127-2aP	Туре89	3	2	2	2	3	3	3	2	3	1	3	2	2	2	3
MACstudy127	MA127-2bP	Туре89	3	2	2	2	3	3	3	2	3	1	3	2	2	2	3
MACstudy128	MA128-1aP	Туре90	2	1	5	1	2	1	1	2	1	1	3	2	2	2	3

MACstudy128	MA128-1bP	Type90	2	1	5	1	2	1	1	2	1	1	3	2	2	2	3
MACstudy128	MA128-2aP	Type90	2	1	5	1	2	1	1	2	1	1	3	2	2	2	3
MACstudy128	MA128-2bP	Type90	2	1	5	1	2	1	1	2	1	1	3	2	2	2	3
MACstudy129	MA129-1aP	Type91	2	2	1	1	2	2	2	2	1	1	3	2	2	2	3
MACstudy129	MA129-1bP	Type91	2	2	1	1	2	2	2	2	1	1	3	2	2	2	3
MACstudy129	MA129-2aP	Type91	2	2	1	1	2	2	2	2	1	1	3	2	2	2	3
MACstudy129	MA129-2bP	Type91	2	2	1	1	2	2	2	2	1	1	3	2	2	2	3
MACstudy133	MA133-1aP	Type92	1	0	2	1	2	2	2	2	2	2	3	0	2	2	3
MACstudy133	MA133-1bP	Type92	1	0	2	1	2	2	2	2	2	2	3	0	2	2	3
MACstudy133	MA133-2aP	Type92	1	0	2	1	2	2	2	2	2	2	3	0	2	2	3
MACstudy133	MA133-2bP	Type92	1	0	2	1	2	2	2	2	2	2	3	0	2	2	3
MACstudy134	MA134-1aP	Туре93	0	0	1	0	2	1	1	1	3	1	3	0	3	2	2
MACstudy134	MA134-1bP	Туре93	0	0	1	0	2	1	1	1	3	1	3	0	3	2	2
MACstudy134	MA134-2aP	Туре93	0	0	1	0	2	1	1	1	3	1	3	0	3	2	2
MACstudy134	MA134-2bP	Type93	0	0	1	0	2	1	1	1	3	1	3	0	3	2	2

2 *Definition of abbreviations*: VNTR = variable number of tandem repeats; MATR = *Mycobacterium avium* tandem repeats.

3 Isolates from the first and the second sputum samples are shown as "1a/b" and "2a/b," respectively.

Patient ID	Isolate	MITR								MIT	R locu	IS						
		genotype	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
MACstudy5	MI5-1aP	Type1	2	3	2	4	3	3	3	0	2	5	4	3	2	3	2	2
MACstudy5	MI5-1bP	Type1	2	3	2	4	3	3	3	0	2	5	4	3	2	3	2	2
MACstudy5	MI5-2aP	Type2	2	3	1	3	2	2	3	2	3	4	2	2	3	2	2	2
MACstudy5	MI5-2bP	Type2	2	3	1	3	2	2	3	2	3	4	2	2	3	2	2	2
MACstudy21	MI21-1aP	Type2	2	3	1	3	2	2	3	2	3	4	2	2	3	2	2	2
MACstudy21	MI21-1bP	Type2	2	3	1	3	2	2	3	2	3	4	2	2	3	2	2	2
MACstudy21	MI21-2aP	Туре3	1	2	1	3	2	2	3	0	2	4	4	2	3	2	3	2
MACstudy21	MI21-2bP	Type4	1	1	1	2	2	2	3	2	2	4	3	2	3	2	3	2
MACstudy22	MI22-1aP	Type5	2	3	1	4	0	2	2	2	3	4	4	3	3	3	3	2
MACstudy22	MI22-1bP	Type5	2	3	1	4	0	2	2	2	3	4	4	3	3	3	3	2
MACstudy25	MI25-1aP	Type6	1	1	1	1	3	3	3	0	3	4	2	2	3	2	2	2
MACstudy25	MI25-1bP	Туреб	1	1	1	1	3	3	3	0	3	4	2	2	3	2	2	2
MACstudy25	MI25-2aP	Туреб	1	1	1	1	3	3	3	0	3	4	2	2	3	2	2	2
MACstudy25	MI25-2bP	Type6	1	1	1	1	3	3	3	0	3	4	2	2	3	2	2	2
MACstudy37	MI37-1aP	Type7	1	2	0	2	1	2	2	0	2	3	2	2	3	2	2	2
MACstudy37	MI37-1bP	Type7	1	2	0	2	1	2	2	0	2	3	2	2	3	2	2	2
MACstudy42	MI42-1aP	Type8	2	3	0	3	2	2	2	2	2	1	2	2	3	2	2	2
MACstudy42	MI42-1bP	Type8	2	3	0	3	2	2	2	2	2	1	2	2	3	2	2	2
MACstudy42	MI42-2aP	Type8	2	3	0	3	2	2	2	2	2	1	2	2	3	2	2	2

4 Table E4. VNTR profiles of <i>Mycobacterium intracellulare</i> strains isolated from patients with <i>M. intracellulare</i> infection	-	4
---	---	---

Page	60	of	69
------	----	----	----

MACstudy42	MI42-2bP	Type8	2	3	0	3	2	2	2	2	2	1	2	2	3	2	2	2
MACstudy45	MI45-1aP	Type9	3	4	1	3	2	3	2	2	2	1	4	2	3	2	2	2
MACstudy45	MI45-1bP	Type9	3	4	1	3	2	3	2	2	2	1	4	2	3	2	2	2
MACstudy45	MI45-2aP	Type10	2	1	1	1	2	2	2	0	1	1	2	2	3	2	2	2
MACstudy45	MI45-2bP	Type10	2	1	1	1	2	2	2	0	1	1	2	2	3	2	2	2
MACstudy46	MI46-1aP	Type11	2	2	2	4	2	3	3	0	2	1	3	2	2	2	3	2
MACstudy46	MI46-1bP	Type11	2	2	2	4	2	3	3	0	2	1	3	2	2	2	3	2
MACstudy46	MI46-2aP	Type11	2	2	2	4	2	3	3	0	2	1	3	2	2	2	3	2
MACstudy46	MI46-2bP	Type11	2	2	2	4	2	3	3	0	2	1	3	2	2	2	3	2
MACstudy49	MI49-1aP	Type10	2	1	1	1	2	2	2	0	1	1	2	2	3	2	2	2
MACstudy49	MI49-1bP	Type10	2	1	1	1	2	2	2	0	1	1	2	2	3	2	2	2
MACstudy49	MI49-2aP	Type12	2	2	1	4	2	3	3	0	2	4	4	3	2	3	3	2
MACstudy49	MI49-2bP	Type12	2	2	1	4	2	3	3	0	2	4	4	3	2	3	3	2
MACstudy54	MI54-1aP	Type13	2	2	1	1	0	2	2	2	2	4	2	2	3	2	1	2
MACstudy54	MI54-1bP	Type13	2	2	1	1	0	2	2	2	2	4	2	2	3	2	1	2
MACstudy68	MI68-1aP	Type14	2	3	1	3	2	4	3	0	2	2	2	3	3	2	2	2
MACstudy68	MI68-1bP	Type14	2	3	1	3	2	4	3	0	2	2	2	3	3	2	2	2
MACstudy68	MI68-2aP	Type14	2	3	1	3	2	4	3	0	2	2	2	3	3	2	2	2
MACstudy68	MI68-2bP	Type14	2	3	1	3	2	4	3	0	2	2	2	3	3	2	2	2
MACstudy71	MI71-1aP	Type15	2	1	1	1	2	3	1	0	2	1	4	2	2	2	1	2
MACstudy71	MI71-1bP	Type15	2	1	1	1	2	3	1	0	2	1	4	2	2	2	1	2
MACstudy71	MI71-2aP	Type15	2	1	1	1	2	3	1	0	2	1	4	2	2	2	1	2
MACstudy71	MI71-2bP	Type15	2	1	1	1	2	3	1	0	2	1	4	2	2	2	1	2

MACstudy78	MI78-1aP	Type16	1	1	0	2	0	5	0	1	2	1	2	2	3	2	2	2
MACstudy78	MI78-1bP	Type16	1	1	0	2	0	5	0	1	2	1	2	2	3	2	2	2
MACstudy78	MI78-2aP	Type17	2	1	0	3	2	3	1	2	2	1	2	2	3	1	2	2
MACstudy78	MI78-2bP	Type17	2	1	0	3	2	3	1	2	2	1	2	2	3	1	2	2
MACstudy82	MI82-1aP	Type18	2	4	2	3	2	3	2	2	1	4	2	2	3	2	2	2
MACstudy82	MI82-1bP	Type18	2	4	2	3	2	3	2	2	1	4	2	2	3	2	2	2
MACstudy82	MI82-2aP	Type18	2	4	2	3	2	3	2	2	1	4	2	2	3	2	2	2
MACstudy82	MI82-2bP	Type18	2	4	2	3	2	3	2	2	1	4	2	2	3	2	2	2
MACstudy83	MI83-1aP	Type19	2	1	1	1	0	3	3	0	2	1	4	3	3	2	2	2
MACstudy83	MI83-1bP	Type19	2	1	1	1	0	3	3	0	2	1	4	3	3	2	2	2
MACstudy83	MI83-2aP	Type20	1	3	1	1	2	3	3	2	2	3	2	2	3	2	2	2
MACstudy83	MI83-2bP	Type20	1	3	1	1	2	3	3	2	2	3	2	2	3	2	2	2
MACstudy95	MI95-1aP	Type21	2	4	2	3	2	3	3	2	3	4	2	2	3	1	2	2
MACstudy95	MI95-1bP	Type21	2	4	2	3	2	3	3	2	3	4	2	2	3	1	2	2
MACstudy100	MI100-1aP	Type22	2	1	0	2	2	2	2	2	2	1	4	2	3	2	2	2
MACstudy100	MI100-1bP	Type23	2	3	0	2	2	2	2	1	2	1	4	2	3	2	2	2
MACstudy100	MI100-2aP	Type22	2	1	0	2	2	2	2	2	2	1	4	2	3	2	2	2
MACstudy100	MI100-2bP	Type22	2	1	0	2	2	2	2	2	2	1	4	2	3	2	2	2
MACstudy116	MI116-1aP	Type24	3	1	1	4	3	3	2	1	2	1	4	2	3	2	1	2
MACstudy116	MI116-1bP	Type24	3	1	1	4	3	3	2	1	2	1	4	2	3	2	1	2
MACstudy122	MI122-1aP	Type25	2	2	2	4	2	3	3	2	3	4	2	2	3	2	2	2
MACstudy122	MI122-1bP	Type25	2	2	2	4	2	3	3	2	3	4	2	2	3	2	2	2
MACstudy122	MI122-2aP	Type25	2	2	2	4	2	3	3	2	3	4	2	2	3	2	2	2

MACstudy122	MI122-2bP	Type25	2	2	2	4	2	3	3	2	3	4	2	2	3	2	2	2
MACstudy130	MI130-1aP	Type26	3	4	0	1	0	2	3	3	2	1	2	2	2	3	1	2
MACstudy130	MI130-1bP	Type26	3	4	0	1	0	2	3	3	2	1	2	2	2	3	1	2
MACstudy130	MI130-2aP	Type26	3	4	0	1	0	2	3	3	2	1	2	2	2	3	1	2
MACstudy130	MI130-2bP	Type26	3	4	0	1	0	2	3	3	2	1	2	2	2	3	1	2
MACstudy132	MI132-1aP	Type27	2	1	1	3	2	2	2	0	1	1	4	2	3	2	1	2
MACstudy132	MI132-1bP	Type27	2	1	1	3	2	2	2	0	1	1	4	2	3	2	1	2
MACstudy132	MI132-2aP	Type27	2	1	1	3	2	2	2	0	1	1	4	2	3	2	1	2
MACstudy132	MI132-2bP	Type27	2	1	1	3	2	2	2	0	1	1	4	2	3	2	1	2

5 *Definition of abbreviations*: VNTR = variable number of tandem repeats; MITR = *Mycobacterium intracellulare* tandem repeats.

6 Isolates from the first and the second sputum sample are shown as "1a/b" and "2a/b," respectively.

Table E5. Characteristics, high-resolution computed tomography features, and environmental exposures of patients with monoclonal infections and polyclonal and mixed mycobacterial Mycobacterium avium (MAV) infections in pulmonary MAV disease

monoclonal MAV Infection (n=64) 62.0 (55.3-69.0)	polyclonal and mixed mycobacterial MAV infection (n=30)	value
Infection (n=64)	MAV infection	
(n=64)		
. ,	(n=30)	
62 0 (55 3-69 0)	(11 50)	
02.0(55.5,0).0)	64.5 (59.8-70.3)	0.28
55 (85.9)	17 (56.7)	< 0.01
19.4 (17.8-20.9)	19.2 (18.1-21.6)	0.73
6.0 (3.0-9.8)	6.0 (4.0-9.0)	0.96
15 (23.4)	10 (33.3)	0.31
3 (4.7)	1 (3.3)	>0.99
1 (1.6)	6 (20.0)	< 0.01
6 (9.4)	3 (10.0)	>0.99
15 (23.4)	3 (10.0)	0.16
10 (15.6)	3 (10.0)	0.54
3 (4.7)	1 (3.3)	>0.99
4 (6.3)	1 (3.3)	>0.99
2 (3.1)	0 (0.0)	>0.99
6 (9.4)	3 (10.0)	>0.99
4 (6.3)	3 (10.0)	0.68
18 (28.1)	8 (26.7)	>0.99
1 (1.6)	3 (10.0)	0.094
1 (1.6)	4 (13.3)	0.035
53 (82.8)	20 (66.7)	0.080
26 (40.6)	10 (33.3)	0.50
5.60 (4.42-6.48)	5.10 (4.58-6.45)	0.72
12.8 (12.0-13.9)	13.2 (12.0-14.7)	0.23
38.8 (36.8-41.5)	40.2 (37.2-44.3)	0.24
2.11 (1.67-2.46)	1.98 (1.51-2.38)	0.38
	$\begin{array}{c} 6 (9.4) \\ 4 (6.3) \\ 18 (28.1) \\ 1 (1.6) \\ 1 (1.6) \\ 53 (82.8) \\ 26 (40.6) \end{array}$ $5.60 (4.42-6.48) \\ 12.8 (12.0-13.9) \\ 38.8 (36.8-41.5) \end{array}$	$\begin{array}{c} 6 \left(9.4\right) & 3 \left(10.0\right) \\ 4 \left(6.3\right) & 3 \left(10.0\right) \\ 18 \left(28.1\right) & 8 \left(26.7\right) \\ 1 \left(1.6\right) & 3 \left(10.0\right) \\ 1 \left(1.6\right) & 4 \left(13.3\right) \\ 53 \left(82.8\right) & 20 \left(66.7\right) \\ 26 \left(40.6\right) & 10 \left(33.3\right) \end{array}$ $\begin{array}{c} 5.60 \left(4.42-6.48\right) & 5.10 \left(4.58-6.45\right) \\ 12.8 \left(12.0-13.9\right) & 13.2 \left(12.0-14.7\right) \end{array}$

C-reactive protein, mg/dL	0.10 (0.0-0.65)	0.10 (0.0-0.30)	0.76
Erythrocyte sedimentation rate, mm/hour	14.0 (10.0-37.8)	14.0 (4.8-27.8)	0.23
Total protein, g/dL	7.2 (6.8-7.5)	6.8 (6.6-7.4)	0.028
Albumin, g/dL	4.1 (4.0-4.4)	4.1 (3.9-4.3)	0.89
Radiographic pattern			
Nodular and bronchiectasis form	34 (53.1)	21 (70.0)	0.14
Cavitary form	13 (20.3)	2 (6.7)	0.13
Cavitary + nodular and bronchiectasis form	11 (17.2)	2 (6.7)	0.21
Unclassified form	5 (7.8)	5 (16.7)	0.19
HRCT findings			
Nodule	57 (90.5)	28 (93.3)	>0.99
Bronchiectasis	57 (90.5)	25 (83.3)	0.32
Cavity	24 (38.1)	4 (13.3)	0.016
Consolidation	44 (69.8)	22 (73.3)	0.73
Location			
Right upper lobe	38 (60.3)	18 (60.0)	>0.99
Right middle lobe	55 (87.3)	25 (83.3)	0.61
Right lower lobe	38 (60.3)	16 (53.3)	0.52
Left upper lobe	26 (41.3)	13 (43.3)	0.85
Lingular	50 (79.4)	23 (76.7)	0.77
Left lower lobe	34 (54.0)	12 (40.0)	0.21
Thoracic abnormality			
Scoliosis	13 (20.3)	8 (26.7)	0.49
Pectus excavatum	6 (9.4)	6 (20.0)	0.15
Environmental exposure			
Soil exposure			
High, ≥2h per week	20 (31.3)	18 (60.0)	< 0.01
Water exposure			
Bathing, ≥ 2 per day	1 (1.6)	0 (0.0)	>0.99
Shower use in a bathroom	46 (71.9)	29 (96.7)	< 0.01
Dish washing, ≥ 2 per day	49 (76.6)	19 (63.3)	0.18
Swimming in a pool	1 (1.6)	6 (20.0)	< 0.01

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; HRCT =

high-resolution computed tomography; MAV = *Mycobacterium avium*.

Data show either number (%) of patients or median (interquartile ranges).

Table E6. Characteristics, high-resolution computed tomography features, and environmental exposures of patients with monoclonal infections and polyclonal and mixed mycobacterial *Mycobacterium intracellulare* (MIN) infections in pulmonary MIN disease

Variable	Patients with	Patients with	Р
	monoclonal	polyclonal and	value
	MIN infection	mixed mycobacterial	
	(n=14)	MIN infection	
		(n=12)	
Age, years	66.5 (58.0-73.3)	67.5 (58.8-76.8)	0.84
Gender, female	11 (78.6)	7 (58.3)	0.40
Body mass index, kg/m ²	17.3 (15.2-18.6)	19.0 (16.6-21.8)	0.19
Duration of MIN disease, year	2.5 (1.0-8.0)	6.5 (4.0-7.8)	0.27
Underlying disease			
Lung disease	4 (28.6)	3 (25.0)	>0.99
COPD	1 (7.1)	0 (0.0)	>0.99
Bronchial asthma	0 (0.0)	1 (8.3)	0.46
Previous tuberculosis	1 (7.1)	1 (8.3)	>0.99
Severe pneumonia	5 (35.7)	2 (16.7)	0.39
Previous malignant disease	4 (28.6)	3 (25.0)	>0.99
Diabetes mellitus	0 (0.0)	1 (8.3)	0.46
Liver disease	0 (0.0)	0 (0.0)	-
Renal disease	0 (0.0)	0 (0.0)	-
Autoimmune disease	4 (28.6)	1 (8.3)	0.33
Rheumatoid arthritis	1 (7.1)	1 (8.3)	>0.99
Gastroesophageal reflux disease symptoms	4 (28.6)	2 (16.7)	0.65
Immunosuppressing agents	3 (21.4)	1 (8.3)	0.60
Inhaled corticosteroids	1 (7.1)	1 (8.3)	>0.99
Smoking status (never)	13 (92.9)	10 (83.3)	0.58
Alcohol drinking habit	7 (50.0)	5 (41.7)	0.67
Laboratory findings			
White blood cell , $\times 10^{3}/\mu L$	6.45 (4.63-8.13)	6.00 (4.75-6.88)	0.54
Haemoglobin, g/dL	11.7 (11.7-13.2)	13.4 (12.6-14.7)	0.094
Haematocrit, %	39.1 (35.7-40.6)	40.9 (39.1-44.6)	0.14
Platelet, $\times 10^{6}/\mu L$	2.16 (1.98-2.48)	2.01 (1.59-2.83)	0.63

C-reactive protein, mg/dL	0.65 (0.28-2.4)	0.10 (0.0-1.2)	0.034
Erythrocyte sedimentation rate, mm/hour	28.5 (12.5-42.0)	13.0 (6.0-43.0)	0.41
Total protein, g/dL	7.1 (6.6-7.3)	7.5 (6.8-7.9)	0.13
Albumin, g/dL	3.9 (3.5-4.2)	4.2 (3.6-4.6)	0.16
Radiographic pattern			
Nodular and bronchiectasis form	2 (14.3)	5 (41.7)	0.19
Cavitary form	3 (21.4)	3 (25.0)	>0.99
Cavitary + nodular and bronchiectasis form	7 (50.0)	2 (16.7)	0.11
Unclassified form	2 (14.3)	2 (16.7)	>0.99
HRCT findings			
Nodule	13 (92.9)	11 (91.7)	>0.99
Bronchiectasis	12 (85.7)	10 (83.3)	>0.99
Cavity	10 (71.4)	5 (41.7)	0.23
Consolidation	11 (78.6)	8 (66.7)	0.67
Location			
Right upper lobe	10 (71.4)	8 (66.7)	>0.99
Right middle lobe	13 (92.9)	11 (91.7)	>0.99
Right lower lobe	13 (92.9)	9 (75.0)	0.31
Left upper lobe	9 (64.3)	6 (50.0)	0.46
Lingular	13 (92.9)	11 (91.7)	>0.99
Left lower lobe	9 (64.3)	7 (58.3)	0.76
Thoracic abnormality			
Scoliosis	7 (50.0)	4 (33.3)	0.45
Pectus excavatum	3 (21.4)	0 (0.0)	0.22
Environmental exposure			
Soil exposure			
High, ≥2h per week	4 (28.6)	8 (66.7)	0.11
Water exposure			
Bathing, ≥ 2 per day	0 (0.0)	0 (0.0)	-
Shower use in a bathroom	9 (64.3)	9 (75.0)	0.68
Dish washing, ≥ 2 per day	11 (78.6)	8 (66.7)	0.67
Swimming in a pool	0 (0.0)	1 (8.3)	0.46

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; HRCT =

high-resolution computed tomography; MIN = *Mycobacterium intracellulare*.

Data show either number (%) of patients or median (interquartile ranges).

Table E7. Factors associated with polyclonal and mixed mycobacterial infections of

Variable	Univariate analy	ysis	Multivariate analysis					
	OR (95% CI)	P value	OR (95% CI)	P value				
Male gender	4.67 (1.73–13.2)	< 0.01	4.57 (1.17-20.10)	0.029				
History of asthma	15.75 (2.51–305.61)	< 0.01	18.19 (1.70–499.71)	0.015				
No cavitation	4.00 (1.35-14.80)	0.011	4.06 (1.02–21.74)	0.046				
High soil exposure	3.30 (1.36-8.32)	< 0.01	4.02 (1.28–13.73)	0.017				
Shower use in a bathroom	11.35 (2.16–209.51)	< 0.01	35.72 (2.23-5006.2)	< 0.01				
Swimming in a pool	15.75 (2.51–305.61)	< 0.01	9.20 (0.99–225.27)	0.051				

pulmonary Mycobacterium avium disease.

Definition of abbreviations: CI = confidence interval; OR = odds ratio.

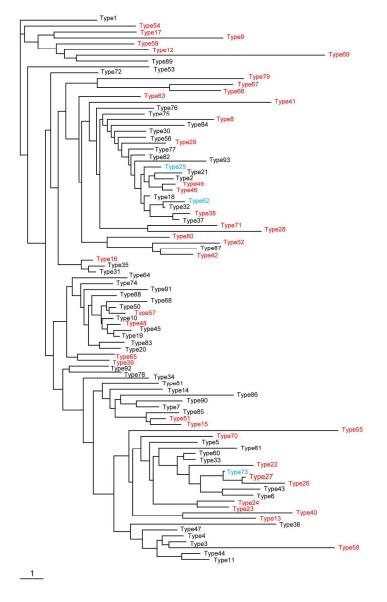


Figure E1. *M. avium* phylogenetic tree The phylogenetic tree was constructed by variable number of tandem repeats. Phylip software ver. 3.69 was used for analysis. Black, red, and blue fonts indicate monoclonal, polyclonal, and both monoclonal and polyclonal infection, respectively.

157x235mm (300 x 300 DPI)

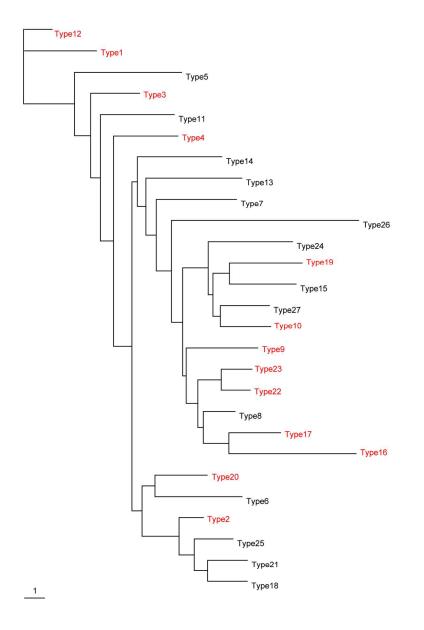


Figure E2. *M. intracellulare* phylogenetic tree The phylogenetic tree was constructed by variable number of tandem repeats. Phylip software ver. 3.69 was used for analysis. Black and red fonts indicate monoclonal and polyclonal infection, respectively. 149x208mm (300 x 300 DPI)