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Introduction 

 

 

Thermolysin (TLN) [EC 3.4.24.27] is a thermostable neutral metalloproteinase 

that belongs to the gluzincins family of clan MA, subclan MA(E). It was originally 

identified in the culture broth of Bacillus thermoproteolyticus (1–3). It contains one zinc 

ion that is essential for catalysis and four calcium ions for structural stability (4–6). It 

has a molecular mass of 34.6 kDa and comprises 316 amino acid residues whose 

sequence is known (7–8). The overall structure of TLN consists of two domains, a 

β-rich N-terminal domain (Ile1-Asp138) and an α-helical C-terminal domain 

(Asp150-Lys316) (9–11). The domains are connected by an α-helix (Val139-Thr149) 

located at the bottom of the active site cleft (10). The active site is composed of one zinc 

ion and five polypeptide regions: N-terminal sheet (Asn112-Trp115), α-helix 1 

(Val139-Thr149), C-terminal loop 1 (Asp150-Gly162), α-helix 2 (Ala163-Val176), and 

C-terminal loop 2 (Gln225-Ser234) (12). 

The α-helix 1 located at the bottom of the active site contains the zinc-binding 

motif sequence His-Glu-x-x-His (HEXXH). This motif sequence is highly conserved in 

zinc-dependent metalloproteases (zincins), a broad group of proteins involved in many 

metabolic and regulatory functions, and found in virtually all forms of life (13). Some 

other mono-zinc proteases have different zinc-binding motifs, for example HEXXXH in 

dipeptidyl peptidase III (DPP III) (14). Almost all Co(II)- or Mn(II)-substituted enzymes 

maintain the catalytic activity of their zinc counterparts. Based on structural studies of 

various metal-substituted enzymes, the metal coordination geometries of both active and 

inactive Cu(II)-substituted enzymes have been shown to be the same as those of the 

wild-type Zn(II) enzymes (15). This implies that the enzymatic activity of a 

metal-ion-substituted zinc metalloprotease may depend on the flexibility of the catalytic 

domain. 

TLN catalyzes primarily the hydrolysis of peptide bonds containing hydrophobic 

amino acid residues (16, 17). In addition, it catalyzes peptide bond formation through 

reverse reaction of hydrolysis, a property which has been exploited industrially. The 
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most extensive use is in the synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine 

methyl ester (ZDFM) from N-carbobenzoxy-L-aspartic acid (ZD) and L-phenylalanine 

methyl ester (FM) (18, 19). ZDFM is a precursor of an artificial sweetener, aspartame, 

which is 200 times sweeter than sucrose. Because of its economic importance the 

improvement of its activity and stability are important subjects.  

TLN activity increases in an exponential fashion with increasing concentrations of 

neutral salts (1–5 M) (17, 18, 20–23). The ratios of the specificity constant, kcat/Km, at 

4.0 M NaCl to that at 0 M NaCl of WT is 13–15 in the hydrolysis of the neutral 

substrate N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and 6–7 in the 

hydrolysis of the negatively charged substrate ZDFM at pH 7.0 at 25°C (19–22). The 

degree of activation at x molar NaCl in the hydrolysis of FAGLA at pH 7.5 takes the 

form 1.9x. Activation is solely due to an increase in kcat; the Km is unaffected during 

activation. Activation is highest in the presence of NaCl or NaBr. This has been related 

to specific interactions between cations and TLN, and the magnitude of activation is in 

the order Na+ > K+ > Li+. Though the exact mechanism of activation has not been 

clearly elucidated, the activation order suggests the degrees of hydration coupled with 

specific electrostatic interactions with TLN residues are involved in the activation 

mechanism. Interestingly, virtually all highly active TLN variants produced by 

site-directed mutagenesis generally exhibited drastically diminished degree of 

NaCl-induced activation.  

TLN’s stability increases in the range 0–2 M NaCl (17). The ratio of the 

first-order rate constant for thermal inactivation (kobs) at 70ºC at 0 M NaCl to that at 1 M 

NaCl of TLN is about 3 (17) This stabilizing effect decreases above 2 M NaCl (17). The 

activation energy, Ea, for thermal inactivation is 15 kcal/mol at 0 M NaCl, and increases 

up to 30–33 kcal/mol on the addition of 0.5–1.5 M NaCl. Further increases in sodium 

chloride concentration decrease the Ea value, and at 4.0 M NaCl Ea is almost the same 

as that at 0 M NaCl. The stability dependence on NaCl concentration is different from 

that of activity, suggesting that the effects of NaCl on activity and stability are 

independent. TLN has been demonstrated to be not only a thermophilic enzyme but also 

a highly halophilic one.  



3 

 

The general objective of this study was to examine the structure-function 

relationship of the β-hairpin loop in the N-terminal domain and the zinc-binding motif 

of TLN. Specifically, the desire was to generate TLN variants with (i) altered substrate 

specificity, (ii) enhanced activity and/or stability, (iii) altered catalytic metal-ion 

preference, and (iv) to explore the relation between activity enhancements induced by 

NaCl versus that caused by mutation, especially where the activity-enhancing mutation 

simultaneously affects NaCl-induced activation. In Chapters 1 and 2, the roles of 

Asn116 and Gly117 in the β-hairpin loop of the Asn112-Trp115 and Ser118-Tyr115 

strands of the active site of TLN are examined. Chapter 3 explores the mechanism of 

salt-induced activation and stabilization of TLN by comparing the effects of 

Asn116→Asp and Asp150→Glu mutations on NaCl-induced activation and 

stabilization. Chapter 4 examines the effects of conversion of the zinc-binding motif 

sequence of TLN from HEXXH to HEXXXH on catalytic activity and stability. 

Throughout this study, the mutation of a residue e.g. Asn116 to Asp was designated as 

Asn116→Asp, and the TLN variant bearing the mutation was designated as N116D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Chapter 1 

 

 

Effects of Site-directed Mutagenesis of the Loop Residue of the N-terminal Domain 

Gly117 of Thermolysin on Its Catalytic Activity   

  

   

Introduction 

 

The active site of TLN is composed of one zinc ion and five polypeptide regions 

(12). Site-directed mutagenesis studies of TLN have been done extensively in the five 

regions, especially on its active-site residues (24–32). Of the active-site residue variants, 

L144S, D150E, and I168A exhibited higher activities than WT in the hydrolysis of 

FAGLA, a widely used substrate for TLN (18, 33). L155A had higher stability than WT 

(27, 28). N112D (28), F114H (10), and Q225A (29) had modified pH-activity profiles.     

In the N-terminal domain of TLN, two parallel polypeptide strands, 

Asn112-Ala113-Phe114-Trp115 and Ser118-Gln119-Met120-Val121-Tyr122, are 

connected by a short loop, Asn116-Gly117, to form an anti-parallel β-sheet at the active 

site (Fig. 1). The Asn112-Trp115 strand is located in the active site, while the 

Ser118-Tyr122 strand and the Asn116-Gly117 loop are located outside the active site. 

The objective of this study was to explore the catalytic role of Gly117 by site-directed 

mutagenesis. TLN variants were expressed in Escherichia coli, purified, and 

characterized for their activities and thermal stabilities in the hydrolysis of FAGLA and 

ZDFM.    

 

 

Materials and Methods 

 

Materials – Bovine milk casein of Hammerstein grade (lot WKL1761) was 

purchased from Wako Pure Chemical (Osaka, Japan). FAGLA (lot 111K1764) was 
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purchased from Sigma (St. Louis, MO). The concentrations of FAGLA and ZDFM were 

determined spectrophotometrically using the molar absorption coefficients, ε345 = 766 

M-1 cm-1 and ε257 = 387 M-1 cm-1, respectively (18, 22). 

 

Bacterial strains, plasmids, and transformation – E. coli K12 JM109, recA1, 

endA1, gyrA96, thi, hsdR17, supE44, relA1, ∆(lac-proAB), F′(traD36, proAB+ lacIq, 

lacZ∆M15), was used. pTMP1 is an expression plasmid that co-expresses the mature 

sequence of TLN that contains the pelB leader sequence at its N-terminus and the 

pre-prosequence (34). Site-directed mutagenesis was carried out using a QuikchangeTM 

site-directed mutagenesis kit (Stratagene, La Jolla, CA). The nucleotide sequences of 

the mutated TLN genes were verified with a Shimadzu DNA sequencer DSQ-2000 

(Shimadzu, Kyoto, Japan). JM109 cells were transformed with the resulting plasmids 

and cultured in L broth. Ampicillin was used at a concentration of 50 µg/ml. 

 

Purification of TLN variants – TLN variants were expressed into the supernatant 

of E. coli cultures and purified to homogeneity by sequential column chromatography of 

the supernatant (34–36). Briefly, for seed culture, 5 ml of L broth in a 20-ml test tube 

was inoculated with glycerol stock of transformed JM109 cells and grown with shaking 

at 37ºC for 12 h. The culture (5 ml) was supplemented with 500 ml of L broth in a 

1-liter flask and incubated at 37ºC for 48 h, with 0.1% (w/v) anti-foam A (Sigma) and 

vigorous aeration with an air pump. The supernatant was applied to a column packed 

with Toyopearl Phenyl-650M gel (Tosoh, Tokyo). Active fractions were pooled and then 

applied to a column of Gly-D-Phe coupled to CNB-activated Sepharose 4B resin 

(Amersham-Pharmacia Biotech, Uppsala, Sweden). Prior to kinetic measurement, the 

preparations were desalted using pre-packed PD-10 gel filtration columns (Amersham 

Biosciences, Uppsala, Sweden). 

 

SDS-PAGE – SDS-PAGE was performed in a 12.5% polyacrylamide gel under 

reducing conditions by the method of Laemmli (37). A constant current of 40 mA was 

applied for 40 min. Supernatants were reduced by treatment with 2.5% 
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2-mercaptoethanol at 100ºC for 10 min. Proteins were stained with Coomassie Brilliant 

Blue R-250. A molecular-mass marker kit consisting of rabbit muscle phosphorylase b 

(97.4 kDa), bovine serum albumin (66.3 kDa), rabbit muscle aldolase (42.4 kDa), 

bovine erythrocyte carbonic anhydrase (30.0 kDa), soybean trypsin inhibitor (20.1 kDa), 

and hen egg white lysozyme (14.4 kDa) was from Daiichi Pure Chemicals (Tokyo). 

 

Two-dimensional gel electrophoresis – Isoelectric focusing (IEF) was done with 

agarGel (Atto, Tokyo), containing carrier ampholytes (pH 3–10) and discRun (Atto). A 

constant voltage of 300 V was applied for 210 min. Purified WT or G117E (50 µl of 2 

µg/ml in 60 mM Tris-HCl pH 8.9, 5 M urea, 1 M thiourea, 1% (v/v) 

3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), 1% (v/v) 

Triton X-100, and 1% (w/v) DTT) were applied to agarGel. After IEF, the gels were 

expelled from the tubes and equilibrated in 2.5% (w/v) trichloroacetic acid for 3 min, 

followed by immersion in water. They were then placed on top of a 12.5% 

polyacrylamide gel, and SDS-PAGE was done as described above.    

 

Hydrolysis of casein – Casein-hydrolyzing activity was measured by methods 

described previously (3, 31). The TLN solution (0.5 ml) was added to 1.5 ml of a 

solution containing 1.33% (w/v) casein and 40 mM Tris-HCl pH 7.5, and incubated at 

25ºC for 30 min. The reaction was stopped by the addition of 2 ml of a solution 

containing 0.11 M trichloroacetic acid, 0.22 M sodium acetate, and 0.33 M acetic acid. 

After 1 h of incubation at 25ºC, the reaction mixture was filtered through Whatman no. 

2 filter paper (diameter 70 mm), and the absorbance (A275) at 275 nm was measured. 

One proteolytic unit (PU) is defined as the amount of enzyme activity that liberates a 

quantity of acid soluble peptides that corresponds to an increase in A275 of 0.0074 (A275 

of 1 µg of tyrosine)/min. 

 

Spectrophotometric analysis of the TLN-catalyzed hydrolysis of FAGLA – 

TLN-catalyzed hydrolysis of FAGLA was measured by the decrease in absorbance 

(A345) at 345 nm (17, 18). The amount of FAGLA hydrolyzed was evaluated using the 
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molar absorption difference due to hydrolysis, Δε345 = -310 M-1 cm-1, at 25ºC (17, 18, 

32). The reaction was carried out in 40 mM acetate-NaOH buffer at pH 4.0–5.5, 40 mM 

MES-NaOH buffer at pH 5.5–7.0, 40 mM HEPES-NaOH buffer at pH 7.0–8.5, and 

TAPS-NaOH buffer at pH 8.0–9.0, each of which contained 10 mM CaCl2, at 25ºC. 

Hydrolysis was carried out under pseudo first-order conditions, where the substrate 

concentration is much lower than the Km (> 30 mM) (18) because of the sparing 

solubility (< 6 mM) of FAGLA (16, 18, 32). Under the conditions, the kinetic 

parameters, Km and kcat, cannot be determined separately, and enzyme activity was 

evaluated by the kcat/Km. The intrinsic kcat/Km, ((kcat/Km)o), and the proton dissociation 

constants (Ke1 and Ke2) for the bell-shaped pH-dependence of activity (kcat/Km) were 

calculated from eq. 1 by a non-linear least-squares regression method with Kaleida 

Graph Version 3.5 (Synergy Software, Essex, VT):  

 

(kcat/Km)obs = (kcat/Km)o / {1 + ([H] / Ke1) + (Ke2 / [H])}                      (1) 

 

In this equation, (kcat/Km)obs and [H] are the kcat/Km values observed and the proton 

concentration, respectively, at a specified pH, and Ke1 and Ke2 correspond to the pKas in 

the acidic and alkaline sides of the pH-dependence curve of (kcat/Km)obs. 

 

Spectrophotometric analysis of the TLN-catalyzed hydrolysis of ZDFM – 

TLN-catalyzed hydrolysis of ZDFM was measured by following the decrease in 

absorbance (A224) at 224 nm (18). The amount of ZDFM hydrolyzed was measured 

using the molar absorption difference due to hydrolysis, Δε224 = -493 M-1 cm-1, at 25ºC 

(17). The reaction was carried out with TLN in 40 mM Tris-HCl buffer (pH 7.5) 

containing 10 mM CaCl2 at 25ºC. The kinetic parameters, kcat and Km, were determined 

with Kaleida Graph Version 3.5, based on the Michaelis-Menten equation using the 

non-linear least-squares method (38). 

 

Thermal inactivation of TLN – TLN (0.5–8 µM) in 40 mM HEPES-NaOH buffer 

pH 7.5 containing 10 mM CaCl2 was incubated at 80ºC for 0–24 min. Then it was 
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incubated at 25ºC for 1 min. The remaining activity of TLN toward FAGLA hydrolysis 

was determined as described above. Under the assumption that thermal inactivation of 

TLN is irreversible and consists of only one step (31, 32 ,39), the kobs was evaluated by 

plotting the logarithm of the residual activity (kcat/Km) against the duration of thermal 

treatment. 

 

 

Results 

 

Production of Gly117 variants to homogeneity – Gly117 was changed into one of 

the negatively charged amino acid residues (Asp and Glu), one of the positively charged 

ones (Lys and Arg), or an uncharged one (Ala). WT and variants were expressed in E. 

coli and purified from the supernatants.  

Figure 2 shows a time course for the cultures of the transformants. In the 

transformants with the expression plasmids for WT and G117E, casein hydrolysis 

activities appeared in the supernatants and increased progressively even after OD600 

reached maximum. In the transformants with the expression plasmid for G117D, 

G117K, and G117R, low casein hydrolysis activity appeared in the supernatants and 

increased slightly with time. In the transformants with the expression plasmid for 

G117A, casein hydrolysis activities did not appear in the supernatants. 

On SDS-PAGE, under reducing conditions, of the culture supernatants of the E. 

coli cells transformed with the expression plasmids for WT and the Gly117 variants, the 

34.6-kDa protein band was clearly detected for WT, G117E, and G117K, but was 

hardly detected for G117A, G117D, or G117R. Figure 3 shows SDS-PAGE of the 

purified WT and the Gly117 variants, except for G117A. The TLN thus obtained 

yielded a single band with a molecular mass of 34.6 kDa. From 380–850 ml of the 

culture supernatants, 1.1 mg of WT, 0.04 mg of G117D, 1.8 mg of G117E, 0.10 mg of 

G117K, and 0.10 mg of G117R were recovered. Purified G117A was not obtained. 

Isoelectric focusing showed that the pI values of WT and G117E were 5.3 and 4.8, 

respectively (data not shown), indicating that the pI value of TLN was shifted by 0.5 pH 
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unit by the mutation Gly117→Glu.  

 

Characterization of Gly117 variants – The specific activities of WT, G117D, 

G117E, G117K, and G117R in the hydrolysis of casein were 11,000, 2,000, 12,000, 

3,200, and 2,900 units/mg, respectively, indicating that the specific activity of G117E 

was almost the same as that of WT, while those of G117D, G117K, and G117R were 

20–30% of that of WT. We did not attempt further characterization of G117D due to 

paucity of the purified enzyme.  

Figure 4A shows the pH-dependence of the kcat/Km of the TLN-catalyzed 

hydrolysis of FAGLA at 25ºC. All the plots showed bell-shaped curves, with an optimal 

pH of about 7. The (kcat/Km)o, pKe1, and pKe2 values are summarized in Table 1. The 

(kcat/Km)o values for G117E, G117K, and G117R were 80, 40, and 40%, respectively, of 

that of WT. The pKe1 and pKe2 values of the variants were similar to those of WT, 

except for the pKe2 value for G117R (8.6 ± 0.1), which was higher by 0.4 ± 0.3 units 

than that for WT (8.2 ± 0.2).  

Figure 4B shows the dependence of the initial reaction rate (vo) of the 

TLN-catalyzed hydrolysis of ZDFM at pH 7.5 at 25ºC on substrate concentration. All 

the plots showed saturated profiles. The kcat and Km values are summarized in Table 2. 

The kcat/Km values of G117E, G117K, and G117R were 130, 80, and 50%, respectively, 

of that of WT. The high kcat/Km value of G117E was ascribed to its high kcat value.   

We have reported that TLN activity increases with increasing concentration of 

neutral salts such as NaCl, and that the degree of NaCl-induced activation, which is 

defined as the ratio of the kcat/Km value at 4.0 M NaCl to that at 0 M NaCl, is in the 

range of 13–15 (22). Table 3 shows the kcat/Km values at 0 and 4.0 M NaCl in the 

hydrolysis of FAGLA and the degrees of NaCl-induced activation. The degrees of 

activation of G117E, G117K, and G117R were 90, 30, and 50%, respectively, of that of 

WT.  

Figure 5 shows the time-dependence of thermal inactivation of the TLN variants 

at 80ºC. Inactivation followed pseudo first-order kinetics. The kobs values are 

summarized in Table 4. The order for kobs was G117K > G117R > G117E > WT. Thus 
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thermal inactivation of TLN at 80ºC was enhanced in the variants in the order G117K > 

G117R > G117E. 

 

 

Discussion 

 

Altered substrate specificity of G117E – In TLN, the S1 subsite is constituted by 

Phe114, and the S1′ subsite by Phe130, Leu133, Val139, Ile188, Gly189, Val192, and 

Leu202 (9, 10, 25, 29). Crystallographic analysis of the complex of TLN and an analog 

of the tetrahedral intermediate carbobenzoxy-GlyP-L-Leu-L-Leu (“GlyP” indicates the 

tetrahedral phosphorus of a phosphonamidate moiety corresponding to the trigonal 

carbon of the peptide linkage) revealed the postulated hydrogen bonds between TLN 

and the substrate, ND2 of Asn112 and O of the P2´ residue, OD1 of Asn112 and N of 

the P2´ residue, O of Ala113 and N of P1´ Leu, and N of Trp115 and O of P2 residue 

(40). Based on these findings, we speculate as follows: (i) TLN variants with altered 

substrate specificity can be obtained if the geometry of the S1 and S1´ subsites is 

changed without much affecting the backbone structure of the Asn112-Trp115 strand, 

and (ii) the geometry of the Asn112-Trp115 strand can be changed by mutation of 

Gly117, because the Asn116-Gly117 loop connects the Asn112-Trp115 strand and the 

Ser118-Tyr122 strand, and Gly is the most flexible amino acid residue. 

The specific activities of G117E and WT in the hydrolysis of casein were almost 

the same, described in “Results”. However, the kcat/Km value in the hydrolysis of 

FAGLA of G117E was slightly lower than that of WT (Fig. 4A, Table 1), while the 

kcat/Km value in the hydrolysis of ZDFM of G117E was slightly higher than that of WT 

(Fig. 4B, Table 2). The enhanced kcat/Km value of G117E in the hydrolysis of ZDFM is 

ascribed to an increase in kcat. FAGLA and ZDFM are substrates routinely used in the 

characterization of TLN (3, 18) and neutral proteases from B. stearothermophilus (41–

43). FAGLA is a poorly soluble neutral dipeptide, while ZDFM is a negatively charged 

dipeptide. We have reported several TLN variants, L144S, D150E, and I168A, with 

higher FAGLA- and ZDFM-hydrolyzing activities than WT (12, 31, 32). In contrast, 
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G117E is the first TLN variant with lower FAGLA-hydrolyzing and higher 

ZDFM-hydrolyzing activities. Our strategy appears to have been effective in altering the 

substrate specificity of TLN. 

   

Decreased production levels of G117A and G117D – G117A was not produced at 

detectable levels in the supernatant of the E. coli transformants (Figs. 2 and 3). For their 

expression, we used an E. coli expression system that does not require autocatalytic 

cleavage. In this system, the mature domain of TLN, containing an NH2-terminal 

pectate lyase B leader sequence and the pre-prodomain of TLN, were co-expressed 

constitutively in E. coli as independent polypeptides under the original promoter 

sequences in the npr gene, which encodes TLN (34). Indeed, all 72 active-site TLN 

variants were produced at similar levels by this system whether or not they retained 

activity (34). Considering that Ala is more hydrophobic than Gly, the introduced Ala117 

might be oriented into a polar environment or outside the protein core, rendering the 

protein unstable.  

G117D was produced at detectable levels in the supernatant of the E. coli 

transformants, but was scarcely purified (Figs. 2 and 3). Asp and Glu have similar 

characteristics: the pKe1 of their side chains in proteins are 4.4–4.6, their hydrophobicity 

scores are -3.5; and their volumes are 125 and 155 Å3, respectively (44). Currently there 

is no explanation as to why the mutation Gly117→Glu is favourable, while 

Gly117→Asp is not favourable.  

 

Decreased activities and stabilities of G117K and G117R – In the hydrolysis of 

FAGLA and ZDFM, the kcat/Km values of G117K and G117R were 40–60% of those of 

WT (Tables 1 and 2), while the degrees of salt-induced activation were 30–50% of that 

of WT (Table 3), and the kobs values for thermal inactivation at 80ºC were 220–400% of 

that of WT (Table 4). We speculate that the positive charge introduced at position 117 

affects the geometry of the Asn112-Trp115 strand and decreases the activity and 

stability of TLN. In regard to this, according to the crystal structure of TLN (Protein 

Data Bank no. 8TLN), the distance OD2 of Asp150 and Cα of Gly117 is only 4.2 Å. 
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Asp150 is located at C-terminal loop 1 (Asp150-Gly162) in the active site. We have 

found that D150E showed higher activity, while D150H and D150W showed higher 

stability (12). We presume that introduced Lys or Arg at position 117 interacts with 

Asp150, rendering the protein less active and stable.  

TLN is a representative zinc metalloproteinase with high activity and stability. 

However, if its substrate specificity can be altered as we hope, it might provide many 

benefits to industry. Recent crystallographic analyses of aminopeptidase N have 

revealed that aminopeptidase N and TLN are strikingly similar in the structure of the 

C-terminal, but not so in the N-terminal domain (46, 47). There is a possibility that 

aminopeptidase activity can be generated in TLN by introducing negative charges that 

can recognize the positive charges of the N-terminal amino nitrogen of the substrate. In 

conclusion, Gly117 plays an important role in the activity and stability of TLN, 

presumably by affecting the geometry of the Asn112-Trp115 and Ser118-Tyr122 

strands. 
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Table 1. pKe and intrinsic kcat/Km ((kcat/Km)o) values of WT and its variants in the 

hydrolysis of FAGLA at 25ºC. 

 

TLN              pKe1                pKe2         (kcat/Km)o (mM-1 s-1) 

WT    5.1 ± 0.2 (0.0)    8.2 ± 0.2 (0.0)       40 ± 3 (1.0) 

G117E   5.1 ± 0.2 (0.0)    8.3 ± 0.1 (+0.1)       33 ± 2 (0.8) 

G117K          5.1 ± 0.1 (0.0)  8.3 ± 0.1 (+0.1)       16 ± 3 (0.4) 

G117R   5.2 ± 0.1 (+0.1)    8.6 ± 0.1 (+0.4)       15 ± 2 (0.4) 

 

Average of triplicate determinations with SD values are shown. Numbers in parentheses 

indicate ∆pKe as compared to those of WT and the (kcat/Km)o relative to that of WT. 
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Table 2. Kinetic parameters of the WT and its variants in the hydrolysis of ZDFM 

at 25ºC. 

 

TLN             Km (mM)         kcat (s
-1)         kcat/Km (mM-1 s-1) 

WT    0.42 ± 0.04 (1.0)    7.9 ± 0.3 (1.0)       18.8 ± 1.9 (1.0) 

G117E    0.44 ± 0.03 (1.0)   10.5 ± 0.3 (1.3)       23.9 ± 2.4 (1.3) 

G117K    0.57 ± 0.05 (1.4)    8.4 ± 0.3 (1.1)       14.7 ± 1.4 (0.8) 

G117R    0.50 ± 0.04 (1.2)    4.8 ± 0.2 (0.6)        9.6 ± 0.9 (0.5) 

 

Average of triplicate determinations with SD values are shown. Numbers in parentheses 

indicate values relative to those of WT. 
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Table 3. Degree of salt-induced activation of WT and its variants in the hydrolysis 

of FAGLA at 25ºC. 

 

TLN kcat/Km  (mM-1 s-1)  B/A 

0 M NaCl (A)        4 M NaCl (B) 

WT         40 ± 3 (1.0)      600 ± 20 (1.0)   15 (1.0) 

G117E   33 ± 2 (0.8)      476 ± 16 (0.8)   14 (0.9) 

G117K   16 ± 3 (0.4)       60 ± 2  (0.1)    4 (0.3) 

G117R   15 ± 2 (0.4)      105 ± 1  (0.2)    7 (0.5)  

 

The reaction was carried out in 40 mM HEPES-NaOH buffer at pH 7.5, containing 10 

mM CaCl2, at 25ºC. Average of triplicate determinations with the SD value is shown. 

Numbers in parentheses indicate values relative to those of WT. 
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Table 4. Thermal stability of WT and its variants. 

 

TLN        kobs
a x 104 (s-1)       

WT  6.3 ± 0.4 (1.0)       

G117E  9.6 ± 0.5 (1.5)      

G117K  25 ± 2  (4.0)       

G117R  14 ± 2  (2.2)     

 

akobs determined at 80ºC. The average of triplicate determinations with the SD value is 

shown. Numbers in parentheses indicate values relative to that of WT. 



18 

 

 

 

 

Fig. 1. Close-up view of the active site of TLN. The structure is based on Protein Data 
Bank no. 8TLN. The main chain is shown as a ribbon model. Side chains of the residues 
of the Asn112-Ala113-Phe114-Trp115 strand, the Asn116-Gly117 loop, the 
Ser118-Gln119-Met120-Val121-Tyr122 strand, and the catalytically important residue 
Glu143 are shown as ball and stick.   
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Fig. 2. Culturing of E. coli. (A) Cell densities (OD600) of the culture. (B) Casein 
hydrolysis activity of the supernatants. JM109 cells transformed with pUC19 (●) and 
expression plasmids for the WT (○), G117A (□), G117D (■), G117E (△), G117K (◇), 
and G117R (◆) are cultured. Zero hour means start of test tube-shake culture. 
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Fig. 3. Coomassie Brilliant Blue-Stained 12.5% SDS-PAGE gel. Marker proteins 
(lanes 1 and 9), native TLN purified from B. thermoproteolyticus (lanes 2 and 8), WT 
(lane 3), G117D (lane 4), G117E (lane 5), G117K (lane 6), and G117R (lane 7). The 
arrow indicates the band corresponding to mature TLN. 
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Fig. 4. Characterization of TLN variants. (A) Effect of pH on the initial reaction rate 
(vo) in the TLN-catalyzed hydrolysis of FAGLA. The reaction was carried out with 
initial concentrations of enzyme and FAGLA of 100 nM and 400 µM respectively at 
25ºC. (B) Dependence on the substrate concentration of vo in the TLN-catalyzed 
hydrolysis of ZDFM. The reaction was carried out with an initial enzyme concentration 
[E]o of 100 nM at 25ºC. Symbols: WT (○), G117E (△), G117K (◇), and G117R (◆). 
Error bars indicate SD values for triplicate measurements. 
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Fig. 5. Thermal inactivation of TLNs. TLN (1 µM) in 40 mM HEPES-NaOH buffer 
(pH 7.5) containing 10 mM CaCl2 was incubated at 80ºC for 0–24 min. The 
FAGLA-hydrolytic reaction was carried out with initial concentrations of enzyme and 
FAGLA of 100 nM and 400 µM respectively at 25ºC. The remaining activity (kcat/Km) 
was expressed as the relative value to that of the intact enzyme (WT, 26 mM-1 s-1; 
G117E, 25 mM-1 s-1; G117K, 16 mM-1 s-1; and G117R, 15 mM-1 s-1) and plotted against 
the incubation time. Symbols: WT (○), G117E (△), G117K (◇), and G117R (◆). 
Error bars indicate SD values for triplicate measurements. 
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Chapter 2 

 

 

Effects of Site-directed Mutagenesis of Asn116 in the β-Hairpin of the N-terminal 

Domain of Thermolysin on Its Activity and Stability 

 

 

Introduction 

 

TLN has a β-rich N-terminal domain (Ile1-Asp138) and an α-helical C-terminal 

domain (Asp150-Lys316) connected by an α-helix (Val139-Thr149) located at the 

bottom of the active site cleft (Fig. 1) (10). Extensive site-directed mutagenesis studies 

previously conducted in each of the active site polypeptide regions of TLN revealed that 

the N-terminal sheet and the -helix 2 are critical to catalysis and the C-terminal loops 1 

and 2 are important in substrate recognition (12).  

Two anti-parallel β-strands, (Asn112-Ala113-Phe114-Trp115 and 

Ser118-Gln119-Met120-Val121-Tyr122), located in the N-terminal, are connected by 

an Asn116-Gly117 turn to form a β-hairpin structure (Fig. 2A and B). The 

Asn112-Trp115 strand is located in the active site and forms the S2′, S1′, and S2 

subsites, while the Ser118-Tyr122 strand and the Asn116-Gly117 turn are located 

outside the active site (17). (The subsites and the corresponding residues in the 

substrates are designated based upon the nomenclature of Schechter, I. and Berger, A. 

(48)). In Chapter 1, it was reported that G117E had higher activity in the hydrolysis of 

ZDFM but lower activity in the hydrolysis of FAGLA than WT, suggesting that Gly117 

plays an important role in substrate specificity. In this study, to explore the catalytic role 

of the β-hairpin structure and possibly produce a variant enzyme with high performance, 

we made 19 amino-acid residues substitutions of Asn116 by site-directed mutagenesis 

and examined their effects on activity and stability. 
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Materials and Methods 

 

Materials – All materials were prepared as described in Chapter 1. 

 

Bacterial strains, plasmids, and transformation – Expression materials and 

procedures are as described in Chapter 1. Site-directed mutagenesis, DNA sequencing, 

transformation, and culturing were performed as described in Chapter 1. 

 

Purification of TLN variants – TLN variants were produced and purified as 

described in Chapter 1. The concentration of TLN was determined 

spectrophotometrically using an absorbance value at 277 nm (1 mg/ml) of 1.83 and a 

molecular mass of 34.6 kDa (10). 

 

SDS-PAGE – SDS-PAGE was carried out as described in Chapter 1. 

 

CD measurement – A Jasco J-820 spectropolarimeter (Jasco, Tokyo) equipped 

with a Peltier system to control the cell temperature was used. The spectrometer 

conditions were as follows: spectral range 200–260 nm; sensitivity 100 mdeg; 

resolution 0.1 nm; response time 4 s; scan rate 20 nm min−1; at seven scans per 

measurement. CD spectra were recorded at 25°C using a 2-mm cell. The concentration 

of TLN was 1.0 μM in 5 mM Tris-HCl, 10 mM CaCl2, and 0 or 4.0 M NaCl at pH 7.5 

(32, 49). Because HEPES has high absorbance at 180–210 nm, Tris was used as buffer 

system (50). The control baseline was obtained with solvent and all other the 

components without TLN. CD spectra were processed with Jasco software, and finally 

expressed in mean-residue molar ellipticity units, [θ] (deg cm2 dmol−1).  

 

Hydrolysis of casein – TLN-catalysed hydrolysis of casein was carried out as 

described in Chapter 1. 

 

Spectrophotometric analysis of the TLN-catalyzed hydrolysis of FAGLA – 
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TLN-catalysed hydrolysis of FAGLA was carried out as described in Chapter 1. 

 

Spectrophotometric analysis of the TLN-catalyzed hydrolysis of ZDFM – 

TLN-catalysed hydrolysis of ZDFM was carried out as described in Chapter 1. 

 

Thermal inactivation of TLN – Thermal inactivation of TLN was carried out as 

described in Chapter 1. However, in this study, TLN was incubated at 80ºC in the 

presence of 1–100 mM CaCl2 for a specified duration, and the remaining activity that 

hydrolyzes FAGLA was determined as described above. 

 

  

Results 

 

Production of Asn116 variants to homogeneity – Asn116 was replaced with either 

one of the other 19 amino acids. The WT and the variants were expressed in E. coli in a 

system (15) in which the mature and pro domains were expressed as independent 

polypeptides. Figure 3 shows a time-course for a flask-shake culture of the 

transformants. In all transformants, the OD600 of the cultures increased with time and 

reached a maximum (about 3.0 for the transformant with pUC19 and 1.2–2.3 for the 

transformants with the expression plasmids for TLN) after 18 or 24 h (Fig. 3A). After 

the aforementioned duration, in WT, N116A, N116D, N116T, and N116Q, the OD600 

decreased over time, while in the other 15 variants, it was nearly stable. In WT, N116A, 

N116D, N116T, and N116Q, casein hydrolysis activity appeared in the supernatant and 

increased progressively even after OD600 reached the maximum level, while in the other 

15 variants, it did not appear (Fig. 3B). 

Figure 4A and B show the SDS-PAGE of the culture supernatants of the E. coli 

cells transformed with the expression plasmids for WT and the variants. The 34-kDa 

protein band was clearly detected for WT, N116A, N116D, N116T, and N116Q, but 

was not for the other 15 variants. Figure 4C shows the SDS-PAGE of the purified 

preparation of WT, N116A, N116D, N116T, and N116Q. They yielded a single band 
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with a molecular mass of 34.6 kDa. Table 1 shows the purification data of WT and the 

four variants. From 450–480 ml of culture supernatants, 0.9–1.6 mg of purified 

enzymes were obtained. The specific activities of N116A, N116D, N116T, and N116Q 

in the hydrolysis of casein at 25ºC were 44, 66, 45, and 57%, respectively, of that of 

WT. Figure 4D shows the CD spectra of the purified enzymes at 200–260 nm. Each 

spectrum was characterized by negative ellipticities at 202–240 nm with the peaks at 

about 208 and 225 nm, suggesting that no significant conformational change was 

occasioned in TLN by the mutations. 

 

Activity of Asn116 variants – Figure 5A shows the pH-dependence of kcat/Km of 

the TLN-catalyzed hydrolysis of FAGLA at 25ºC. All plots showed bell-shaped curves 

with the optimal pH of 6–7. The results are summarized in Table 2. The pKe1, pKe2, and 

(kcat/Km)o values of WT (5.1 ± 0.2, 8.2 ± 0.1, and 37 ± 3 mM-1 s-1, respectively) are 

almost the same as the ones we previously reported (5.3 ± 0.0, 8.3 ± 0.0, and 40 ± 1 

mM-1 s-1, respectively) (12). The (kcat/Km)o values of N116D was 320% of that of WT, 

and those of the other three variants were 70–100% of that of WT. The pKe1 and pKe2 

values of the variants were almost the same as those of WT.  

TLN activity increases with increase in concentration of neutral salts (18). We 

defined the degree of the activation as the ratio of the kcat/Km value with 4.0 M NaCl to 

that without NaCl, and showed that it is in the range of 13–15 in the hydrolysis of 

FAGLA (3, 17, 18). The kcat/Km values at pH 7.5 without NaCl and with 4.0 M NaCl 

and the degree of the activation were 30 ± 4 mM-1 s-1, 440 ± 29 mM-1 s-1, and 15 for WT, 

24 ± 3 mM-1 s-1, 330 ± 30 mM-1 s-1, and 14 for N116A, 95 ± 4 mM-1 s-1, 1000 ± 100 

mM-1 s-1, and 11 for N116D, 24 ± 1 mM-1 s-1, 240 ± 10 mM-1 s-1, and 10 for N116T, 31 

± 3 mM-1 s-1, 270 ± 40 mM-1 s-1, and 9 for N116Q. Thus, the degrees of the 

NaCl-induced activation of the variants were 60–90% of that of WT.  

Figure 5B shows the dependence of the initial reaction rate (vo) of the 

TLN-catalyzed hydrolysis of ZDFM on the substrate concentration at pH 7.5, at 25ºC. 

All plots showed saturated profiles. The kinetic parameters are summarized in Table 3. 

The Km values of the variants were 100–130% of that of WT. The kcat value of N116D 
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was 160% of that of WT, and those of the other three variants were 70–92% of that of 

WT. The kcat/Km value of N116D was 140% of that of WT, and those of other three 

variants were 60–100%. These results indicate that N116D has higher activity than WT. 

They also indicate that N116Q has similar activity as WT, and N116A and N116T have 

reduced activities. 

 

Stability of Asn116 variants – We examined time-dependences of the thermal 

inactivation of WT and the variants at 80°C in the presence of various concentrations of 

CaCl2 ranging 1–100 mM. All inactivations followed pseudo-first-order kinetics (Fig. 

6A for 10 mM CaCl2, data not shown for 1, 30, 50, and 100 mM CaCl2). Figure 6B 

shows kobs of WT and the variants at each CaCl2 concentration. They decreased with 

increasing CaCl2 concentrations and were in the order N116A, N116D, N116T > N116Q 

> WT at all CaCl2 concentrations examined. 

 

  

Discussion 

 

Catalytic role of Asn116 – Figure 7A shows the typical β-hairpin peptide 

backbone with two amino acid residues (t1 and t2) at the turn (51). The most common 

t1 and t2 residues are Asn and Gly, respectively, followed by Gly and Ser. Thus, we can 

ascribe not only Asn116 and Gly117 to t1 and t2 residues, but also Gly117 and Ser118 

can be ascribed, respectively. Figure 2A is a close-up view of the polypeptide 

Asn112-Tyr122, in which side chains of all residues are shown. It appears the side 

chains of Trp115, Asn116, and Val121 are located inside the β-plane formed by the 

Asn112-Trp115 and Ser118-Tyr122 β-strands, while those of other residues are located 

outside it. The carbonyl oxygen (OD1) of Asn116 is involved in two hydrogen bonds, 

one with the main-chain nitrogen (N) of Ser118 and the other with N of Gln119. Such 

hydrogen bonds are absent in the typical β-hairpin peptide backbone (Fig. 7A). Figure 

2B is another close-up view of the polypeptide Asn112-Tyr122, in which side chains of 

Trp115, Asn116, and Val121 are shown. It appears that there are two β-planes, one 
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formed by the polypeptides Asn112-Trp115 and Met120-Tyr122 and the other formed 

by Trp115-Met120. The side chain of Asn116 is located in the β-plane formed by 

Trp115-Met120, while those of Trp115 and Val121 are outside of these two β-planes. 

This is in contrast to recent reports that the Trp-Trp interaction between the two β 

strands is important for the stability of β-hairpin structure (52–54). Figure 2C shows an 

illustration of the two β-plane structure formed by the polypeptide Asn112-Tyr122. 

Such structure is absent in the typical β-hairpin peptide backbone (Fig. 7A).  

In this study, we used an E. coli expression system which does not require 

autocatalytic cleavage: the mature domain and the pre-prodomain of TLN were 

co-expressed constitutively as independent polypeptides under the original promoter 

sequences in the npr gene, which encodes TLN (34). Previously we reported that all 70 

variants, in which one of twelve active-site residues (Ala113, Phe114, Trp115, Asp150, 

Tyr157, Gly162, Ile168, Ser169, Asp170, Asn227, Val230, and Ser234) was replaced 

with either Asp, Glu, His, Lys, Arg, or Ala, could be produced at similar levels by this 

expression system whether or not they retained activity (12). In this study, of the 19 

Asn116 variants, only four were produced (Figs. 3 and 4). The reason N116A, N116D, 

N116T, and N116Q are active and the other 15 variants are inactive is unclear. However, 

there are interesting features: only amino acid residues with side chains of moderate size 

can be accommodated inside the β-hairpin structure and are favorable at position 116.   

In the hydrolysis of FAGLA and ZDFM, the activities were in the order N116D > 

WT > N116Q > N116A, N116T (Fig. 5). In thermal treatment, the stabilities were in the 

order WT > N116Q > N116D, N116T, N116A (Fig. 6). These results suggest that 

Asn116 plays an important role in the activity and stability of TLN presumably by 

stabilizing the β-hairpin structure. It is not clear why N116D is more active than WT. 

Relating to this, we previously speculated into the reason the TLN variant L144S was 

more active than WT: the side chain of Leu144 is buried in the interior of the protein, 

and thus the activation by these mutations is due to an increase in flexibility of TLN by 

a decrease in density of the inner part of the molecule (31). If this is true for N116D, the 

activation by the mutation of Asn116→Asp might be due to an increase in flexibility of 

TLN by the change in electrostatic environment of the β-hairpin structure.  
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It is interesting to note that N116D is more active but less stable than N116Q. This 

might be explained by the trade-off between activity and stability in enzymes: mutations 

which increase activity are accompanied with decrease in stability and vice versa (32, 

55, 56). 

The degree of the salt-induced activation of N116D was 11, comparable to that of 

WT (15). This suggests that salt-induced activation in TLN cannot be replaced by 

introducing activating mutations in place Asn116. This is in contrast to our previous 

finding that the degree of activation of highly active variants, L144S and D150E, were 4 

and 5, respectively, and that salt-induced activation might be replaceable to some extent 

(32). 

 

Role of the AsnGly sequence in the β-hairpin structure in zinc-proteinases – 

Figure 7B shows the amino acid sequences of the β-structured polypeptides of five 

zinc-proteinases, Bacillus cereus neutral protease (57), Pseudomonas aeruginosa 

elastase (58), vibryolysin (59), protealysin (60), and human angiotensin I-converting 

enzyme (61), corresponding to Asn112-Tyr122 of TLN. The amino acid residues 

corresponding to Asn112, Ala113, Phe114, Trp115, Gly117, Ser118, and Met120 of 

TLN are highly conserved. In their crystal structures (Protein Data Bank accession 

number: B. cereus neutral protease, 1ESP; P. aeruginosa elastase, 3DBK; vibryolysin, 

3NQY; protealysin, 2VQX; and human angiotensin I-converting enzyme, 1UZE), we 

noticed two hydrogen bonds in each of the five zinc-proteinases, corresponding to that 

between OD1 of Asn116 and N of Ser118 and that between OD1 of Asn 116 and N of 

Gln119 of TLN. They are the hydrogen bond between OD1 of Asn117 and N of Ser 119 

and that between OD1 of Asn117 and N of Gln120 for B. cereus neutral protease, that 

between OD1 of Asp116 and N of Ser118 and that between OD1 of Asp116 and N of 

Ala119 for P. aeruginosa elastase, that between OD1 of Asp321 and N of Ser323 and 

that between OD1 of Asp 321 and N of Ala324 for vibryolysin, that between OD1 of 

Asn136 and N of Gln138 and that between OD1 of Asn136 and N of Gln139 for 

protealysin, and that between OD1 of Asn361 and N of Lys363 and that between OD1 

of Asn361 and N of Asp364 for human angiotensin I-converting enzyme. This revealed 
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that the AsnGly or AspGly sequence and the hydrogen bonds between the OD1 of the 

Asn or Asp residue at the position of i and the N of the residues at i+1 and i+2 are well 

conserved in zinc-proteinases.  

It is presumed that the carbonyl oxygen of the introduced Asp (OD1 or OD2) and 

Gln (OD1) forms the same hydrogen bonds as OD1 of Asn116 does. This presumption 

is supported by the observation that in P. aeruginosa elastase, the carbonyl oxygen of 

Asp116 forms the hydrogen bonds with the main-chain nitrogen of Thr118 and that of 

Ala119 (Fig. 7D). However, it should be noted that N116A has activity in spite of the 

fact that the introduced Ala116 does not form such hydrogen bonds. Therefore, we think 

that those hydrogen bonds are important for activity, but are not indispensable.   

In conclusion, a highly active TLN variant N116D was obtained. It is suggested 

that Asn116 plays an important role in the activity and stability of TLN presumably by 

stabilizing the β-hairpin structure. Site-directed mutagenesis of analogous residues in 

the β-hairpin structure might be similarly effective in improving performances in 

various zinc-proteinases. 
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Table 1.  Purification of Asn116 variants from the supernatant of the E. coli 

transformants. 

                                                      

WT         Volume   Activity  Recovery  Protein  Specific activity  Purification 

                     (ml)    (units)     (%)      (mg)     (units/mg)        (fold) 

Culture supernatant     450     59,000   100    54        1,100      1.0        

Phenyl chromatography  180     34,000    58     8.8       3,800      3.4  

    Affinity chromatography   7.8  11,000    19     0.9      12,000     11  

                                                      

N116A          Volume  Activity  Recovery  Protein  Specific activity  Purification 

                      (ml)   (units)     (%)      (mg)     (units/mg)        (fold) 

Culture supernatant      480 51,000    100    67          760      1.0 

Phenyl chromatography   150  21,000    41    12        1,800       2.3 

    Affinity chromatography    9.1  8,500    17     1.6       5,300      7.0 

                                                                                   

N116D          Volume  Activity  Recovery  Protein  Specific activity  Purification 

                      (ml)   (units)     (%)      (mg)     (units/mg)        (fold) 

 

Culture supernatant     480    54,000   100    68        790       1.0     

Phenyl chromatography  180 27,000    50    13       2,100      2.7    

    Affinity chromatography   11 11,000     20     1.4       7,900      10                   

                                                    

N116T          Volume  Activity  Recovery  Protein  Specific activity  Purification 

                      (ml)   (units)     (%)      (mg)     (units/mg)        (fold) 

Culture supernatant      460 41,000    100    74        550      1.0 

Phenyl chromatography   170  21,000    51    13      1,600       2.9 

    Affinity chromatography   10  8,600    21     1.6     5,400      9.8 

                                                                                   

N116Q          Volume  Activity  Recovery  Protein  Specific activity  Purification 

                      (ml)   (units)     (%)      (mg)     (units/mg)        (fold) 

Culture supernatant     480    46,000   100   49           940       1.0     

Phenyl chromatography  180 30,000    65   14         2,100      2.2    

Affinity chromatography    7.5  6,800    15    1.0      6,800       7.2         
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Table 2. pKe and intrinsic kcat/Km ((kcat/Km)o) values of Asn116 variants in the 

hydrolysis of FAGLA at 25ºC. 

 

TLN              pKe1                pKe2          (kcat/Km)o (mM-1 s-1) 

WT    5.1 ± 0.2 (0.0)    8.2 ± 0.1 (0.0)       37 ± 3 (1.0) 

N116A   5.1 ± 0.1 (±0.0)  8.3 ± 0.1 (+0.1)       31 ± 1 (0.8) 

N116D     5.4 ± 0.1 (+0.3)  8.4 ± 0.1 (+0.2)      117 ± 6 (3.2) 

N116T    5.1 ± 0.1 (±0.0)  8.5 ± 0.1 (+0.3)       26 ± 1 (0.7) 

N116Q    5.1 ± 0.2 (±0.0)  8.3 ± 0.1 (+0.1)       37 ± 3 (1.0) 

 

Average of triplicate determinations with SD values are shown. Numbers in parentheses 

indicate ∆pKe compared to those of WT and the (kcat/Km)o relative to that of WT. 
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Table 3. Kinetic parameters of Asn116 variants in the hydrolysis of ZDFM at 25ºC. 

 

TLN              Km (mM)           kcat (s
-1)        kcat/Km (mM-1 s-1) 

WT    0.39 ± 0.04 (1.0)     7.7 ± 0.1 (1.0)      20 ± 1 (1.0) 

N116A    0.41 ± 0.04 (1.1)     6.7 ± 0.7 (0.8)      16 ± 1 (0.8) 

N116D    0.43 ± 0.04 (1.1)      12 ± 1  (1.5)      27 ± 2 (1.4) 

N116T    0.49 ± 0.03 (1.3)     5.4 ± 0.1 (0.7)      11 ± 1 (0.6) 

N116Q    0.38 ± 0.06 (1.0)     7.1 ± 0.1 (0.9)      19 ± 1 (1.0) 

 

Average of triplicate determinations with SD value is shown. Numbers in parentheses 

indicate values relative to those of WT.  
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Fig. 1. Overall structure of TLN. The structure is based on Protein Data Bank 
accession number 8TLN. The main chain is represented by a ribbon model. Side chains 
of Asn116 and Gly117 and the catalytically important residues Glu143 and His231 are 
shown by a ball and stick. Zinc and calcium ions are shown as spheres.  
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Fig. 2. β-Hairpin structure in TLN active site. (A) and (B), Close-up view of the 
Asn112-Trp115 strand, the Asn116-Gly117 loop, and the Ser118-Tyr122 strand of TLN. 
All atoms are shown by a ball and stick (A), and all main-chain atoms and the 
side-chain atoms of Trp115, Asn116, and Val121 are shown by a ball and stick (B). 
Oxygen is colored black, and carbon, nitrogen, and sulfur gray. Hydrogen bonds are 
represented by dotted lines together with the distances (Å). (C) Illustration of the two 
-planes formed by Asn112-Trp115 and Met120-Tyr122 and by Trp115-Met120. 
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Fig. 3. Culturing of E. coli. (A) Cell densities. (B) Casein hydrolysis activities. OD600 
of culture (A) and casein hydrolysis activities of the supernatants (B) of E. coli cells 
transformed with pUC19 (●) or the expression plasmids for WT (○), N116A (Δ), 
N116D (□), N116T (▲), N116Q, (■), or the other 15 variants (+) are plotted against 
time. In the figure, the points of the 15 variants are overlapped with those of pUC19. 0 h 
means start of flask-shake culture. Variant names are abbreviated: for example, “A” 
stands for N116A.  

O
D

60
0
 

Time (h) 

A 
C

as
ei

n 
hy

dr
ol

ys
is

 
ac

tiv
ity

 (
un

its
/m

l) 

Time (h) 

B 



37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Expression and purification of Asn116 variants. (A-C) Coomassie Brilliant 
Blue-stained 12.5% SDS-PAGE. (A) The marker proteins (lanes 1 and 13), native TLN 
purified from B. thermoproteolyticus (lane 2), and the supernatants of E. coli cells 
transformed with pUC-19 (lane 3) and the expression plasmids for WT (lane WT), 
N116A (lane A), N116D (lane D), N116T (lane T), N116Q (lane Q), N116C (lane C), 
N116E (lane E), N116F (lane F), N116G (lane G). (B) The marker proteins (lanes 1 and 
14), native TLN purified from B. thermoproteolyticus (lane 2), and the supernatants of 
E. coli cells transformed with the expression plasmids for N116H (lane H), N116I (lane 
I), and N116K (lane K), N116L (lane L), N116M (lane M), N116P (lane P), N116R 
(lane R), N116S (lane S), N116V (lane V), N116W (lane W), and N116Y (lane Y). (C) 
The marker proteins (lanes 1 and 8), native TLN purified from B. thermoproteolyticus 
(lane 2), and purified preparations of WT (lane WT), N116A (lane A), N116D (lane D), 
N116T (lane T), and N116Q (lane Q). The arrow indicates the band corresponding to 
TLN. (D) CD spectra. CD spectra were measured for 2.1 M TLN in 5 mM Tris-HCl, 
10 mM CaCl2 at pH 7.5, at 25ºC. 
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Fig. 5. Activity of Asn116 variants. (A) Effect of pH on the initial reaction rate (vo) in 
the hydrolysis of FAGLA. The reaction was carried out in 40 mM acetate-NaOH at pH 
4.0–5.5, 40 mM MES-NaOH at pH 5.5–7.0, 40 mM HEPES-NaOH at pH 7.0–8.5, and 
40 mM TAPS-NaOH at pH 8.0–9.0, each of which contained 10 mM CaCl2, at 25ºC. 
The initial concentrations of enzyme and FAGLA were 100 nM and 400 µM, 
respectively. (B) Dependence of vo on substrate concentration in the hydrolysis of 
ZDFM. The reaction was carried out in 40 mM Tris-HCl, 10 mM CaCl2 at pH 7.5, at 
25ºC. Symbols for enzymes: WT (○), N116A (Δ), N116D (□), N116T (▲), and 
N116Q (■). Error bars indicate SD values for three-times measurements. 
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Fig. 6. Thermal stability of Asn116 variants. (A) Thermal inactivation at 10 mM 
CaCl2. (B) Effect of CaCl2 concentration on the thermal inactivation. TLN (2 µM) in 40 
mM HEPES-NaOH, 1, 10, 30, 50, or 100 mM CaCl2 at pH 7.5 was incubated at 80ºC 
for a specified duration. The FAGLA-hydrolytic reaction was carried out at 25ºC with 
the initial concentrations of enzyme and FAGLA of 100 nM and 400 µM, respectively. 
The remaining activity (kcat/Km) was expressed as the relative value to that of the intact 
enzyme (WT, 29 mM-1 s-1; N116A, 23 mM-1 s-1; N116D, 95 mM-1 s-1; N116T, 23 mM-1 
s-1; and N116Q, 29 mM-1 s-1) and plotted against the incubation time (A). The kobs 
values of TLN were plotted against the CaCl2 concentration (B). Symbols correspond to 
those of Fig. 5. Error bars indicate SD values for three-times measurements. 
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Fig. 7. β-hairpin structure. (A) Schematic illustration of typical β-hairpin peptide 
backbone with two amino acid residues at the turn. Side chains are indicated by “R”. 
Hydrogen bonds linking the amide hydrogen and carbonyl oxygen are indicated by 
dotted lines. Residues at the N-terminal β-strand, at the turn, and at the C-terminal 
β-strand are labelled turn as “n”, “t”, and “c”, respectively. (B) Amino acid sequences 
of zinc-proteinases corresponding to Asn112-Tyr122 of TLN. (C) Schematic illustration 
of the β-hairpin structures of Phe114-Gln119 of TLN and Phe115-Gln120 of B. cereus 
neutral protease. (D) Schematic illustration of the β-hairpin structure of Tyr114-Ala119 
of P. aeruginosa elastase. 

P. aeruginosa elastase TLN and B. cereus neutral protease 

A B 

C D 

Enzyme                                 Sequences                 
TLN                                 112 N A F W N G S Q M V Y 122 
B. cereus neutral protease               113 N A F W N G S Q M Y Y 123 
P. aeruginosa elastase                   112 N A Y W D G T A M L F 122  
Vibryolysin                         317 N A F W D G S A M T F 327 
Protealysin                          132 N A F W N G Q Q M V F 142  
Human antigotensin I-converting enzyme 357 W D F Y N G K D F R  I 367 
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Chapter 3 

 

 

Effects of the Mutations, Asn116 to Asp and Asp150 to Glu, of Thermolysin on Its 

Salt-induced Activation and Stabilization  

 

 

Introduction 

 

TLN activity increases in an exponential fashion with increasing concentration of 

neutral salts (17, 18, 20–23). TLN stability also increases at 0–2 M NaCl (9). This 

stabilizing effect decreases above 2 M NaCl (20). Previously, several mutations which 

increase the hydrolytic activity for FAGLA and ZDFM were identified (12, 31, Chapter 

1, Chapter 2). Of such mutations, Asn116→Asp (Chapter 2) and Asp150→Glu (12) 

exhibited the highest effect. In the absence of NaCl, the activities of N116D and D150E 

are about 3 times higher than that of WT (12, Chapter 2). In the absence of NaCl, 

Asn116→Asp decreased stability while Asp150→Glu did not change it. Asn116 is 

located in the β-hairpin structure in the N-terminal domain, while Asp150 is located in 

the active-site loop in the C-terminal domain (Fig. 1). Out of the 19 variants of Asn116, 

only N116D exhibited higher activity than WT while maintaining a high level of 

NaCl-induced activation comparable to that of WT (Chapter 2). This was unique in 

comparison to our earlier work wherein variants with higher activity than WT, such as 

D150E, exhibited drastically reduced degrees of NaCl-induced activation (12). 

In this study, to explore the mechanism of the salt-induced activation and 

stabilization of TLN, we compared the effects of Asn116→Asp and Asp150→Glu on 

NaCl-induced activation and stabilization. The results indicate that Asp150→Glu 

markedly decreases NaCl-induced activation and stabilization while Asn116→Asp does 

not exhibit any such marked decrease. Based on the results obtained, we discuss the 

mechanism of the salt-induced activation and stabilization of TLN.  
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Materials and Methods   

 

Materials – All materials were prepared as described in Chapter 1.  

 

Bacterial strains, plasmids, and transformation – Expression materials and 

procedures are as described in Chapter 1. Site-directed mutagenesis, DNA sequencing, 

transformation, and culturing were performed as described in Chapter 1. 

 

Purification of TLN – TLN variants were produced and purified as described in 

Chapter 1. 

 

SDS-PAGE – SDS-PAGE was carried out as described in Chapter 1. 

 

Hydrolysis of casein – TLN-catalysed hydrolysis of casein was carried out as 

described in Chapter 1. 

 

Spectrophotometric analysis of the TLN-catalyzed hydrolysis of FAGLA – 

TLN-catalysed hydrolysis of FAGLA was carried out as described in Chapter 1. 

 

Spectrophotometric analysis of the TLN-catalyzed hydrolysis of ZDFM – 

TLN-catalysed hydrolysis of ZDFM was carried out as described in Chapter 1. 

 

CD measurement – CD measurement was carried out as described in Chapter 2. 

 

Thermal inactivation of TLN – Thermal inactivation of TLN was essentially 

carried out as described in Chapter 1. However, in this study, TLN solutions containing 

0–4.0 M NaCl was incubated at 70ºC for specified durations, and the remaining activity 

to hydrolyze FAGLA was determined as described above. 
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Results 

 

Production of TLN variants – Starting with 500 ml of E. coli cultures, 0.7–2.0 mg 

of purified preparations of TLN variants were recovered (Table 1). On SDS-PAGE 

under reducing conditions, each of them yielded a single band with a molecular mass of 

34.6 kDa (Fig. 2). All CD spectra of WT and variants measured in the presence of 0 and 

of 4.0 M NaCl were essentially the same: each spectrum was characterized by negative 

ellipticities at about 206–230 nm with peaks at about 208 and 225 nm (data not shown). 

This suggests that no significant conformational change was occasioned in TLN by 

mutation and/or 4.0 M NaCl. Table 1 shows the hydrolysis activities of the TLN 

variants for casein at pH 7.5 at 25ºC. The activities of the variants relative to that of WT 

were 60–70%. This indicates that the mutations of Asn116→Asp and Asp150→Glu 

decrease casein-hydrolyzing activity, in accord with our previous results (12, 23, 34). 

 

NaCl-induced activation of TLN variants in FAGLA hydrolysis – The 

FAGLA-hydrolyzing activities of WT and its variants in the presence of 0–4.0 M NaCl 

were measured (Fig. 3). The kcat/Km values in the absence of NaCl were (2.8 ± 0.3) × 

104 M-1 s-1 for WT, in good accord with that reported previously [(2.9 ± 0.2) × 104 M-1 

s-1] (32), (9.2 ± 1.2) × 104 M-1 s-1 for N116D, (7.5 ± 0.1) × 104 M-1 s-1 for D150E, and 

(1.6 ± 0.2) × 105 M-1 s-1 for N116D/D150E. This indicates that the mutations 

Asn116→Asp and Asp150→Glu increase FAGLA-hydrolyzing activity, and the 

Asn116→Asp in combination with Asp150→Glu yielded a significant increase in the 

hydrolytic activity of FAGLA. The kcat/Km values of WT and the variants increased with 

increasing NaCl concentrations in an exponential fashion. Relative activity was defined 

by eq. 1: 

 

Relative activity at x M NaCl = 
kcat/Km at x M NaCl 

(1) 
kcat/Km at 0 M NaCl 

 

The relative activity at 0–4.0 M of WT was expressed by y = 1.97x (y is the 
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relative activity at x M NaCl); the y value is in good agreement with that (1.9) reported 

previously (18), and those of N116D, D150E, and N116D/D150E were expressed by y 

= 1.75x, y = 1.49x, and y = 1.46x, respectively. The degrees of activation at 4.0 M NaCl 

were 15 for WT, 9.3 for N116D, 4.9 for D150E, and 4.5 for N116D/D150E, and the 

kcat/Km values were (4.3 ± 0.4) × 105, (8.6 ± 0.7) × 105, (3.7 ± 0.2) × 105, and (7.4 ± 0.7) 

× 105 M-1 s-1, respectively. These indicate the relative activities at 0.5–4.0 M NaCl at pH 

7.5 were in the order WT > N116D > D150E, N116D/D150E. In other words, 

Asp150→Glu markedly reduced NaCl-induced activation, while Asn116→Asp reduced 

it slightly. 

Figure 4A and B shows the effects of pH on the FAGLA-hydrolysis activity of 

WT and the variants at 25ºC at 0 and 4.0 M NaCl, respectively. All the plots showed 

bell-shaped curves, with an optimal pH of about 7. The acidic and alkaline pKe (pKe1 

and pKe2) values and the (kcat/Km)o values are summarized in Table 2. In WT, the pKe1 

value shifted from 5.2 to 6.4 while the pKe2 value remained constant at 4.0 M NaCl, in 

good accord with those reported previously (21). The pKe1 and pKe2 values of the 

variants were almost the same as those of WT. The (kcat/Km)o values of N116D and 

N116D/D150E were higher than those of WT both at 0 and at 4.0 M NaCl. The 

(kcat/Km)o value of D150E was higher than that of WT at 0 M NaCl, but was almost the 

same at 4.0 M NaCl. Figure 4C shows the effects of pH on the relative activity at 4.0 M 

NaCl of WT and the variants in the hydrolysis of FAGLA. All the plots show 

bell-shaped curves with maximum activation at pH 7.5. The relative activities at 4.0 M 

NaCl at pH 6.0−9.0 were in the order WT > N116D > D150E, N116D/D150E.  

 

NaCl-induced activation of TLN variants in ZDFM hydrolysis – ZDFM is a 

precursor of the artificial sweetener aspartame. TLN catalyzes its formation from 

N-carbobenzoxy-L-aspartic acid and L-phenylalanine methyl ester through reverse 

reaction of hydrolysis. Table 3 shows the kinetic parameters at 0 and 4.0 M NaCl of WT 

and the variants in the hydrolysis of ZDFM. The kcat value of WT increased from 5.3 to 

39 s-1 while the Km value remained constant, in good accord with those reported 

previously (18). Similar results were obtained for the variants. The relative activity at 
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4.0 M NaCl was in the order WT > N116D > D150E, N116D/D150E. 

 

NaCl-induced stabilization of TLN variants – The thermal inactivation of the TLN 

variants at 70°C in the presence of 10 mM CaCl2 and 0–4.0 M NaCl was examined. 

Inactivation of all the variants followed pseudo-first-order kinetics pattern (data not 

shown). The kobs values in the absence of NaCl were (3.4 ± 0.3) × 10-4 s-1 for WT, in 

good accord with that reported previously [(3.9 ± 0.3) × 10-4 s-1] (31), (6.4 ± 0.2) × 10-4 

s-1 for N116D, (3.2 ± 0.5) × 10-4 s-1 for D150E, and (6.8 ± 0.9) × 10-4 s-1 for 

N116D/D150E. This indicates that mutation Asn116→Asp decreases stability, while 

Asp150→Glu does not affect it. Relative stability was defined by eq. 2: 

 

Relative stability at x M NaCl = 
kobs at 0 M NaCl 

(2) 
kobs at x M NaCl 

 

The relative stabilities are plotted in Fig. 5. The kobs values of WT and the variants 

decreased at 0.5–1.0 M NaCl but increased with increasing NaCl concentrations from 

1.0 to 4.0 M. The relative stabilities at 0.5–1.0 M NaCl of D150E and N116D/D150E 

were lower than those of WT and N116D, respectively, and those of N116D were higher 

than those of WT. This indicates that Asp150→Glu reduced NaCl-induced stabilization 

and that Asn116→Asp enhanced it. 

 

 

Discussion 

 

Insight into the mechanism of NaCl-induced activation of TLN – The degree of 

NaCl-induced activation was in the order WT > N116D > D150E, N116D/D150E (Figs. 

3 and 4C, Tables 2 and 3), indicating that Asp150→Glu markedly and Asn116→Asp 

slightly reduced NaCl-induced activation. All the variants exhibited pH-activity profiles 

similar to WT both at 0 and at 4.0 M NaCl (Fig. 4A and B). NaCl-induced activation of 

WT and the variants was brought by the increase in kcat values, while the Km values 



46 

 

remained constant (Table 3). These results indicate that mutations Asn116→Asp and 

Asp150→Glu affect the mechanism of NaCl-induced activation of TLN, however they 

have no effect on the catalytic mechanism.  

Because the content of free water in a solution with such high concentrations of 

NaCl (1–4.0 M) is low, the dielectric constant must be low (17, 18). However, the order 

of ions as to efficiency in the activation of TLN (Na+ > K+ > Li+) is different from the 

Hofmeister series which corresponds to the degree of hydration of ions (Li+ > Na+ > K+) 

(17, 18, 20–23). This is in contrast to the case of human immunodeficiency virus type-1 

(HIV-1) protease, in which activation is same as in the Hofmeister series (62, 63). Based 

on this evidence, we have pointed out that salt-induced activation of TLN cannot be 

explained only by a reduction in dielectric constant of the reaction medium, and that it 

is in part the result of direct interactions of enzyme molecules with ions (17, 18, 21–23).  

Mutation Asp150→Glu increases activity (Chapter 1). In this study, this mutation 

reduced NaCl-induced activation (Fig. 3), indicating that salt-induced activation was 

replaced by Asp150→Glu to some extent. Asp150 is located in the loop of the 

C-terminal domain, Asp150-Gly162. This loop connects two α-helices in the active site, 

Val139-Thr149 and Ala163-Val176. The former contains catalytically important 

residues Glu143 and two zinc-chelating residues, His142 and His146, and the latter 

contains one zinc-chelating residue, Glu166. Crystallographic studies of complexes of 

TLN with representative inhibitors 

N-(α-L-rhamnopyranosyl-oxyhydroxyphosphinyl)-L-leucyl-L-tryptophan 

(phosphoramidon) and N-phosphoryl-L-leucinamide (P-Leu-NH2) have revealed that no 

residue in this C-terminal loop is involved in the binding of phosphoramidon or 

P-Leu-NH2 (64), suggesting that the loop is not involved in substrate binding. In view 

of this, we advance the possibility that the binding of certain residues in this loop with 

ions is important for the salt-induced activation of TLN.  

 

The mechanism of NaCl-induced stabilization of TLN – We have indicated that 

TLN is more stable at 0.5–1.5 M NaCl than at 0 or 2.0–4.0 M (20). This suggests that 

the effect of NaCl on stability is attributable to an increased conformational stability of 
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TLN as a result of its preferential hydration. In this study, mutation Asp150→Glu 

reduced NaCl-induced stabilization, while Asn116→Asp enhanced it (Fig. 4). This 

indicates that salt-induced stabilization is diminished by Asp150→Glu to some extent. 

This does not exclude the stabilizing effect of neutral salts in reducing the dielectric 

constant of the reaction medium, but the possibility that certain residues in this loop 

bind with ions cannot be ruled out. Thermal inactivation of TLN is associated with 

autolysis (65, 66). Therefore, the apparent decrease in stability above 2.0 M NaCl is 

attributable to an increase in activity and the simultaneous enhancement of autolysis.  

 

Characteristics of TLN compared with other halophilic enzymes – Enzymes that 

are activated or stabilized by neutral salts are termed halophilic (67). Crystallographic 

and site-directed mutagenesis studies of halophilic enzymes have revealed the 

mechanisms of hallophilicity. Malate dehydrogenase from Halobacterium marismortui 

is an active tetramer above 2 M NaCl or KCl, but an inactive monomer below 2 M, and 

the binding of Lys205 with a chloride ion is responsible for dimerization (68). The 

nucleotide diphosphate kinase from Halobacterium salinarum is an active tetramer in 

the presence of sodium ions and an inactive dimer in its absence, and Glu134 is 

responsible for the formation of a tetramer (69). Human angiotensin-converting enzyme 

changes the position of an active-site loop in the presence of NaCl, and the binding of 

three Arg residues (Arg186, Arg489, and Arg522) with one chloride ion is responsible 

for this activation (70).  

It appears that the mechanisms of salt-induced activation and stabilization of TLN 

are different from those of the halophilic enzymes mentioned above. As noted (20, 23), 

the halophilic properties of TLN are different as between activity and stability. In this 

study, we found that the effects of mutations on the NaCl-induced activation and 

stabilization of TLN vary depending on species of mutation. Our results suggest that the 

binding of ions with certain residues is important in the salt-induced activation and 

stabilization of TLN. It is difficult to identify such residues by crystallographic analysis 

of TLN (71). Although it is also difficult to predict the effects of mutations on TLN 

structure, we think that the characterization of salt-induced activation and stabilization 
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of a number of TLN variants aid in estimating those residues. 
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Table 1. Purification of TLN variants from the supernatants of the E. coli 

transformants. 

 

 

 

 

 

 

 

 

 

 

 
Volume Activity Recovery Protein 

Specific 
activity 

Purification

(ml) (units) (%) (mg) (units/mg) (fold) 
WT             

Culture supernatant     400 58,000 100 40  1,500 1.0 

Phenyl chromatography   280 27,000  46 11  2,500 1.7 

Affinity chromatography   6 14,000  24  1 14,000 9.3 

N116D             

Culture supernatant     390 59,000 100 70   840 1.0 

Phenyl chromatography   250 27,000  46 15 1,800 2.1 

Affinity chromatography     5.5  6,800  12    0.8 8,500    10 

D150E             

Culture supernatant     460 57,000 100 46  1,200 1.0 

Phenyl chromatography   280 47,000  82 11  4,300 3.6 

Affinity chromatography     5.5  7,200  13    0.7 10,000 8.3 

N116D/D150E             

Culture supernatant     330 84,000 100 61  1,400 1.0 

Phenyl chromatography   280 64,000  76  9  7,100 5.0 

Affinity chromatography   5 20,000  24  2 10,000 7.0 
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Table 2.  pKe and intrinsic kcat/Km [(kcat/Km)o] values of TLN variants in the 

hydrolysis of FAGLA at 25ºC. 

 

      pKe1                pKe2         (kcat/Km)o x 10-4 (M-1 s-1)   

i) 0 M NaCl 

WT    5.2 ± 0.1 (0.0)    8.3 ± 0.1 (0.0)        3.7 ± 0.2 (1.0) 

N116D   5.3 ± 0.1 (+0.1)    8.4 ± 0.1 (+0.1)        11 ± 1 (2.9) 

D150E     5.2 ± 0.1 (0.0)    8.2 ± 0.1 (-0.1)        9.5 ± 0.3 (2.6) 

N116D/D150E  5.4 ± 0.1 (+0.2)    8.3 ± 0.1 (0.0)        19 ± 1 (5.1) 

ii) 4.0 M NaCl 

WT    6.4 ± 0.1 (0.0)    7.9 ± 0.1 (0.0)        56 ± 3 (1.0) 

N116D   6.4 ± 0.1 (0.0)    8.1 ± 0.1 (+0.2)       140 ± 10 (2.5) 

D150E     6.4 ± 0.1 (0.0)    7.8 ± 0.1 (-0.1)        59 ± 6 (1.1) 

N116D/D150E  6.5 ± 0.1 (+0.1)    8.1 ± 0.1 (+0.2)       110 ± 10 (2.0) 

 

Numbers in parentheses indicate ∆pKe as compared to those of WT and the (kcat/Km)o 

relative to that of WT. Average of triplicate determinations with SD values are shown.  
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Table 3.  Salt-induced activation of TLN variants in the hydrolysis of ZDFM at 

25ºC. 

 

                Km × 10-4 (M)                    kcat (s
-1)         

0 M NaCl       4 M NaCl     0 M NaCl      4 M NaCl  

WT     3.8 ± 0.4 (1.0)   3.7 ± 0.4 (1.0)   5.3 ± 0.2 (1.0)   39 ± 1 (1.0)    

N116D     4.3 ± 0.5 (1.1)   4.2 ± 0.5 (1.1)   11 ± 1 (2.0)    54 ± 3 (1.4)     

D150E     4.3 ± 0.5 (1.1)   4.4 ± 0.8 (1.2)   16 ± 1 (3.0)   45 ± 4 (1.2)   

N116D/D150E  4.3 ± 0.7 (1.1)   4.3 ± 0.7 (1.2)   19 ± 1 (3.6)     50 ± 3 (1.3)        

  kcat/Km × 10-4 (M-1 s-1)        Relative activity at 4 M NaCl 

                0 M NaCl (A)   4 M NaCl (B)               B/A 

WT   1.4 ± 0.2 (1.0)    11 ± 1 (1.0)              7.9 (1.0) 

N116D   2.4 ± 0.3 (1.7)    13 ± 1 (1.2)              5.4 (0.7) 

D150E    3.6 ± 0.5 (2.6)    10 ± 1 (0.9)              2.8 (0.4) 

N116D/D150E  4.5 ± 0.7 (3.2)    12 ± 1 (1.1)              2.7 (0.3) 

 

The reaction was carried out in 40 mM HEPES-NaOH buffer at pH 7.5 containing 10 

mM CaCl2, 0 or 4.0 M NaCl at 25ºC. The initial concentrations of TLN and ZDFM 

were 0.1 µM and 0.1–1.5 mM, respectively. Numbers in parentheses indicate values 

relative to those of WT. Average of duplicate determination with SD value is shown. 
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Fig. 1. Whole structure of TLN. The structure is based on PDB code 8TLN (9). The 
overall protein structure (ribbon model), the mutated residues (Asn116 and Asp150) 
(ball and stick model), and zinc and calcium ions (sphere) are shown.  
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Fig. 2. SDS-PAGE of TLN variants. Coomassie Brilliant Blue-stained 12.5% 
SDS-polyacrylamide gel is shown. Purified preparations (1.2 µg) were applied to each 
lane. Lane 1, molecular-mass marker; lane 2, native TLN purified from B. 
thermoproteoliticus; lane 3, WT; lane 4, N116D; lane 5, D150E; and lane 6, 
N116D/D150E. The arrow indicates the position of TLN.  
 

 

 

 

 

 

 

 

1 3 2 4 5 6 

97.4 

66.3 

42.4 

30.0 

20.1 

14.4 

kDa 



54 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Effect of NaCl concentration on the FAGLA-hydrolysis activity of TLN 
variants. The reaction was carried out in 40 mM HEPES buffer at pH 7.5 containing 10 
mM CaCl2, 0–4.0 M NaCl at 25°C. The initial concentrations of enzyme and FAGLA 
were 0.1 µM and 400 µM, respectively. The relative activity of TLN variants was 
defined as the ratio of the kcat/Km value at x M NaCl to that at 0 M NaCl [(2.8 ± 0.3) × 
104 M-1 s-1 for WT, (9.2 ± 1.2) × 104 M-1 s-1 for N116D, (7.5 ± 0.1) × 104 M-1 s-1 for 
D150E, and (1.6 ± 0.2) × 105 M-1 s-1 for N116D/D150E]. The solid line represents a 
theoretical curve by y = 1.97x (y is the relative activity at x M NaCl) for WT, that by y = 
1.75x for N116D, that by y = 1.49x for D150E, and that by y = 1.46x for N116E/D150E, 
which are drawn to fit the experimental data. Symbols: WT (○), N116D (Δ), D150E 
(□), and N116D/D150E (◇). Error bars indicate SD values of triplicate measurements.  
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Fig. 4. Effect of pH on the FAGLA-hydrolysis activity of TLN variants. The 
reaction was carried out in 40 mM acetate-NaOH buffer at pH 4.0-5.5, 40 mM 
MES-NaOH buffer at pH 5.5-7.0, 40 mM HEPES-NaOH buffer at pH 7.0-8.5, and 
TAPS-NaOH buffer at pH 8.0-9.0, containing 10 mM CaCl2 at 25ºC in the absence or 
presence of 4.0 M NaCl. The initial concentrations of enzyme and FAGLA were 0.1 µM 
and 400 µM, respectively. (A) Effect of pH on kcat/Km at 0 M NaCl. (B) Effect of pH on 
kcat/Km at 4.0 M NaCl. (C) Effect of pH on the relative activity at 4.0 M NaCl. Symbols 
correspond to those of Fig. 3. Error bars indicate SD values of triplicate measurements. 
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Fig. 5. Effect of NaCl concentration on the thermal stability of TLN variants. TLN 
(2.0 µM) in 40 mM HEPES-NaOH, 10 mM CaCl2, 0–4.0 M NaCl at pH 7.5 was 
incubated at 70°C for a specified time. The experimental condition for FAGLA 
hydrolysis corresponds to that of Fig. 3. The relative stability of TLN variants was 
defined as the ratio of the kobs at 0 M NaCl [(3.4 ± 0.3) × 10-4 s-1 for WT, (6.4 ± 0.2) × 
10-4 s-1 for N116D, (3.2 ± 0.5) × 10-4 s-1 for D150E, and (6.8 ± 0.9) × 10-4 s-1 for 
N116D/D150E] to that at x M NaCl. Symbols correspond to those of Fig. 3. Error bars 
SD values of triplicate measurements.  
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Chapter 4 

                                                         

 

Effects of Conversion of the Zinc-binding Motif Sequence of Thermolysin, 

HEXXH, to That of Dipeptidyl Peptidase III, HEXXXH, on the Activity and 

Stability of Thermolysin   

  

 

Introduction 

 

Dipeptidyl peptidase III (DPP III) [EC 3.4.14.4] is a mesophilic zinc 

metalloproteinase. It was originally identified in the bovine anterior pituitary gland (72). 

Human (73) and rat (74) DPP III enzymes consist of 737 and 738 amino acid residues 

respectively. Unlike most zinc metalloproteinases, DPP III has the zinc-binding motif 

sequence H450ELLGH455. DPP III releases N-terminal dipeptides sequentially from a 

peptide. In rat DPP III, two histidine residues (His450 and His455) in the sequence and 

one glutamate residue (Glu508) chelate the active-site Zn2+, and Glu451 in the sequence 

is critical to catalytic activity (75). DPP III is grouped in the M49 family of Clan MA. It 

has been identified in a wide range of organisms, from bacteria to humans, and all of 

these contain the zinc-binding motif HEXXXH (76), indicating that DPP III is a typical 

evolutionarily conserved protein. 

In DPP III, replacement of the active-site Zn2+ with Cu2+, Co2+, or Ni2+ does not 

affect activity much (77). In TLN, replacement of the active-site Zn2+ with Cd2+, Mn2+, 

or Fe2+ abolishes or decreases activity, while replacement with Co2+ increases it (66, 65, 

78–80). In DPP III, conversion of zinc-binding motif sequence H450ELLGH455 to one 

similar to that of TLN, H450ELGH455, does not affect enzymatic activity (75). In the 

DPP III variant with H450ELGH455, unlike the wild-type DPP III, replacement of the 

active-site Zn2+ with Cu2+, Co2+, or Ni2+ abolishes activity (81).  

In TLN and other zinc metalloproteinases, the effects of conversion of 

zinc-binding motif sequence HEXXH to HEXXXH on catalytic activity have not been 
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characterized. In this study, we examined the effects of this conversion on the activity 

and stability of TLN. The results indicate that this conversion eliminates TLN activity 

but does not affect substrate analog-binding ability or stability.  

 

 

Materials and Methods 

 

Materials – All materials were prepared as described in Chapter 1. 

 

Bacterial strains, plasmids, and transformation – Expression materials and 

procedures are as described in Chapter 1. Site-directed mutagenesis, DNA sequencing, 

transformation, and culturing were performed as described in Chapter 1. 

 

Purification of TLN variants – The cells were harvested at 20,000 × g for 20 min, 

then suspended in 3 ml of 20 mM acetate-NaOH buffer (pH 5.5) and 10 mM CaCl2 

(buffer A), and disrupted by sonication. After centrifugation at 20,000 × g for 20 min, 

the supernatant was collected and applied to a column (internal diameter 10 mm x 50 

mm) of Gly-D-Phe coupled to CNB-activated Sepharose 4B resin (GE Healthcare, 

Buckinghamshire, UK) equilibrated with buffer A. TLN variants were eluted with buffer 

A containing 20% (v/v) 2-propanol and 2.5 M NaCl at a flow rate of 1 ml/min. 

 

SDS-PAGE – SDS-PAGE was carried out as described in Chapter 1. 

 

Hydrolysis of casein – TLN-catalysed hydrolysis of casein was carried out as 

described in Chapter 1. 

 

Spectrophotometric analysis of the TLN-catalyzed hydrolysis of FAGLA – 

TLN-catalysed hydrolysis of FAGLA was essentially carried out as described in Chapter 

1. However, in this study, TLN solution (0.2 ml) containing soluble fractions 

corresponding to 3 ml of culture medium were added to 2.8 ml of a solution containing 
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4 mM FAGLA in 40 mM HEPES-NaOH, 10 mM CaCl2
 (buffer B), pH 7.5 at 25ºC, and 

incubated at 25°C for one min. To determine the effects of various concentrations of 

Zn2+ and of Co2+ on activity, a TLN solution (0.2 ml) containing purified TLN 

preparations (2 µM) and various concentrations of ZnCl2 (0–500 µM) or CoCl2 (0–2 

mM) were pre-incubated for 1 h on ice and added to 3.8 ml of a solution containing 

0.421 mM FAGLA in buffer B. During the reaction, the decrease in A345 of the reaction 

solution was measured. The amount of FAGLA hydrolyzed was evaluated as described 

in Chapter 1.   

 

CD measurement – CD measurement was carried out as described in Chapter 2.  

 

Structural modelling – For modelling of the modified TLNs, an iterative threading 

assembly refinement server, I-TASSER was used. I-TASSER queries a given sequence 

and generates 3D structural models from multiple threading alignments in PDB (84–87). 

Assessment of the structural models was done with C-score (1.67), TM score (0.95 ± 

0.05), and RMSD (1.1 ± 1.1Å). The model presented was found to be the best, and was 

validated by PROCHECK and Verify_3D using the U.S. National Institutes of Health 

(NIH) server. 

 

 

Results 

 

Design of TLN variants with zinc-binding motif sequence HEXXXH – We 

designed H142ELLGH146 and H142ELTGH146 as altered zinc-binding motif sequences 

that belong to the HEXXXH motif. The former is the same as the sequence of DPP III. 

The latter has a glycine residue between Thr145 and His146 of the sequence of TLN, 

H142ELTH146. It appears that the flexibility conferred by Gly454 enables DPP III to hold 

the active-site Zn2+, but the possibility that Gly145b impairs the active-site geometry of 

TLN cannot be discounted. A TLN variant with H142ELLGH146 is designated T145LG, 

and one with H142ELTGH146 is designated T145TG. 
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Figure 1A shows the structure of WT, based on PDB code 8TLN. Figure 1B 

shows the modeled structure of T145TG. Unlike WT, the turn of the α-helix that 

contains H142ELTGH146 is extended, suggesting that this might not enable His146 to be 

coordinated to the active-site Zn2+. This is in contrast to DPP III, in which the turn of 

the α-helix that contains H450ELLGH455 is widened (Fig. 1C), suggesting that this 

enables both His450 and His455 to be coordinated to the active-site Zn2+ (81). As Fig. 1 

also shows, in TLN the side-chains of Tyr84 and Val140 are located between two α 

helices, Ala68-Asn89 and Val139-Thr149. The mutation Tyr84→Ser or Val140→Ala 

was aimed at reducing the sizes of the side-chains, anticipating that this reduction would 

enable the widening of the turn of the α-helix Val139-Thr149 of T145LG and T145TG. 

Here the TLN variant with Tyr84→Ser is designated Y84S; that with Val140→Ala is 

V140A; that with Tyr84→Ser and H142ELTH146→H142ELLGH146 is Y84S/T145LG; that 

with Val140→Ala and H142ELTH146→H142ELLGH146 is V140A/T145LG; that with 

Tyr84→Ser and H142ELTH146→H142ELTGH146 is Y84S/T145TG; and that with 

Val140→Ala and H142ELTH146→H142ELTGH146 is V140A/T145TG. 

 

Expression of TLN variants – WT and the variants were expressed in E. coli by a 

system reported previously (34), one in which the mature and pro domains were 

expressed as independent polypeptides. Figure 2 shows a time course for a flask-shake 

culture of the transformants. In all the transformants, the OD600 of the cultures increased 

with time and reached a maximum (about 2.2 for the transformant with pUC19, and 

about 0.8−2.0 for the transformants with expression plasmids for TLN) after 18−30 h 

(Fig. 2A). After the aforementioned durations, in WT and V140A, the OD600 decreased 

with time, and in the other six variants (Y84S, T145LG, Y84S/T145LG, 

V140A/T145LG, T145TG, Y84S/T145TG, and V140A/T145TG), it was almost stable. 

The casein hydrolysis activities of WT and V140A were detected in the supernatant, and 

increased progressively even after OD600 reached maximum, but was not detected for 

the seven other variants (Fig. 2B). These results indicate that the conversion of Tyr84 to 

Ser and that of H142ELTH146 to H142ELLGH146 or H142ELTGH146 eliminate TLN activity, 

while that of Val140 to Ala does not eliminate it.  



61 

 

Figure 3A shows SDS-PAGE of the culture supernatants of the transformed E. coli 

cells with the expression plasmids for WT and the variants. The 34.6-kDa protein band 

was detected for WT and V140A but not for the seven other variants. This suggests that 

TLN is secreted by leakage from the cytosol into the culture medium due to hydrolysis 

of membrane proteins by active TLN. Figure 3B shows SDS-PAGE of the soluble 

fractions of the E. coli cells transformed with the expression plasmids for WT and the 

variants. The 34.6-kDa protein band was detected for WT and all eight variants. These 

results indicate that none of the conversions of Tyr84 to Ser, Val140 to Ala, or 

H142ELTH146 to H142ELLGH146 or H142ELTGH146 affected the expression of TLN in E. 

coli. 

 

Activity of TLN variants – Because WT and all the variants were expressed in 

soluble fractions of the transformed E. coli cells, their hydrolysis activities were 

examined. First the casein hydrolysis activities of a solution containing 2.5% (v/v) 

soluble fractions were measured at pH 7.5 at 25ºC. The activities of WT and V140A 

were 232 ± 13 and 248 ± 12 units/ml respectively, while those of the other variants were 

not detected. Next, the FAGLA hydrolysis activities of a solution containing 6.7% (v/v) 

soluble fractions were measured at pH 7.5 at 25ºC. The activities of WT and V140A 

were 178 ± 10 and 198 ± 9 nM s-1 respectively, while those of the other variants were 

not detected. These results indicate that the conversion of Tyr84 to Ser and of 

H142ELTH146 to H142ELLGH146 or H142ELTGH146 abolished TLN activity while that of 

Val140 to Ala did not abolish it.  

 

Substrate analog-binding ability of the TLN variants – We examined the binding 

abilities of variants for the substrate analog Gly-D-Phe. Figure 4A and B show 

SDS-PAGE of the pass-through and eluted fractions, respectively, of Gly-D-Phe column 

chromatography of the soluble fractions of the transformed E. coli cells. In WT and all 

the variants, the 34.6-kDa protein band was not detected in the pass-through fractions 

for WT or any variant (Fig. 4A), but it was detected in the eluted fractions (Fig. 4B), 

indicating that none of the conversion of Tyr84 to Ser, Val140 to Ala, or of H142ELTH146 
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to H142ELLGH146 or H142ELTGH146 affected the binding ability of TLN for Gly-D-Phe. 

 

Purification of TLN variants – Starting with 450 ml of E. coli cultures, 0.6–1.0 mg 

of purified preparations of WT, T145LG, and T145TG were recovered by 

hydrophobic-interaction column chromatography and Gly-D-Phe affinity column 

chromatography of the soluble fractions of the transformed E. coli cells. On SDS-PAGE 

under reducing conditions, each of these yielded a single band with a molecular mass of 

34.6 kDa (Fig. 5A). On far-UV CD spectroscopy at 25°C, all of them exhibited negative 

ellipticities at about 203–238 nm, with the peaks at about 208 and 222 nm (Fig. 5B). 

This suggests that T145LG and T145TG did not suffer any drastic structural changes by 

the conversion of H142ELTH146 to H142ELLGH146 and H142ELTGH146 respectively. 

Noting that Tyr84 is close to the modified site, near-UV CD spectroscopy was carried 

out to discern any changes in the tertiary structure of the protein near the active site (Fig. 

5C). No significant change was observed, suggesting that the environment of the 

aromatic side-chains of Tyr84 of T145LG and T145TG were not altered by conversion 

of the zinc-binding motif sequence. 

 

Stability of the TLN variants – We examined the thermal denaturation of WT, 

T145LG, and T145TG by monitoring θ222 in the range 75–95°C (Fig. 6). All the 

denaturation curves exhibited an apparent two-state model. The apparent denaturing 

temperatures of T145LG and T145TG were 85 ± 1°C and 86 ±1°C respectively, almost 

the same as that of WT (85 ± 1°C). This suggests that the stabilities of T145LG and 

T145TG are almost the same as that of WT. 

 

Activity of TLN variants at various concentrations of Zn2+ and of Co2+ – The 

FAGLA hydrolysis activities of WT, T145LG, and T145TG at various concentrations of 

Zn2+ and of Co2+ were examined (Fig. 7). In WT, the kcat/Km value decreased with 

increasing concentrations of Zn2+ and reached 40% at 500 µM, and increased with 

increasing concentrations of Co2+ and reached 400% at 1 mM, which coincided with 

previous results (65, 66, 80). T145LG and T145TG did not exhibit activity in all test 
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conditions (0–500 µM ZnCl2 or 0–2 mM CoCl2). 

 

 

Discussion 

 

Differences in effects of the conversion of the zinc-binding sequence on catalytic 

activity between TLN and DPP III – In this study, conversion of the zinc-binding motif 

sequence of TLN, H142ELTH146, to that of DPP III, H142ELLGH146 or H142ELTGH146, 

eliminated catalytic activity. T145LG and T145TG did not exhibit activity even in the 

presence of elevated concentrations of Zn2+ or Co2+. This is in contrast to results 

reported previously, that conversion of the zinc-binding motif sequence of DPP III, 

H450ELLGH455, to that of a majority of zinc metalloproteinases, including TLN, 

H450ELGH455, did not affect catalytic activity (81), indicating a difference in the effects 

of conversion of the zinc-binding sequence on catalytic activity between TLN and DPP 

III. A difference was also reported as to the effects of replacement of metal ions. The 

replacement of active-site Zn2+ with Cu2+ or Ni2+ in TLN eliminated catalytic activity 

(66, 65, 78–80) while that in DPP III did not eliminate it (77). 

Fukasawa et al. (86) and Hirose et al. (87) pointed out that the unique 

characteristics of DPP III could be ascribed to the flexibility and hydrogen bonding 

network in its active site as per the following results: (i) Crystallographic analysis of 

yeast DPP III has indicated that the turn of the α-helix that contains H450ELLGH455 is 

widened, suggesting that this enables both His450 and His455 to coordinate to 

active-site Zn2+ (88) (ii) A three-dimensional modeling analysis of rat DPP III indicated 

that Glu512 and Glu507 stabilize the coordination of His450 and His455 respectively to 

active-site Zn2+ (86). Electron paramagnetic analysis of wild-type rat DPP III in which 

Zn2+ was replaced with Cu2+ indicated Glu451, one of the residues in the zinc-binding 

motif, critical for catalytic activity, can approach the water molecule, however in the 

same Cu2+-containing DPP III variant in which Leu453 was deleted, the Glu451 cannot 

approach it, suggesting that Glu451 of wild-type DPP III can work as a general base, 

while that of the variant cannot work as a general base (87).  



64 

 

Although zinc contents of the TLN variants were not measured, the results 

presented here suggest that the active site of TLN does not have the flexibility in DPP 

III: (i) In the modeled structure of T145TG, the side-chains of His142 and His146 are 

rotated and might be unable to chelate the active-site Zn2+ (Fig. 1). (ii) V140A was 

active, but V140A/T145LG and V140A/T145TG were inactive, suggesting that 

Val140→Ala does not lead to a widening of the turn of α-helix Val139-Thr149. (iii) 

T80S, T80S/T145LG, and T80S/T145TG were inactive, suggesting that Thr80→Ser 

disrupts the active-site geometry required for catalytic activity. Similar results have been 

reported for other zinc-metalloproteinases with zinc-binding motif HEXXH, 

Bacteroides fragilis toxin (89), or rat aminopeptidase B (90) that all single mutations in 

the zinc-binding motif sequence eliminated activity. 

 

Effects of conversion of the zinc-binding sequence of TLN to that of DPP III on 

the expression and stability of TLN – Our initial attempt to produce TLN variants with 

the HEXXXH motif by expressing the pre-proenzyme in E. coli was unsuccessful. 

Analysis by SDS-PAGE did not reveal the TLN variants in the culture supernatants or 

inside the cells. This can be explained by the fact that the expression system we used 

required autocatalytic cleavage of the peptide bond linking the pro and mature 

sequences yet the variants with the HEXXXH motif lacked activity. We think that the 

pre-proTLN did not fold properly and was degraded by other cellular proteases. In this 

study, this problem was circumvented by co-expressing the mature and pro domains 

separately. This is in contrast with the results for B. fragilis toxin (89) and rat 

aminopeptidase B (90), in which inactive variant enzymes with a single amino acid 

mutation at the zinc-binding motif sequence were successfully produced in E. coli cells 

by expressing the pre-proenzyme. This is because they were processed by cellular 

proteinases.  

In this study, similar amounts of purified preparations of WT, T145LG, and 

T145TG were obtained from transformed E. coli cells (Fig. 5A). They exhibited the 

same CD spectra at far and near UV at 25°C (Fig. 5B and C). Their apparent denaturing 

temperatures, based on the ellipticity at 222 nm, were almost the same as that of WT 
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(Fig. 6). Taken together, our results suggest that conversion of the HEXXH motif to 

HEXXXH does not noticeably affect the expression or stability of TLN.  

The TLN variants with the HEXXXH motif bound to a substrate analog 

Gly-D-Phe (Fig. 4). Resins containing Gly-D-Phe, D-phenylalanine (D-Phe), or 

D-leucine (D-Leu) are routinely used in affinity purification of TLN (91, 92). They are 

based on the finding that TLN catalyzes specifically the hydrolysis of peptide bonds 

with bulky hydrophobic amino acid residues such as Phe or Leu at P1′ position (16). In 

this study, all the TLN variants bound to Gly-D-Phe (Fig. 4). Although there is no direct 

evidence that TLN variants with the HEXXXH motif bind to substrates of TLN such as 

FAGLA and ZDFM, our results suggest that conversion of the HEXXH motif to 

HEXXXH does not materially affect the geometry of the site required for substrate 

binding. A comparison of the active-site structure of WT (Fig. 1A), determined by 

crystallographic analysis, to that of T145TG (Fig. 1B), modeled using WT as template, 

indicated that these structures are similar except for the presence or absence of 

active-site Zn2+ and the position of the side-chain of Glu166. We think that the results 

presented here corroborate the credibility of the modeled structure of T145TG (Fig. 1B).  

In conclusion, conversion of the zinc-binding motif sequence of TLN, HEXXH, to 

that of DPP III, HEXXXH, eliminates TLN activity. The HEXXH zinc-binding motif 

sequence appears critical for the catalytic activity of TLN, but not essential for proper 

folding or stability. To achieve a detailed understanding of the effects of the conversion 

of HEXXH to HEXXXH on the structure of TLN, further investigation, including 

crystallographic structural analysis and electron spin resonance analysis, might be 

helpful. 
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Fig. 1. Close-up view of the active sites of TLN and DPP III. (A) WT. The structure 
is based on PDB code 8TLN. (B) TLN variant T145TG. The 3D structural model was 
generated by the I-TASSER threading algorithm using WT as template. The overall 
protein structure (ribbon model), Thr80, Tyr84, Val140, His142, Glu143, Leu144, 
Thr145, Thr145a, Gly145b, His146, Glu166 (ball and stick), and the zinc ion (sphere) 
are shown. (C) DPP III. The structure is based on PDB code 3FVY. The overall protein 
structure (ribbon model), His450, Glu451, Leu452, Leu453, Gly454, His455, Glu508 
(ball and stick), and the zinc ion (sphere) are shown. 
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Fig. 2. Culturing of E. coli. (A) Cell densities. (B) Casein hydrolysis activities. OD600 
of culture (A) and casein hydrolysis activities of the culture supernatants (B) of E. coli 
cells transformed with pUC19 (●) or the expression plasmids for WT (○), Y84S (Δ), 
V140A (□), and the other six variants (T145LG, Y84S/T145LG, V140A/T145LG, 
T145TG, Y84S/T145TG, and V140A/T145TG) (+) are plotted against time. In Fig. 2B, 
the points of the six variants overlap with those of pUC19, and are invisible. 0 h means 
start of flask-shake culture.  
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Fig. 3. Expression of TLN variants. Coomassie Brilliant Blue-stained 12.5% 
SDS-PAGE are shown. (A, B) The marker proteins (lane 1), native TLN purified from 
B. thermoproteolyticus (lane 2), and the culture supernatants (A), or the soluble 
fractions (B) of the E. coli cells transformed with pUC-19 (lane 3), and the expression 
plasmids for WT (lane 4), Y84S (lane 5), V140A (lane 6), 145LG (lane 7), 
Y84S/T145LG (lane 8), V140A/T145LG (lane 9), T145TG (lane 10), Y84S/T145TG 
(lane 11), and V140A/T145TG (lane 12). Arrow indicates the position of mature TLN 
band.  
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Fig. 4. Gly-D-Phe-binding abilities of TLN variants. Coomassie Brilliant Blue- 
stained 12.5% SDS-PAGE are shown. (A, B) The marker proteins (lane 1), native TLN 
purified from B. thermoproteolyticus (lane 2), the pass-through fractions (A) and the 
eluted fractions (B) of Gly-D-Phe column chromatography of the soluble fractions of E. 
coli cells transformed with pUC-19 (lane 3), and the expression plasmids for WT (lane 
4), Y84S (lane 5), V140A (lane 6), T145LG (lane 7), Y84S/T145LG (lane 8), 
V140A/T145LG (lane 9), T145TG (lane 10), Y84S/T145TG (lane 11), and 
V140A/T145TG (lane 12) are shown. Arrow indicates the position of mature TLN 
band. 
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Fig. 5. Purification of TLN variants. (A) Coomassie Brilliant Blue-stained 12.5% 
SDS-PAGE are shown. The marker proteins (lane 1), native TLN purified from B. 
thermoproteolyticus (lane 2), WT (lane 3), T145LG (lane 4), and T145TG (lane 5). 
Arrow indicates the position of mature TLN band. (B, C) Far-UV (B) and near-UV (C) 
CD spectroscopy at 25°C of WT (—–), T145LG (˗ ˗ ˗ ˗), and T145TG (······).  
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Fig. 6. Thermal denaturation of TLN variants. The θ222 for WT, T145LG, and 
T145TG were monitored from 75 to 95ºC at 0.5ºC/min. Markers: WT (○), T145LG 
(Δ), and T145TG (□). 
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Fig. 7. Effects of zinc and cobalt ions on the activities of TLN variants. TLN (2 µM) 
was incubated with ZnCl2 (0–500 µM) (A) or CoCl2 (0–2 mM) (B) for 1 h on ice. Then 
the FAGLA hydrolysis reaction was carried out with concentrations of TLN, FAGLA, 
and ZnCl2 or CoCl2 at 0.1 µM, 400 µM, and 0–500 µM or 0–2 mM respectively. 
Markers: WT (○), T145LG (Δ), and T145TG (□). 
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Summary 

 

 

Chapter 1 

 

In the N-terminal domain of TLN, two polypeptide strands, Asn112-Trp115 and 

Ser118-Tyr122, are connected by a short loop, Asn116-Gly117, to form an anti-parallel 

β-sheet. The Asn112-Trp115 strand is located in the active site, while the Ser118-Tyr122 

strand and the Asn116-Gly117 loop are located outside the active site. In this study, we 

explored the catalytic role of Gly117 by site-directed mutagenesis. Four variants, 

G117D, G117E, G117K, and G117R, were produced by co-expressing in E. coli the 

mature and pro domains as independent polypeptides. The production levels were in the 

order G117E > wild type > G117K, G117R > G117D. G117A was hardly produced. 

This result was in contrast to a previous study in which all 72 active-site TLN variants 

were produced at a similar level whether or not they retained activity. G117E exhibited 

lower activity in the hydrolysis of FAGLA and higher activity in the hydrolysis of 

ZDFM than WT. G117K and G117R exhibited considerably reduced activities. This 

suggests that Gly117 plays an important role in the activity and stability of TLN, 

presumably by affecting the geometries of the Asn112-Trp115 and Ser118-Tyr122 

strands. 

 

 

Chapter 2 

 

In the N-terminal domain of TLN, two anti-parallel β-strands, Asn112-Trp115 and 

Ser118-Tyr122 are connected by an Asn116-Gly117 turn to form a β-hairpin structure. 

In this study, we examined the role of Asn116 in the activity and stability of TLN by 

site-directed mutagenesis. Of the 19 Asn116 variants, four (N116A, N116D, N116T, 

and N116Q) were produced in E. coli, by co-expressing the mature and pro domains 
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separately, while the other 15 could not be produced. In the hydrolysis of FAGLA at 

25°C, the intrinsic kcat/Km value of N116D was 320% of that of the WT, and in the 

hydrolysis of ZDFM at pH 7.5 at 25°C, the kcat/Km value of N116D was 140% of that of 

WT, indicating that N116D exhibited higher activity than WT. N116Q exhibited similar 

activity as WT, and N116A and N116T exhibited reduced activities. The kobs values at 

80°C were in the order N116A, N116D, N116T > N116Q > WT at all CaCl2 

concentrations examined (1–100 mM), indicating that all variants exhibited reduced 

stabilities. These results suggest that Asn116 plays an important role in the activity and 

stability of TLN presumably by stabilizing this β-hairpin structure.   

 

 

Chapter 3 

 

Neutral salts activate and stabilize TLN. In this study, we examined the effects of 

two activating mutations, Asn116→Asp and Asp150→Glu, on NaCl-induced activation 

and stabilization of TLN. In the hydrolysis of FAGLA, the relative activities (ratios of 

kcat/Km, at x M NaCl to that at 0 M NaCl) at 0.5–4.0 M NaCl of D150E and 

N116D/D150E were lower than those of WT and N116D, respectively. In the thermal 

inactivation at 70ºC, the relative stabilities (ratios of the kobs at 0 M NaCl to that at x M 

NaCl) at 0.5–4.0 M NaCl of D150E and N116D/D150E were lower than those of WT 

and N116D, respectively. These results indicate that unlike Asn116→Asp, 

Asp150→Glu reduced the NaCl-induced activation and stabilization, suggesting the 

binding of ions with certain residue(s) of TLN is involved in the activation and 

stabilization.    

 

 

Chapter 4 

 

Most zinc metalloproteinases have the consensus zinc-binding motif sequence 

HEXXH, in which two histidine residues chelate a catalytic zinc ion. The zinc-binding 



75 

 

motif sequence of TLN, H142ELTH146, belongs to this motif sequence, while that of DPP 

III, H450ELLGH455, belongs to the motif sequence HEXXXH. In this study, we 

examined effects of conversion of HEXXH to HEXXXH in TLN on its activity and 

stability. TLN variants bearing H142ELLGH146 or H142ELTGH146 (designated T145LG 

and T145TG, respectively) were constructed by site-directed mutagenesis and were 

produced in E. coli cells by co-expressing the mature and pro domains separately. They 

did not exhibit hydrolyzing activity for casein or FAGLA, but exhibited binding ability 

to a substrate analog Gly-D-Phe. The apparent denaturing temperatures based on 

ellipticity at 222 nm of T145LG and T145TG were 85 ± 1°C and 86 ± 1°C, respectively, 

almost the same as that of WT (85 ± 1°C). These results indicate that conversion of 

HEXXH to HEXXXH abolishes TLN activity, but does not affect its binding ability to 

Gly-D-Phe or its stability. Our results are in contrast to ones reported previously, that 

DPP III variants bearing H450ELGH455 exhibit activity. 
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