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Abstract

Aiming to contribute growth in synchrotron radiation based science by developing

a short-period, high-field undulator for future storage rings or free-electron lasers, new

undulator using bulk high-temperature superconductors with a staggered-array config-

uration in solenoid has been proposed and its magnetic properties were studied. First,

the magnetic fields inside this undulator were theoretically analyzed by using a two

dimensional physical model based on Bean’s critical state model and two dimensional

approximation. The analytical calculation shows the degree of dependence of these

fields on the undulator parameters, the generation of a high undulator field proportional

to the critical current density of the bulk superconductor, and the good tunability of

the undulator field over a wide range of values. Second, experiment were performed

using a six-periods prototype with the undulator period of 10 mm and the gap of 4 mm

in a 2-T solenoid. The undulator field which has practical strength amplitude, 0.85 T

at 20 K, and has wide tunability by the solenoid field were successfully demonstrated.

The results also showed stronger undulator field can be generated by using stronger

solenoid. The numerical calculation is performed in a three-dimensional geometry by

two methods: the center field and energy minimization methods. The latter treats the

current distribution inside the bulk, whereas the former neglects it as a natural exten-

sion of the analytical model. The calculation also reveals the dependence of the fields

on the undulator parameters arising from the current distribution. From the comparison

with experimental results, we find that the latter method reproduces the experimental



results well, which indicates the importance of the current distribution inside the bulk.

Therefore, we derive a semi-empirical formula for the required solenoid field by mod-

ifying the analytical formula using the numerical results so as to include the effect of

the current distribution. The semi-empirical formula reproduces the numerical result

with an error of 3%. Finally, we estimate the magnetic performance of the undulator

as an example of using the formulae and values presented in this thesis. The estimation

shows that an undulator field twice as large as that of the present in-vacuum undulator

but with an equal period and gap can be obtained at a temperature of approximately

20–40 K, and that deflection parameters (K values) of 1 and 2 can be achieved with

periods of 5 and 10 mm at approximately 4–20 K.
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Chapter 1

Introduction

Synchrotron radiation (SR) from a relativistic electron beam passing through a mag-

netic field is crucial to a wide range of scientific applications. Particularly, SR is im-

portant as a bright light source for X-ray science, for example, X-ray crystallography,

X-ray absorption fine structure analysis, and X-ray fluorescence analysis. Undulator

radiation, a SR from a relativistic electron beam passing through a periodic magnetic

field in an undulator, is much bright, quasi-monochromatic, and wavelength-tunable

light. Free electron laser (FEL), a SR from a microstructured electron beam due to

interaction between the undulator radiation and the electron beam in an undulator, is

also much bright wavelength-tunable laser. FEL is currently the only way to achieve

practical lasers in X-ray region.

The fundamental wavelength of the undulator radiation and the FEL depends on

the electron beam energy E, undulator period λu, and undulator field strength B0. As

undulators had typically had periods of around several centimeters, the only way to

obtain bright undulator radiation in the hard X-ray region (10–25 keV) had been to use

high-energy electron beams in large synchrotron facilities such as the European Syn-

chrotron Radiation Facility in France (E = 6 GeV), Advanced Photon Source in the US

(7 GeV), and SPring-8 in Japan (8 GeV). The demonstration of 4.6 keV X-ray gener-
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ation from the 2.584 GeV synchrotron in the National Synchrotron Light Source was

performed with an short-period, 11-mm-period, undulator [1]. Since then, moderate-

energy synchrotron facilities with short-period undulators, such as the Swiss Light

Source in Switzerland (E = 2.4 GeV, λu = 17 mm), DIAMOND in the UK (3 GeV,

21 mm), and SOLEIL in France (2.75 GeV, 20 mm), have been constructed [2, 3, 4].

In these facilities, undulator radiation harmonics from the 5th through 11th have been

used to obtain 10–25 keV.

This scheme also prevails for FELs. The first X-ray laser of 0.12 nm (10 keV) was

achieved at LCLS in the US (15 GeV, 30 mm) [5], and such lasers have already been

used for X-ray science [6]. Subsequently, a 0.06 nm (20 keV) FEL has been achieved

at SACLA in Japan (8 GeV, 18 mm) [7]. Recently, an X-ray FEL using the 3rd and 5th

harmonics from a 3 GeV electron beam source and a 15-mm-period undulator has been

proposed [8].

As can be concluded from the above, short-period undulators relax the requirement

of the electron beam energy that means a lower operation and construction costs, an

easier construction, and also opens opportunities for scientists to use hard X-rays in

various applications. The undulator field strength, although not a determining param-

eter for wavelength, however must be sufficiently high to keep the radiation brilliance,

particularly that of the harmonics, and the gain of amplification in FEL at high level

with the short-period undulator and low-energy electron beam. In addition, the use of

multi-MeV gamma rays from high-field, short-period undulators to generate polarized

positron beams via particle-antiparticle pair production in future linear colliders has

been proposed [9].

To realize a higher-field, shorter-period undulators, several different types of un-

dulator have been studied. In-vacuum undulators (IVUs) [10], which have specially

coated permanent magnet (PM) arrays inside a vacuum vessel, have been used in the

aforementioned demonstration, in moderate-energy facilities, and in SACLA. Cryo-
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genic PM undulators (CPMUs) [11], in which the residual flux and coercivity of PMs

are enhanced by cooling the magnets in an IVU to 100–150 K, have been developed and

put in use. An undulator using a low-temperature superconductor (LTS) wires in a vac-

uum vessel have been proposed and demonstrated by Hezel et al. [12], who attempted

to remove the thick thermal insulation wall between the electron beam trajectory and

the LTS wire.

Recently, bulk high-temperature superconductors (HTSs) have been extensively

studied; a trapped field of over 17 T was reported in a 26-mm-diameter, 15-mm-thick

bulk HTS at 29 K [13]. An undulator using a bulk HTS has several advantages over

other undulators: (1) a bulk HTS can produce fields over 10 times stronger than those

of PMs even when cooled; (2) the magnetic properties of bulk HTSs are continuing to

improve whereas those of PM have been disputed; (3) HTSs are more suitable in high-

current accelerators than LTSs because the thermal input from the electron beam and

the radiation itself exceeds the refrigerator capacity at liquid helium temperatures; and

(4) assembly is easier than for an undulator using an LTS wire. However, to use bulk

HTSs in undulators, one has to investigate methods of magnetizing bulk HTSs and gen-

erating a sinusoidal magnetic field, i.e., undulator field. So far, various approaches to

achieving this have been proposed. Cryoundulator plus (CU+) [14], in which bulk HTS

rings are mounted on PMs to enhance the magnetic field in a CPMU, has been proposed

and demonstrated. A superconducting permanent magnet undulator (SCPMU) [15, 16],

in which bulk HTSs are magnetized by a dipole field perpendicular to the beam axis,

has also been proposed and demonstrated.

At Institute of Advanced Energy, Kyoto University, bulk high-temperature super-

conductor staggered array undulator (BHSAU) is proposed [17]. In the BHSAU, bulk

HTSs are magnetized by the solenoid field parallel to the beam axis. The advantage of

the BHSAU over other types of the undulator using bulk HTSs are as follows: (1) Be-

cause the BHSAU use the bulk HTSs as main magnets, the higher field can be expected
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if we used the bulk HTS with higher critical current density, while the performance in

CU+ is limited by the performance of the PM; (2) Because of the field strength and

the area of uniform field of a dipole magnet are in a trade-off relationship, the SCPMU

has a limitation in its periodic number or the intensity of the magnetization. However,

the BHSAU does not have such problem, because the field strength and the length of

a solenoid are independent of each other. (3) The BHSAU is based on a conventional

staggered-array undulator (SAU) [18], in which soft magnetic blocks are in staggered-

array configuration instead of bulk HTSs. Therefore, as with the SAU, the undulator

field of the BHSAU is expected to be controllable by the solenoid field, while the other

undulators need the mechanical structure to control the gap of the magnet.

However, there are many physical and technical issues about the BHSAU. There is

no analytical or numerical model of the BHSAU because of the difficulty of calculating

magnetization of the bulk HTSs in the BHSAU. The current distribution inside a bulk

HTS, which determine magnetization of the bulk HTS, depend on the field applied

to the bulk HTS generated by solenoid and other bulk HTSs in the BHSAU. In other

words, the magnetizations of bulk HTS are affected each other. Thus, the undulator

field of the BHSAU can not be estimated. The dependence of the undulator field on

the geometrical parameter is also not clear. The analytical or numerical model which

treat field-dependent-magnetization of the bulk HTSs in the BHSAU is required. The

experiment is required to prove the principle and to validate the analytical or numerical

model.

In this thesis, the BHSAU is studied by the following analytical, experimental, and

numerical ways

1. to prove the principle, i.e., the generation of the undulator field, and the control-

lability of the undulator field by the solenoid field

2. to find out the dependency of the undulator field on the geometrical parameters,

the critical current density of the bulk HTS, and the solenoid field
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3. to prove the high undulator field generation with short-period.

The details of the thesis are as follows.

In chapter 2, the basics of the synchrotron radiation, undulator radiation, and FEL

are reviewed. Also reviewed are the basics of the bulk HTS and its magnetization

process. Then, the history of undulators are reviewed in the view point of the develop-

ment history of short-period, high-field undulators. Finally, the concept of BHSAU are

described.

In chapter 3, the analytical model of the BHSAU are proposed based on the two-

dimensional approximation and Bean’s critical state model for hard type-II supercon-

ductor [19]; and the analytical formulae of the field inside the BHSAU are derived from

the model by using the two-dimensional Biot-Savart’s law. The characteristics of the

BHSAU, i.e. the degree of dependence of the fields on the geometrical parameters, the

applied solenoid field, and the critical current density of the bulk HTS, are presented

and discussed.

In chapter 4, results of the prototype experiment are presented and discussed to

prove the generation of a high undulator field and its controllability. The prototype has

the periodic number of 6, the period of 10 mm, the gap of 4 mm, a 2-Tesla supercon-

ducting solenoid, and a cooling system by helium gas. The experimental results are

also used to be compared with the numerical results in chapter 6 for their validation.

In chapter 5, a three-dimensional numerical model of the BHSAU is proposed based

on Bean’s critical state model. The two methods named center field (CF) method and

energy minimization (EM) method are used to determine the current distribution in

the numerical model. The former derives a simple current distribution as a natural

extension of the analytical model to three-dimensional geometry. The latter derives

the current distribution that varies in the z-direction inside each bulk HTS so that the

magnetic energy is minimized. The numerical code based on the model and methods

is developed. The differences in the results by two methods are presented, and the
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importance of treating the current density is discussed. Also shown are newly revealed

properties of the BHSAU which are not obvious in the analytical study.

In chapter 6, the comparisons of the analytical, experimental, and numerical results

are performed. To evaluate the numerical model, how to make the comparison without

the exact value of the critical current density in the experiment is investigated. The com-

parison results are presented and discussed. Next, to obtain formulae which include the

factor of the current distribution, the semi-empirical formula for the required solenoid

field is derived by modifying the analytical formula using the comparison results of

the analytical and numerical calculations. Finally, the performance estimation of the

BHSAU are shown by using the formulae to reveals out its possibility for application

in the future.

Summary is given in chapter 7.
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Chapter 2

Bulk High-Temperature

Superconductor Staggered Array

Undulator (BHSAU)

2.1 Introduction

In this chapter, the reason why we study the BHSAU is shown. First, the require-

ment of the short-period, high-field undulators are explained on the basis of the theories

of SR, undulator radiation, and FELs. Second, the basic theory of the bulk HTS and its

magnetization process is explained. Third, the development history of the short-period,

high-field undulators is introduced. Finally, the principle of the BHSAU is described.
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2.2 Theories of Radiation

2.2.1 Synchrotron Radiation

Synchrotron radiation (SR) is electromagnetic wave emitted from charged particles,

especially electron beam with a relativistic speed, when they deflected by a magnetic

force. SR is obtained from the bending magnets, which generates dipole magnetic

field perpendicular to the electron beam trajectory, in electron storage rings. Generally,

SR is much brighter than other light source in a wide range of the wavelength from

infrared to hard X-ray, and thus largely used in a wide range of scientific applications.

Particularly, SR is important as a bright light source for X-ray science, for example,

X-ray crystallography, X-ray absorption fine structure analysis, and X-ray fluorescence

analysis.

2.2.2 Undulator and Undulator Radiation

Figure 2.1 shows the concept of planar undulator. Usually, the coordinate of the

system is taken as in the figure. The z-axis is matched to the direction of the electron

beam. The y-axis is matched to the direction of the undulator field. The x-axis is

matched to the diffraction direction of the electron beam by the undulator field. In the

undulator, undulator field, a periodic magnetic field, is generated by upper and lower

array of the magnets which have the periodic structure. Undulator radiation is one of

SR from relativistic electron beam passing throughout the undulator field. However, by

the interference effect of the light emitted at each period, undulator radiation is brighter

than SR from the bending magnet and quasi-monochromatic. The undulator radiation

is wavelength-tunable; the wavelength of the radiation can be varied by changing the

electron beam energy or the strength of the magnetic field.

There are several types of undulator field which determine a trajectory of the elec-

tron beam and a polarization of the emitted radiation. Here, we describe a planar un-
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Figure 2.1: Concept of planar undulator [20]. The trajectory of the relativistic electron

is wiggled in the xz plane by the periodic magnetic field in y-direction.

The electron emit the radiations at each period and the radiations from each

period interfere each other.

dulator which has a periodically alternating magnetic field approximately equal to a

sinusoidal function. The fundamental wavelength of the undulator radiation λR is ex-

pressed by

λR =
λu

2γ

(
1 +

K2

2

)
. (2.1)

Here, γ is the Lorentz factor of the electron beam, λu is the period of the undulator, and

K is the diffraction parameter. The Lorentz factor means the relative electron beam

energy and is defined by

γ =
1√

(1− β2)
. (2.2)

Here, β is the speed of electrons divided by the speed of light, v/c. The diffraction

parameter K is usually called K value and is an important parameter which express the
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strength of the undulator field and also the electron beam trajectory. It is defined as

K =
eB0λu

2πmec
. (2.3)

Here, e is the electron charge, B0 is the undulator field, me is the electron mass, and

c is the speed of light. Generally, γ and λu are fixed in the devices, K is adjusted by

changing B0 for changing the wavelength of the undulator radiation. To change B0, the

gap of the upper and lower magnets is changed. In practical units, it is written by

K ∼ 93.37B0[T]λu[m]. (2.4)

The total power of the undulator radiation PT is expressed by

PT ∝ (2N − 1)λuγ
2B2

0Ib. (2.5)

Here, N is the periodic number of the undulator, Ib is the electron beam current.

If λu become smaller, smaller λR can be obtained with the same γ, or the same λR

can be obtained with the smaller γ. This means that if the undulator period is shorter,

the short wavelength radiation, i.e, high energy photons, can be obtained in the existing

electron storage rings, or new small storage ring with the lower electron beam energy

can generate the same wavelength radiation as the existing large storage rings with the

higher electron beam energy. The latter is especially important because the storage ring

with the lower electron beam energy means lower costs, a shorter construction time,

and less effort but would also provide opportunities for scientists to use hard X-rays in

various applications. However, the total flux PT become small when λu and γ is small.

To keep the total flux high, B0 must be high. Therefore, the short-period, high-field

undulator is required. The history that the middle-energy storage rings with the short-

period, high-field undulators come to the forefront is as already stated in Chap. 1. For

practical purpose, the K value should be kept at approximately 0.5–2. For example,

from the Formula 2.4, B0 > 1 T is required for the undulator with λu = 10 mm to

achieve K = 1, and B0 > 2 T is required for the undulator with λu = 5 mm to achieve

K = 1.
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2.2.3 Free Electron Laser

In FEL, the undulator radiation is amplified by the interaction between the electron

beam and the radiation in the undulator field [21]. The gain of the amplification is

written by

G ∝ λ2
uN

3K2γ−3. (2.6)

The wavelength of FEL is written by the same formula for that of the undulator ra-

diation. Here also, to obtain the same wavelength FEL but with the lower electron

beam energy, the short-period undulator can be used. However then again, to keep the

gain constant, large K is required. The gain is high when K is at approximately 1–2.

Therefore, B0 required for FEL is as same as that for the undulator radiation.

2.3 Theory of Bulk High-Temperature Superconductor

and Its Magnetization

2.3.1 Superconductor

Type-I superconductor shows the perfect diamagnetism (Meissner-Ochsenfeld ef-

fect) below the critical field Hc and lose its superconductivity above Hc. Type-II su-

perconductor does not lose its superconductivity even above the lower critical field Hc1

and lose it above Hc2. From Hc1 to Hc2, the superconducting and normal conducting

states are coexistent, and then the magnetic field can enter into the superconductor. By

adding the nano-particles which does not show superconductivity into the supercon-

ductor, the magnetic field can strongly be trapped at the normal conducting part. Then,

the high current can flow without the energy loss due to the moving of the magnetic

field. The important parameters of the superconductor is the critical temperature Tc, the

critical current density Jc, and the critical field Hc (Hc1, Hc2). Jc largely depends on the

11



temperature of the superconductor, T , and exponentially decrease when T is close to

Tc. Also, Jc decreases depending on the magnetic field applied to the superconductor,

B. The degree of the decrease is depend on T ; it is large at high T and small at low

T ; there is the effect named “peak effect” by which Jc has maximum at certain B. The

dependence of Jc on B at various T , i.e., Jc–B curves, for the superconductor we use

in the experiment is shown in Chap. 4. As shown in the figure, the dependence on the

magnetic field is much smaller than that on the temperature.

The high-temperature superconductor (HTS) is a part of the type-II superconductor

which has high Tc. Bulk HTS is bulk of that and used as PM by having the super-

conducting loop current inside it. A trapped field of over 17 T was reported in a 26-

mm-diameter, 15-mm-thick bulk HTS at 29 K [13]. This is over 10 times larger than

the surface magnetic flux of PMs. The material of bulk HTS is improving day by day.

The manufacturing of bulk HTSs is also improved; the high quality bulk HTS with the

diameter of over 130 mm can be created.

2.3.2 Bean’s Critical State Model for Hard Type II Superconductor

Here, the process of magnetizing the bulk HTS is described on the basis of Bean’s

critical state model for hard type-II superconductors [19]. The critical state model is

proposed by Bean. It states that the critical current density of the bulk HTS is de-

termined so that the Lorentz force of the current on magnetic flux balances with the

pinning force. Particularly the critical state model which assume the constant criti-

cal current density Jc independent on the magnetic field is called Bean’s critical state

model. The field dependent critical current density is treated in Kim model [22] or

Irie-Yamafuji model [23]. The treatment of the critical current density in each model is
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Figure 2.2: Principle of magnetization in infinite plane slab bulk HTS. The upper, mid-

dle, and lower figures shows the magnetic field, the current distribution, and

the magnetization inside/outside the bulk HTS, respectively. By chaning

the applied magnetic field, the current and the magnetization is induced in

the bulk HTS.

written as

Jc(T ) = Jc(T ), (Bean)

Jc(T,B) =
αK(T )

|B|+BK(T )
, (Kim) (2.7)

Jc(T,B) = αI(T )|B|γI(T )−1. (Irie− Yamafuji)

Here, αK , BK , αI , γI are the parameters to reproduce the experimental Jc–B curves.

Bean’s critical state model is quite clear and thus used in the explanation of the process

of magnetization of the type-II superconductor. In this study, Bean’s model is used.

Figure 2.2 shows the current and magnetic field distributions inside the bulk HTS.

The bulk HTS has infinite plane with the thickness Dy. Part (1) and (2)–(5) show before
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and after the magnetization, respectively. The top and middle parts show the magnetic

field distribution and the current distribution in the cross-sectional plane of bulk HTS.

The bottom part show the magnetization in the bulk HTS. Before the magnetization,

the solenoid field of Bstart
s is applied on the bulk HTS. Then, the bulk HTS is cooled

below to the Tc. After that, the solenoid field is changed from Bstart
s to Bend

s . Then the

loop current flows to negate the change of the magnetic field inside bulk HTS and does

not decay because it is a supercurrent. Therefore, the bulk HTS works as PM. From the

assumption in Bean’s critical state model, the current density is equal to constant Jc at

everywhere; and the current flow from the outer edge of the bulk HTS with the depth

dy. Using the changes of the solenoid field ∆Bs(= Bend
s −Bstart

s ), dy is written as

dy =


∆Bs

µ0Jc

(
∆Bs ≤

µ0JcBmax

2

)
Dy

2

(
∆Bs >

µ0JcBmax

2

) . (2.8)

Here, µ0 is the space permeability. The magnetization of the bulk HTS is determined

from Jc and dy. In Bean’s critical state model, because field independent Jc is assumed,

the magnetization of bulk HTS depends on ∆Bs not on the absolute value of Bs. The

case of Bstart
s = 0 T is called zero field cooling (ZFC) and the case of non-zero Bstart

s

is called field cooling (FC). In Chap. 4, the results of ZFC and FC are compared to

reveal the effect of field-dependent Jc.

Individual differences in the critical current density among the bulk HTSs are briefly

discussed. Figure 2.3 shows the magnetic field, the current density, and the magneti-

zation of the bulk HTSs with high and low Jc at unsaturated and saturated region. At

unsaturated region, the depth dLy in the bulk HTS with low Jc, JL
c is larger than the

depth dHy in the bulk HTS with high Jc, JH
c . Then, the relation

∆Bs = µ0J
L
c d

L
y = µ0J

H
c d

H
y (2.9)

is true in the unsaturated region. The total amounts of the current are equal for both

bulk HTSs. Thus, the magnetizations of bulk HTSs are almost the same in the region.

14



Figure 2.3: Difference of magnetization of high and low Jc bulk HTS. There is a small

difference of the magnetizations in the unsaturated region whereas a large

difference in the saturated region.

Whereas, for the unsaturated region, the relation is not true. The magnetizations of bulk

HTSs are different depending on Jc. These fact connect to the error of the undulator

field in BHSAU. The individual differences have little enfluence on the undulator field

in the unsaturated region. On another front, the undulator field show errors in their

amptides and phases depending on the individual difference in the saturated region. In

this thesis, the experiment is performed only in the unsaturated region, and the individ-

ual differences are not taken into the calculation. It is because the individual differences

of Jc of bulk HTSs used in the experiment are measured only at 77 K and not at the

low temperature. Then, we only introduces that these phenomena were observed in

the experiment at 77 K [24]. In the reference, the coefficient of variations (CV) for the

peaks of the undulator field and that for Jc are compared. CV for peaks of the undulator
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field was calculated using seven peaks around the center of BHSAU. CV for Jc of bulk

HTSs was calculated using each trapped field profile of the stand alone bulk HTS. The

experimental and numerical results showed that the former is smaller than third part of

the latter at a point where the undulator field is the half of its saturated value. As will be

noted in Chapter 5, the numerical code in this study can be applied to the future study

for the dependency of the errors in the undulator field on the individual differences.

2.4 Development History of Short-Period, High-Field

Undulators

Here, the history of undulators is introduced in the view point of the development

history of the short-period, high-field undulators.

The concept of the undulator was proposed by Motz for a high-power source of

microwave [25]. The undulator which generates light first was made of air core LTS

coils [26]. The first undulator for electron storage ring was also made of LTS coils

and magnetic yokes [27]. In this thesis, all of undulators using LTS are simply called

superconducting undulator (SCU). And then, the undulator with PMs (PMU) were in-

vented [28]. Generally, LTS coils can generate the larger field than PMs. However,

because the gap of magnets in SCU were larger than that in PMU due to thick thermal

shields between the electron beam trajectory and the LTSs, the undulator fields of SCUs

were lower than that of PMUs. Therefore, PMU have been largely used worldwide.

In-vacuum undulators (IVUs) [10], which have specially coated PM arrays inside

a vacuum vessel were invented at High Energy Accelerator Research Organization

(KEK) and extensively introduced at SPring-8. The gap of magnets in a conventional

PMU has a minimum limit because the vacuum duct is exists between the magnets.

However, there is no limitation of the gap in an IVU because its magnets are inside a

vacuum duct. The IVU has been a standard of a short-period, high-field undulator. As
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mentioned in the Introduction, the 11-mm-period IVU was used in a demonstration of

4.6 keV X-ray generation from the 2.584 GeV synchrotron in the National Synchrotron

Light Source [1]. IVU was installed to Swiss Light Source in Switzerland (E = 2.4

GeV, λu = 17 mm) [2] and largely used. Since then, moderate-energy synchrotron fa-

cilities such as DIAMOND in the UK (3 GeV, 21 mm), and SOLEIL in France (2.75

GeV, 20 mm), have been constructed [3, 4]. These facilities included the use of the

IVUs from their design stages.

An undulator using LTS wires in a vacuum vessel, superconducting in-vacuum un-

dulator (SIVU), have been proposed and demonstrated by Hezel et al. [12], who at-

tempted to remove the thick thermal insulation wall between the electron beam trajec-

tory and the LTS wire. However, it is not clear that the gap of SIVU can be small like

IVU. It is because the main problem of the undulator using LTS is remained, i.e., the

difficulty of keeping the LTS temperature below at about helium temperature under the

large thermal input from the electron beam and the radiation.

Cryogenic PM undulators (CPMUs) [11], in which the residual flux and coercivity

of PMs are enhanced by cooling the magnets in an IVU to 100–150 K, have been

developed and put in use. The CPMU is thought to be the promising candidate of the

next short-period, high-field undulator of the IVU.

The undulators using bulk HTS are proposed by Tanaka et al. Cryoundulator plus

(CU+) [14], in which bulk HTS rings are mounted on PMs to enhance the magnetic

field in a CPMU, has been proposed and demonstrated. A superconducting permanent

magnet undulator (SCPMU) [15, 16], in which bulk HTSs are magnetized by a dipole

field perpendicular to the beam axis, has also been proposed and demonstrated.

Staggered array undulator (SAU), in which soft magnetic blocks are in staggered-

array configuration, was proposed by Ho et al. [18]. The soft magnetic blocks are

magnetized in the z-direction by the solenoid aligned so that the central axis of the

undulator coincided with that of the solenoid; the staggered-array configuration of the
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blocks make the magnets generate the undulator field. The SAU has several advantages

over PMUs. (1) Because the SAU consists of only the soft magnetic blocks and non-

magnetic pieces like coppers to support the soft magnet block, the SAU is easy to

construction. (2) Because of the same reason as (1), the SAU is relatively resistant to

the thermal and the radiation damage. Thus, gap of SAU can be smaller than PMUs.

(3) The undulator field of the SAU can be controlled by the solenoid field. Thus, the

large base which open or close the gap of undulator is not required. At Institute of

Advanced Energy, Kyoto University, the compact infrared FEL, Kyoto University Free

Electron Laser (KU-FEL) has been developed for energy related sciences. At KU-FEL

facility, the magnetic properties of the SAU as a compact undulator has been studied

[29]. Also at KU-FEL facility, T. Kii et al. proposed a SAU like undulator using

Meissner effect of superconductor [30]. Using perfect diamagnetic blocks instead of

soft magnetic blocks in SAU can also generate the undulator field. Although this idea

did not work well [31] because the perfect diamagnetic property is broken much lower

field than practical level, these studies on SAU continues to the idea of BHSAU.

In this section, the history of the undulator were reviewed in the view point of the

development history of the short-period, high-field undulators. Addition to the benefit

of the short-period, high-field undulators to the large light source facility mentioned in

Introduction, here the benefit to small FEL facility is briefly introduced. At the KU-

FEL facility, the electron beam of up to 10 MeV is generated by a thermionic RF gun,

and accelerated to 25–40 MeV by a traveling-wave accelerating tube. The undulator

period is 33 mm. The target wavelength is 5–20 µm. If undulator with the period of 5

mm is used instead of the present undulator, the required electron beam energy for the

target wavelength can be reduced to around 10 MeV. This means that the accelerating

tube, the second klystron for that, and the concrete shield for neutrons which generated

by the high-energy electrons can be removed. Thus, KU-FEL can be a more compact

IR FEL facility.
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Figure 2.4: Schematic view of BHSAU. The change of the solenoid field in z-direction

induces the superconducting loop currents inside the bulk HTSs. The loop

currents generates the periodic field in y-direction.

2.5 Bulk High-Temperature Superconductor Staggered

Array Undulator

At Institute of Advanced Energy, Kyoto University, bulk HTS staggered array un-

dulator (BHSAU) was proposed.[17]. A schematic diagram of the BHSAU is shown

in Fig. 2.4. The green blocks indicate a solenoid and the blue arrows indicate the

solenoid field. The gray blocks indicate bulk HTSs. The orange arrows and the yellow

loop indicate the magnetization and the loop current generated by the change in the

solenoid field inside bulk HTSs, respectively. The red arrows indicate the undulator

field generated by the bulk HTSs.

The principle of operation is as follows. When a negative-z-direction solenoid field

is applied to the bulk HTSs, superconducting current loops are established to negate

the change in the magnetic field inside the bulk HTSs; therefore, the bulk HTSs obtain

positive-z-direction magnetization and thus generate a sinusoidal magnetic field in the
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y-direction. The BHSAU is based on a conventional SAU, therefore, the BHSAU inher-

its the properties of an SAU, i.e., tunability of the undulator field by the solenoid field.

The advantages of the BHSAU are as follows. Because the undulator field is generated

by bulk HTSs, which are magnetized in the same direction, one external solenoid can

magnetize all the bulk HTSs and control the undulator field by controlling the mag-

netization of the bulk HTSs. Thus, a mechanical structure to control the gap is not

required. Considering the large attraction force in a high-field undulator and the fact

that cracking of the bulk HTSs occurred in the demonstration experiment of CU+, this

is a major advantage.
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Chapter 3

Analytical Calculation of BHSAU

3.1 Introduction

Analytical formulation of undulator field and a study based on the formula are im-

portant works to estimate the performance of undulators. Until now, however, no ana-

lytical study of BHSAU has been performed. In this chapter, we perform an analytical

study to check roughly the basic characteristic of BHSAU. The more precise calcula-

tion and the comparison with the experimental result are performed with the numerical

results later. Here, we clarify the undulator field generation and its controlling by the

solenoid field. We also clarify the rough approximation of the amplitude of the un-

dulator field and the dependence of these on the parameters. In section 3.2, we make

the two dimensional model of BHSAU based on Bean’s critical state model of type-II

superconductor [19]; then we derive the analytical formulation of the undulator field by

using the two-dimensional form of Biot-Savart’s law. In section 3.3, we show depen-

dence of the undulator field on the undulator parameters, the critical current density,

and the applied solenoid field. In section 3.4, the results are discussed. In the calcula-

tion, we mainly use our prototype parameters as representatives value (λu = 10 mm, g

= 4 mm).
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3.2 Method

3.2.1 Two-dimensional Analytical Model of BHSAU

We calculate the magnetic field generated by infinitely long coils which represents

bulk HTSs placed regularly as shown in Fig. 3.1. Here, λu is the period of the undulator,

g is the gap of the upper and the lower magnet arrays, Dz and Dy are respectively z

and y dimension of the bulk HTS, dy is the depth of the shielding current inside the

bulk HTS, and the points P (0, g/2 +Dy/2) and Q (λu/2, 0) are used in the following

calculation. The geometry is as follows.

1. The coils are infinitely-long in x-direction.

2. The model has infinite period in z-direction.

3. The coils are placed with the period of λu. There is the difference of λu/2 in

z-direction between the upper and the lower coils.

We obtained this model by assuming the following.

1. Because undulator has large enough periodic number (typically from several tens

of to a few hundreds of periods), infinite period in z-direction in z-direction is

assumed.

2. The size of bulk HTS in x-direction is much larger than the period (Dx >> λu).

Thus, the coils are assumed infinitely long in x-direction.

3. The depth of the shielding current dy is not a function of z. Figure 3.2 shows the

current distribution inside the bulk HTS in two dimension. The magnetic field

is applied from the right to the left. The left part shows the well-known current

distributions in (a) a finite-thickness bulk HTS standing alone and (b) an infinite-

thickness bulk HTS. The right part shows the assumed current distribution in
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Figure 3.1: Two-dimensional current coil model of BHSAU. The dotted box indicates

the place of bulk HTS which has the dimensions of Dz×Dy, however, only

the ±x-direction currents in vacuum space is considered in the model. The

point P and Q are the observer point of the field.

(c) finite-thickness bulk HTSs stacked infinitely. For simplicity, we assumed the

uniform current density in (c). In chapter 5, the numerical calculation treats the

current distribution which vary with the z-direction position; the comparison with

the numerical result is discussed in chapter 6.

4. Bean’s critical state model assume that the current density inside the supercon-

ductor is the same with the critical current density, Jbulk
c , or zero; the critical

current density is constant everywhere independent on the magnetic field. There-

fore, we assume that all coils have the same current density equal to J bulk
c .

From the assumptions 4, all coils have the same current:

I = J bulk
c Dzdy. (3.1)

Because the loop current flows to negate the change of the solenoid field, we as-

sume that Bz generated by the loop current in the center of the bulk is the same with
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Figure 3.2: Current distribution inside the bulk HTS in two dimension. The magnetic

field is applied from the right to the left. The left part shows the well-

known current distribution in (a) a finite-thickness bulk HTS standing alone

and (b) an infinite-thickness bulk HTS. The right part shows the assumed

current distribution in (c) finite-thickness bulk HTSs stacked infinitely. For

the simplicity of the model, the distribution in a single bulk HTS (a) is

neglected.

the solenoid field change −∆Bs. In the following calculation, for the convenience of

the calculation, ∆Bs is calculated from Bz at point P by using the given parameters

including dy:

∆Bs ≡ −Bz(P). (3.2)

The amplitude of the undulator field B0 is obtained by the formula:

B0 ≡ |By(Q)| . (3.3)
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Figure 3.3: Single line of current coils

3.2.2 Analytical Formulae for Undulator Field and Required Solenoid

Field

Formulation

Let us calculate the magnetic field in the model. First, we consider a single line of

current coils on the equal y-position as shown in Fig. 3.3. We consider the case when

Dz → 0 and dy → 0 with the current I inside the coil being kept constant. The current

density in such coils is expressed as

j(ξ = z + iy) = Iδ(y − y0)
∞∑

n=−∞

δ(z − z0 − nλu). (3.4)

Because j(ξ) is periodic along the z-axis, it can be expanded into a Fourier series,

j(ξ = z + iy) = Iδ(y − y0)

{
1

λu

+
2

λu

∞∑
n=1

cos
2nπ

λu

(z − z0)

}
. (3.5)

If we put one coil on the origin (z0 = 0 and y0 = 0), we have

j(ξ = z + iy) = Iδ(y)

{
1

λu

+
2

λu

∞∑
n=1

cos
2nπ

λu

z

}
. (3.6)

The magnetic field generated in the yz plane is expressed by the two-dimensional form

of Biot-Savart’s law,

b∗ = bz − iby = − µ0

2πi

∫
j(ξ′)

ξ − ξ′
dξ′. (3.7)

By substituting Eq. (A.1) into Eq. (3.7), we have

b∗ = − µ0

2πi

I

λu

∫ ∞

−∞

1 + 2
∑∞

n=1 cos
2nπ
λu

z′

z′ − ξ
dz′. (3.8)
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By executing the integration the formula (see Appendix), we obtain

bz = sgn(y)
µ0I

2λu

[
1 + 2

∞∑
n=1

cos(βz)e−β|y|

]
, (3.9)

by = −µ0I

λu

sin(βz)eβ|y|. (3.10)

By integrating the formula with the cross-sectional area of the coil (Dz × dy), we

obtain the magnetic field generated by the coils:

Bz(z, y) =

∫ +dy/2

−dy/2

∫ +Dz/2

−Dz/2

bz(z − z0, y − y0) dz0 dy0

By(z, y) =

∫ +dy/2

−dy/2

∫ +Dz/2

−Dz/2

by(z − z0, y − y0) dz0 dy0

(3.11)

(y < −dy/2,+dy/2 < y).

The total magnetic field is obtained by the superposition of 4 lines of coils. The mag-

netic field generated by the coils on the gap (−g/2 < y < g/2) is expressed as

By(z, y) = −µ0J
bulk
c λu

∞∑
n=1

sin (nkuDz/2) sin (nkuz)

n2π2

× cosh(nkuy) e
−nkug/2

(
1− e−nku(Dy−dy)

) (
1− e−nkudy

)
(3.12)

(−g/2 < y < g/2),

Bz(z, y) = −µ0J
bulk
c λu

∞∑
n=1

sin (nkuDz/2) cos (nkuz)

n2π2

× sinh(nkuy) e
−nkug/2

(
1− e−nku(Dy−dy)

) (
1− e−nkudy

)
(3.13)

(−g/2 < y < g/2).

Here, ku is the wavenumber defined by ku = 2π/λu.
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The magnetic field generated by the coils at y = g/2 +Dy/2 is expressed as

By

(
z,

g

2
+

Dy

2

)
= 0, (3.14)

Bz

(
z,

g

2
+

Dy

2

)
=

µ0J
bulk
c

2
[dy + T (z)] , (3.15)

T (z) = λu

∞∑
n=1

sin (nkuDz/2) cos(nkuz)

n2π2

(
1− e−nkudy

)
×
{
2e−nku(Dy/2−dy) + e−nku(g+Dy/2)

[
1− e−nku(Dy−dy)

]}
.

Therefore, the undulator field B0 and the required solenoid field change ∆Bs are

expressed as

B0 = µ0J
bulk
c λu

∞∑
n=1

sin (nkuDz/2)

n2π2
(3.16)

× e−nkug/2
(
1− e−nku(Dy−dy)

) (
1− e−nkudy

)
,

∆Bs = −µ0J
bulk
c

2
[dy + T ] , (3.17)

T = λu

∞∑
n=1

sin (nkuDz/2)

n2π2

(
1− e−nkudy

)
×
{
2e−nku(Dy/2−dy) + e−nku(g+Dy/2)

[
1− e−nku(Dy−dy)

]}
.

The dependence of B0 on ∆Bs can be plotted by using dy as parameter.

Parameter Binding and Simplification

To make the following study easier, parameters Dz and Dy in Formulae (3.16) and

(3.17) should be fixed.

First, let us fix the Dy. Because e−nku(Dy−dy) < e−nkuDy/2 (0 < dy < Dy/2)

and e(−nkuDy/2) ≪ 1 at Dy = 2λu, we get e−nku(Dy−dy) ≪ 1 (0 < dy < Dy/2)

at Dy = 2λu. Thus, Dy = 2λu is used in the following 1 , and then we assume
1 Although we decide Dy for convenience of the calculation, the condition Dy = 2λu is not unre-

alistically large for short-period undulators which have λu of at most 20 mm. The high quality QMG-

GdBCO crystal which has the diameter of 85 mm has been manufactured [32],
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1− e−nku(Dy−dy) → 1.

Next, let us fix Dy at the value for the maximum B0 under the fixed ∆Bs condition.

First and second order total differential of B0 by dy and Dz are expressed as

dB0 =
∂B0

∂dy
ddy +

∂B0

∂Dz

dDz, (3.18)

d2B0 =
∂2B0

∂d2y
dd2y + 2

∂B0

∂dy

∂B0

∂Dz

ddydDz +
∂2B0

∂D2
z

dD2
z . (3.19)

And the first order total differential of ∆Bs by dy and Dz is expressed as

d∆Bs =
∂∆Bs

∂dy
ddy +

∂∆Bs

∂Dz

dDz. (3.20)

Because we fixed ∆Bs, by using d∆Bs = 0, then we have

ddy
dDz

= −
(
∂∆Bs

∂dy

/
∂∆Bs

∂Dz

)
≡ −A. (3.21)

By substituting this to Eq. (3.18) and (3.19), we have

dB0

dDz

= −A
∂B0

∂dy
+

∂B0

∂Dz

, (3.22)

d2B0

dD2
z

= A2∂
2B0

∂d2y
− 2A

∂B0

∂dy

∂B0

∂Dz

+
∂2B0

∂D2
z

. (3.23)

At Dz = λu/2, because ∂∆Bs/∂dy = 0 and ∂∆Bs/∂Dz ̸= 0, we found A = 0.

Therefore, we have

dB0

dDz

∣∣∣∣
Dz=λu/2

=
∂B0

∂Dz

∣∣∣∣
Dz=λu/2

= 0, (3.24)

d2B0

dD2
z

∣∣∣∣
Dz=λu/2

=
∂2B0

∂D2
z

∣∣∣∣
Dz=λu/2

< 0. (3.25)

From this formula, B0 takes the local maximum at Dz = λu/2 under the fixed ∆Bs

condition. Therefore, we decided to use Dz = λu/2.

Substituting Dy = 2λu, 1 − e−nku(Dy−dy) → 1, and Dz = λu/2 into the Formula

3.16 and 3.17, we have

B0 = µ0J
bulk
c λu

∞∑
n=1,3,···

sin (nπ/2)

n2π2
e−nkug/2

(
1− e−nkudy

)
, (3.26)

∆Bs = −µ0J
bulk
c

2
dy. (3.27)
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Here, we also assume T = 0 because T/dy is smaller than 10−3 in the range 0 ≤ dy ≤

Dy/2 and 0.1 ≤ g/λu ≤ 10, These formulae are used in the calculations for the results

section.

One can write B0 as a explicit function of ∆Bs. By substituting the Formula (3.27)

to the Formula (3.26), we have

B0 = µ0J
bulk
c λu

∞∑
n=1,3,···

sin (nπ/2)

n2π2
exp

(
−nkug

2

)[
1− exp

(
−4nπ∆Bs

µ0Jbulk
c λu

)]
.

(3.28)

Initial gradient of ∆Bs–B0 curve

Let us derive the initial gradient of ∆Bs–B0 curve,

dB0

d∆Bs

∣∣∣∣
∆Bs=0

, (3.29)

which is useful to discuss the result without knowing the exact value of Jbulk
c . Differ-

entiating B0 with respect to dy, we obtain

dB0

ddy
= 2µ0J

bulk
c

∞∑
n=1

sin2 (nπ/2)

nπ
e−nkug/2 e−nkudy . (3.30)

Differentiating ∆Bs with respect to dy, we obtain

d∆Bs

ddy
=

µ0J
bulk
c

2

[
1 + 2

∞∑
n=1

sin (nπ/2)

nπ
e−nkudy e−4nπ(2 enkudy +e−nkug)

]
. (3.31)

Therefore, the gradient dB0/d∆Bs at ∆Bs = 0 (dy = 0) is expressed as

dB0

d∆Bs

∣∣∣∣
∆Bs=0

=

(
dB0

ddy

/
d∆Bs

ddy

)
dy=0

= 4
∞∑
n=1

sin2 (nπ/2)

nπ
e−nkug/2 . (3.32)
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Figure 3.4: Depths of current flowing layers in single bulk HTS. The loop current starts

to flow in the same or opposite direction depending on the change direction

of the solenoid field. The loop current always starts to flow from the outer

edge of the bulk HTS.

Formulae for B0 control

Next, let us derive the formulae to calculate the control curve of B0. The control

curve means the ∆Bs–B0 curve to control B0 for wavelength tuning after once B0

reached the target value of the operation. From Bean’s critical state model, if we de-

crease ∆Bs from the target point, the current of the reverse direction starts to flow from

the outer edge of the bulk. Define d↓y as the depth of the current flowing layer of the re-

verse direction current, then, the magnetic field is described by the superposition of the

magnetic fields generated by the positive current (the depth is dy) and by the negative

current (the depth is d↓y) :

B↓
0(Jc, d

↓
y) =

B0(Jc, dy)− 2B0(Jc, d
↓
y) (0 < d↓y ≤ dy)

−B0(Jc, d
↓
y) (dy < d↓y ≤ Dy/2)

. (3.33)

The formula for ∆B↓
s (d

↓
y) is identical. If we increase ∆Bs again, the current which

has the same direction with the original current starts to flow from the outer edge of

the bulk. Define d↑y as the depth of the current flowing layer of the current, then, the

magnetic field is described by the superposition of the magnetic fields generated by the
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positive current (the depths are dy and d↑y) and by the negative current (the depth is d↓y):

B↑
0(Jc, d

↑
y) =


B↓

0(d
↓
y) + 2B0(Jc, d

↑
y) (0 ≤ d↑y ≤ d↓y)

B0(Jc, dy) (d↓y < d↑y ≤ dy)

B0(Jc, d
↑
y) (dy < d↑y ≤ Dy/2)

. (3.34)

The formula for ∆B↑
s (d

↑
y) is identical.

3.3 Results

3.3.1 Undulator Field and Its Dependence on Structure Parame-

ters

Formula (3.12) shows the following properties:

1. By is a sinusoidal function of z and the fundamental period is λu

2. By has odd harmonics (3rd, 5th, . . . )

3. By is a hyperbolic cosine function of y

4. By has an exponential dependence on g/λu

5. By has a linear dependence on J bulk
c and λu

6. By has a dependence on dy/λu

Formula (3.13) shows that there is no Bz component generated by the coils on the

z-axis.
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Figure 3.5: Dependence of B0 on Dz at J bulk
c = 5 kA/mm2 (λu = 10 mm, g = 4 mm)

3.3.2 Dependence on Thickness of Bulk HTS

Figure 3.5 shows dependence of B0 on Dz at ∆Bs = 5, 10, 15, 20 T. B0 is nor-

malized by B0 at f = 0.5. Here, f is the parameter expressed by f = 1 − Dz/λu,

indicating the ratio of vacant space to the period. As also shown in the expression

(1.21) and (1.22), B0 takes maximum at f = 0.5.

3.3.3 Theoretical Limits

Substituting dy = Dy/2 = λu into Eq. (3.26), we obtain the theoretical limit of

B0, B0,max at the certain undulator parameters and Jbulk
c . Figure 3.6 shows the B0,max

dependence on λu and g at Jbulk
c = 10 kA/mm2. The red, black, blue lines indicate

the gap of 2, 4, 6 mm, respectively. The dotted and dashed lines indicate the required

magnetic field to get K = 1 and 2, respectively.

Moreover, by substituting dy = Dy/2 = λu into Eq. (3.27), we obtain the ∆Bs
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Table 3.1: Examples of maximum B0 and ∆Bs

λu [mm] g [mm]
B0,max/Jc

[T/(kA/mm2)]
∆Bs,max/Jc

[T/(kA/mm2)]

(a) 18 3.6 1.26 13.4

(b) 10 4 0.364 7.45

(c) 5 1 0.350 3.72

required to get B0,max, ∆Bs,max. As examples, B0,max and ∆Bs,max for the three rep-

resentative parameters are shown in Table 3.1. In the table, B0,max and ∆Bs,max is

normalized by Jbulk
c , thus, one can get B0,max by multiplying Jbulk

c . The parameter set

(a) is equal to the IVU in SACLA, (b) is equal to our experimental setup, (c) is equal to

our target period.

If we take only n = 1 in Eq. (3.26), we can obtain the simple formula:

B0,max ∼ 1.3× 10−2J bulk
c λu exp

(
−π

g

λu

)
(3.35)

where the units are B0,max [T], J bulk
c [kA/mm2], λu [mm], and g [mm]. Substituting

dy = Dy/2 = λu into Eq. (3.27), we obtain the required ∆Bs to get B0,max,

∆Bs,max ∼ 0.74 J bulk
c λu. (3.36)

For instance, substituting J bulk
c = 10 kA/mm2, λu = 10 mm, g = 4 mm, we obtain

B0,max = 3.7 T, ∆Bs,max = 74 T.

3.3.4 Dependence on Solenoid Field and Critical Current Density

Figure 3.7 shows the dependence of B0 on ∆Bs at each J bulk
c (λu = 10 mm, g =

4 mm). The lower figure is an enlarged view of the upper figure. B0 increased with

the increase in Bs with the similar shape of curves. As is clear from the fact that the

both B0 and ∆Bs are the linear function of Jbulk
c , the curves are similar in shape and
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Figure 3.6: Dependence of maximum B0 on λu and g at Jbulk
c = 10 kA/mm2. The

dotted and dashed lines indicate the required field to achieve K = 1 and 2

at the period, respectively.
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Table 3.2: Examples of operation B0 at various ∆Bs. B0/B0,max is calculated at

g/λu = 0.4, and has 2% accuracy around 0.1 ≤ g/λu ≤ 10.

Γy [%] B0/B0,max [%] ∆Bs/∆Bs,max [%]

(a) 5 29 4.2

(b) 10 48 8.5

(c) 15 63 12.7

(d) 20 72 17.0

(e) 25 80 21.2

(f) 30 86 25.5

(g) 100 100 100

the maximum B0 is proportional to Jbulk
c . As is clear from the fact that dB0/d∆Bs at

∆Bs = 0 depend not on J bulk
c but on only the structure parameters, the curves have the

equal gradient at ∆Bs = 0.

In Fig. 3.8, B0/B0,max and ∆Bs/∆Bs,max at g/λu = 0.1, 10 are shown. Here,

B0,max and ∆Bs,max are the maximum B0 and ∆Bs at dy = Dy/2 = λu, respectively.

There is only at most 3 percent difference between the curves at g/λu = 0.1 and g/λu =

10. The representative values in this graph is listed in Table 3.2. Here, the Γy is defined

by 2dy/Dy. The index (a)–(g) will be referred in chapter 6. The values in the table was

calculated with g/λu and matches the values at 0.1 < g/λu < 10 with 2% inaccuracy.

From the table, about the half of B0,max can be obtained when only 8.5% of ∆Bs,max is

applied, or about 86% of B0,max can be obtained when 25.5% of ∆Bs,max is applied.

3.3.5 Controlling of Undulator Field by Solenoid Field

Figure 3.9 shows the dependence of B0 on ∆Bs at λu = 10 mm and g = 4 mm.

The upper figure shows the initial curves for various Jbulk
c . The plot was obtained from
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Figure 3.7: (UPPER) Dependence of B0 on ∆Bs at each J bulk
c (λu = 10 mm, g = 4

mm) and (LOWER) enlarged view.
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Figure 3.8: Dependence of B0 on ∆Bs at g/λu = 0.1, 10.

Formulae (3.16) and (3.17) by using dy as a parameter. The lower figure shows (1)

the initial curve and sample control curves, i.e., (2) a curve to decrease B0 and (3) a

curve to increase B0 again. The plot was obtained from Formulae (3.33) and (3.34)

using dy, d
↓
y, and d↑y as parameters. Here, the initial curve is the curve when the bulk is

magnetized after the superconducting transition, and the control curves are the curves

used to tune the wavelength of the undulator radiation during operation. There was

hysteresis in ∆Bs–B0 curve.

3.4 Discussion

From the results of section 3.3.1, here we discuss the feature of the magnetic field

in BHSAU. The field in PMU is expressed as

By = 2Br

∞∑
n=1,5,...

sin
(
nπ
4

)
nπ
4

sin(nkuz) exp
(
−nku

g

2

)
[1− exp (−nkuH)] (3.37)
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Figure 3.9: Dependence of B0 on ∆Bs (Analytical, λu = 10 mm, g = 4 mm). The upper

figure shows the initial curves at various Jbulk
c . The lower figure shows the

initial curve and the samples of control curves.
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where Br is the remanent magnetic flux density of the permanent magnet and H is the

height of the magnet in y-direction. Comparing the formula for BHSAU with that for

conventional PMU, we found that the properties 1, 3, 4 in section 3.3.1 are also seen

in PMU. The difference in field harmonics is originated from the geometric difference;

PMU has 4 magnets per period in both sides. The 5th and 6th property are unique

nature of BHSAU. The undulator field B0 proportionally increases with increase of

J bulk
c . The 6th property is one important feature for the field tunability of BHSAU.

From the results of section 3.3.2, we found that B0 takes maximum at f = 0.5.

This is a different feature from the conventional SAU. In a conventional SAU, because

the distortion of the solenoid field is an origin of the undulator field, f = 1−Dz/λu <

0.5 give the maximum undulator field [29]. To check f parameter dependence of the

undulator field, z-direction distribution of the shielding-current depth in the bulk HTS

should be considered in the chapter 5.

From the results in section 3.3.3, we found that the BHSAU can not be operated at

the maximum especially for high Jbulk
c because the solenoid field required to generate

the maximum B0 is extremely high in commercial sense. In case of Jc = 10 kA/mm2,

the maximum field, B0 = 12.6 T at λu = 18 mm and g = 3.6 mm, is about 10

times higher than that of IVU at the same λu and g. However, required solenoid field

change, ∆Bs = 134 T, can not be obtainable in commercial sense. Therefore, the

results in section 3.3.4 is important. The undulator field, B0 = 3.7 T at Jc = 10 kA,

λu = 18 mm, and g = 3.6, can be obtained only with ∆Bs = 5.6 T (Γy = 5%), and

is still about 3 times higher than that of IVU at the same λu and g. This solenoid field

change can be obtained by the present superconducting magnet. Even if the required

solenoid field change is obtainable in commercial sense, the operation in ’reasonable

operation range’ in Fig. 3.8 is more reasonable than that in ’saturation region’ because

of the following two reasons. One is the cost of the superconducting solenoid. The

other is the effect of the high solenoid field (z-direction field) on the trajectory of the

39



electron beam. The electron trajectory will take a cyclotron motion in addition to the

undulating motion, and then the properties of the radiation emitted from the electron

beam changes. Detailed discussion on those is out of the scope of this study.

We found that the BHSAU has high undulator field with high Jc, however, the both

Jbulk
c and Γy should be considered. For example, B0 = 1.1 T at λu = 10 mm and g = 4

(K = 1) can be obtained with two different conditions: with Jc = 10 kA/mm2 and

∆Bs = 3.1 T (Γ = 5%) and with Jc = 6 kA/mm2 and ∆Bs = 3.8 T (Γ = 10%). In

case of Jc =6 kA/mm2, BHSAU can be operated in high temperature. To design the

BHSAU effectively, the suitable Jbulk
c and Γy should be chosen for target B0 and given

boundary conditions. In the real machine, Jbulk
c is mainly determined by the opera-

tion temperature, and Γy is determined by the applied solenoid field change. Because

the operation temperature and the required solenoid field change affects the required

specification of the most costly parts, i.e., the cooling system and the superconducting

solenoid, it is important to choose Jbulk
c and Γy properly.

From the results of section 3.3.5, we can say that the controllability of B0, meaning

the tunability of the radiation wavelength, is kept at good level even in the saturation

region. The original SAU has almost no tunability in the saturation region in which

the SAU has the high undulator field. BHSAU overcome this weakpoint of the original

SAU.

3.5 Conclusion

This study is the first ever theoretical analysis of BHSAU. The most important con-

clusion of this study is that BHSAU has high undulator field and good tunability within

reasonable solenoid field. The knowledge is used for the discussion of the numerical

study and prototype experiments in the following part.
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Chapter 4

Experiment

4.1 Introduction

In the previous chapter, we theoretically showed that by using the BHSAU high

undulator field can be generated and controlled by the solenoid field. However, it is

not experimentally proved. We need to check that the BHSAU really generate the sinu-

soidal magnetic field, i.e., the undulator field. We also have to check that the undulator

field amplitude can be controlled well by the solenoid field. The word ’well’ means

that the amplitude can be changed widely and rapidly (from K = 0 to K ∼ 2 in several

minutes for practical use). Moreover, the applications of bulk HTS have two common

problems, namely the cracking and the flux creep. The cracking is caused by the elec-

tromagnetic force inside the bulk HTS. The cracking disturb the flow of loop current

and/or decrease the critical current density. T. Tanaka, et al., reported that the cracking

happened in the demonstration experiment of CU+ [16]. There are some methods to

avoid the cracking, for example, addition of silver, resin impregnation or covering by

metal ring [33, 34, 35, 36]. We have to check whether the provision against the crack-

ing is required or not for the BHSAU. The flux creep is a temporal decrease of the loop

current, caused by the movement and the dissipation of the quantized magnetic flux due
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to the thermal excitation and the quantum tunneling. The flux creep has a logarithmic

dependence on time, i.e., the current decreases rapidly just after the magnetization and

then does gradually. There are methods to suppress the flux creep [37]. It is required

to evaluate the degree of the decrease during the field measurement in advance of the

other experiments.

In this chapter, the experiments using the six-periods prototype of the BHSAU were

performed, to check undulator field generation, tunability of the undulator field ampli-

tude, the effect of cracking and flux creep, In section 4.2, the experimental setup and

method for measurement are described. In section 4.3, the experimental results are

shown. In section 4.4, the results are discussed.

4.2 Setup

4.2.1 Overview of Prototype

The experimental setup is as follows.

Figure 4.1 shows the prototype of the BHSAU. The prototype features are summa-

rized in Table 4.1. The prototype has the periodic number N of 6, the period λu of 10

mm, and the gap g of 4 mm. Twelve bulk HTSs are located in a staggered array con-

figuration, and supported by copper supports in the sample holder. This sample holder

is inserted into a cryogenic chamber. The copper support and the sample holder also

works as thermal conductor between the bulk HTSs and the cryogenic chamber. The

bulk HTS is roughly semi-circular with radius Rs of 12.5 mm; the dimensions in x, y

and z are about 24.7, 10.5 and 5 mm, respectively.

Figure 4.2 and 4.3 shows a schematic view and photograph of the experimental

setup. The prototype was installed in a cryogenic vacuum chamber, in which the proto-

type is thermally in contact with a helium pipe. The cryogenic chamber was placed in

a 2-T superconducting solenoid aligned so that the central axis of the undulator coin-
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Figure 4.1: Photograph and schematic of six-period prototype (with centimeter ruler).

The parameters are Rs = 12.5 mm, λu = 10 mm, and g = 4 mm. Twelve

bulk HTSs were positioned in a staggered array configuration, and sup-

ported by the copper support in the sample holder. The origin of the coor-

dinates is set at the geometrical center of the prototype.

cided with that of the solenoid. Cold helium is used to cool down the prototype, and the

used helium is reused for the radiation shield. The cooling system of the undulator is

independent of that of the superconducting solenoid, and can be changed from around

5 K to over 77 K by helium flow rate and heater current. The speed of the temperature

change was about −1–2 K / min.

The HTS material is QMG-GdBCO, from Nippon Steel Corporation [32], in which

nanoparticles of Gd2Ba1Cu1O5 (211) are distributed in a Gd1Ba2Cu3O7−δ (123) crys-

tal to enhance its magnetic properties in trapping a high field, known as flux pinning.
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Figure 4.2: Schematic view and photograph of experimental setup. The prototype was

installed in a vacuum chamber, in which the prototype is thermally in con-

tact with a helium pipe. The chamber was placed in a 2-T superconducting

solenoid aligned so that the central axis of the undulator coincided with that

of the solenoid.

Table 4.1: Specification of Prototype

period λu [mm] 10

gap g [mm] 4

periodic number N 6

bulk HTS QMG-GdBCO

bulk dimensions 24.7, 10.5 and 5 mm (xyz)

44



Figure 4.3: Photograph of experiment room.

The critical temperature Tc is around 94 K. The critical current density of a small sam-

ple of QMG-GdBCO (∼ 0.2 mm3) is shown in Fig. 4.4 and Table 4.2. This critical

current is calculated from the measured magnetic hysteresis curve (M-H curve). The

curve of the small QMG-GdBCO sample is measured by the DC magnetization method

(Quantum Design, Physical Property Measurement System with AC measurement sys-

tem: PPMS with ACMS). The critical current density is derived by the formula:

Jc(B) =
4M

b
(
1− b

3a

) =
4

b
(
1− b

3a

) |m+(B)−m−(B)|
2abc

. (a ≥ b)

Here m+(B) and m−(B) are the upper and the lower point on the hysteresis curve,

and a = 0.6 mm, b = 0.4 mm, c = 0.8 mm are the size of the sample; the direc-

tion of the applied magnetic field and the dimension c is parallel to the c-axis of the

Gd1Ba2Cu3O7−δ crystal.

As shown in Fig. 4.4 and Table 4.2, Jc of QMG-GdBCO exponentially decreases

with an increase of T . Jc also decreases with an increase of B. However, dependency
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Figure 4.4: Critical current density of QMG-GdBCO under magnetic field. Measured

by DC magnetization method with small sample (∼ 0.2 mm3)

of Jc on B is not as large as that on T . In particular, there are regions in which Jc does

not change in wide range of B. For example Jc at T = 20 K in Table 4.2 showed the

behavior that Jc decreases from 9.4 to 5.4 kA/mm2 for 2 T change of B, however, Jc

remains constant for 4 T change. This is the reason why we employ the approximation

of the Beam model, i.e, field independent Jc, in the analysis of the BHSAU. However,

for the performance estimation in chapter 6, the dependence on B in the table will be

taken into account for reasonable estimation.

4.2.2 Superconducting Solenoid for Magnetization

Table 4.3 shows the specifications of the superconducting solenoid system. The

maximum field is Bs = ±2 T (Is =25.24 A). The field homogeneity is ±0.1% in 10

mm diameter spherical volume (DSV) and 2% in the prototype volume (cylinder, 80
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Table 4.2: Critical current density of QMG-GdBCO under magnetic field. Measured

by DC magnetization method with small sample (∼ 0.2 mm3)

T [K] Jc [kA/mm2]

(Tc = 94 K) B = 0 T 2 T 4 T 6 T

4 24 18 13 12

10 16 11 8.7 8.2

20 9.4 5.4 5.3 5.3

40 3.5 2.2 2.4 2.2

60 1.5 0.86 0.60 -

mm × 25 mm diameter). The field ramp rate is calculated from the current ramp rate

of the magnet power supply.

4.2.3 Temperature Control System

The temperature is measured with two sensors as shown in Fig. 4.5, a sensor in

the sample holder (sensor A, hereafter) and a sensor at the heater place (sensor B). The

sensors are Cernox (Lake Shore Cryotronics, Inc.), which have high sensitivity at low

temperature and weak magnetic field effect. The helium flow rate and the heater current

is used to control the temperature of sensor A. The heater current is controlled by the

temperature controller with proportional-integral-derivative (PID) method. Because we

started to measure over 30 minutes after the sensor A reached the target temperature, the

temperature of the bulk HTSs of the prototype is considered as the equal temperature

with sensor A. We haven’t calibrated the sensor error caused by the magnetic field.

According to the catalog, the error is 0.1% at 2.5 T, 4K or 0.04% at 2.5 T, 20K. The

fluctuation of the temperature was kept in a ±0.02% range of the targer temperature

during one field distribution measurement, and in a ±0.2% range during several field
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Table 4.3: Specification of Solenoid System

Manufacturer CRYOMAGNETICS, INC.

Field −2 – +2 T (±25.24 A)

Field Homogeneity ±0.1% (10 mm DSV)

2% (80 mm × 25 mm dia.)

Field Ramp Rate 7.00 mT/s (≤ 1.57 T)

3.96 mT/s (≥ 1.57 T)

Current Accuracy 4 digits

Current Ramp Rate 0.0884 A/s (≤ 20 A)

0.0500 A/s (≥ 20 A)

Room Temperature Bore 76 mm

distribution measurements for the measurement of dependence on the solenoid field.

4.2.4 Magnetic Field Measurement System

A Hall-effect probe and a gaussmeter (Lake Shore Cryotronics, Inc., HGCT-3020

and Model 460) were used to measure y-component of the magnetic field along the

z-axis By(z). The probe was calibrated in the field range from -2 to 2 T and over

Figure 4.5: Location of the two sensors. Sensor A and B are in the sample holder and

the heater place, respectively.
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a temperature range from 5 to 300 K. The calibration residual δBR
y is ±0.5%. The

temperature of the probe at the measurement time is assumed as the equal temperature

with the sensor A. The probe is on the handmade probe holder and moved by a linear

transfer rod (MDC Vacuum Products, LLC, Lin.MotionFT, 2.75”Flg, 6”Tvl, Spc-D).

The measurement increment in the z-direction was 0.5048 mm. The probe error due

to the fluctuation of the displayed value of the gaussmeter δBG
y is about ±0.2%. The

inaccuracy of the vertical position due to the manufacturing error of the handmade

probe holder νy is at most ±0.3 mm. There may be no effect of sagging because the

probe is placed just on the surface of the lower array of HTSs and copper supports to

keep the vertical position. The error due to the inaccuracy of the vertical position δBV
y

is given by the formula:

δBV
y = cosh(2πνy/λu). (4.1)

By substituting νy = ±0.3 mm, δBV
y is from 0 to +1.8%. The origin of the longitudinal

position (z = 0) is obtained from the position of the field peaks. The inaccuracy of the

longitudinal position arise from the sagging of the probe holder and the inaccuracy of

the angle of the stepping motor. The sagging may not be large because the probe holder

touched on the upper surface of the lower magnets and is moved by pulling in one direc-

tion. The inaccuracy of the angle of the stepping motor is at most the half step, ±13µm.

Moreover, if there is 0.1 mm error, non-contiguous wave form may be observed in the

0.5048 mm step measurement. Therefore, the inaccuracy of the horizontal position νz

is at most 0.1 mm. By using the equation sin(ku(z + νz))/ cos(2πz/λu), the error due

to that is ±0.2% at the peaks (z = π/2 + nπ). The error due to the finite volume of

active area δBA
y is given by the formula:

δBA
y =

1

2rA sin(kuz)

∫ +rA

−rA

sin(ku(z + z′))dz′ =
sin(kurA)

kurA
(4.2)

and thus, about −1.6%. Here, rA = 0.5 mm is the radius of the active area, and a

perfect sinusoidal field with a wavenumber ku is assumed. The tilt angle between the
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probe and the z-axis also cause the error. The angle can be derived by measuring the

solenoid field without activating BHSAU. By was constant over z scan and less than

0.02 T at Bs = 2 T. Thus, the angle θ was less than 0.6 degree. The error δBT
y is given

by

δBT
y = cos θ − 1 +

Bz

By

sin θ ≈ −θ2

2
+

Bz

By

θ. (4.3)

The first term is much less than 0.1% and negligible for this discussion. The second

term can be large depending on Bz/By. Here Bz is the sum of the the solenoid field

Bs and Bz generated by bulk HTSs. The component Bs can be eliminated from the

measured data as background offset. From Formula (3.13), Bz component generated

by bulk HTSs is zero for the condition in chapter 3. Even for finite period, Bz/By < 1

may be reasonable assumption. Then δBT
y is up to about 1%.

The total probe error for the field distribution measurement δBscan
y can be estimated

by the formula:

δBscan
y =

√(
δBR

y

)2
+
(
δBG

y

)2
+
(
δBV

y

)2
+
(
δBH

y

)2
+
(
δBA

y

)2
+
(
δBT

y

)2 (4.4)

and thus, is less than 4%. Some errors include systematic errors, and then can be

removed for future precise measurement if we carefully check the probe errors. We

ignored the probe error due to the inaccuracy of position and the active area in x-

direction because the undulator field almost the same around x = 0.

In the measurement for the flux creep, the probe was fixed at the center of the

prototype and the only relative change from the maximum field is used. Therefore the

probe errors due to the position and the angle inaccuracies, and the finite volume of

the active area can be ignored. Furthermore the measured field range is only around

the certain maximum field, thus the effect of calibration residual is also thought to be

small. The total probe error for the flux creep measurement is only from the gaussmeter

as:

δBscan
y = δBG

y . (4.5)
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Table 4.4: Experimental Equipment

Name Manufacturer Model Number

Bulk HTS NIPPON STEEL 1 QMG-GdBCO

Gaussmeter Lake Shore 2 Model 460

Hall-Effect Probe (By) Lake Shore HGCT-3020 (Serial H049852)

Superconducting Solenoid CRYOMAGNETICS 3 Custom-ordered (Table 4.3)

Solenoid Power Supply CRYOMAGNETICS Model 4G-100

He Level Meter CRYOMAGNETICS LM-500

Cryogenic Vacuum Chamber NIKI GLASS 4 Custom-ordered (Fig. 4.2)

Temperature Controller Cryo-con 5 Model 32B

Temperature Sensor Lake Shore Cernox CX

Linear Transfer Rod MDC 6 Lin.MotionFT, 2.75”Flg, 6”Tvl, Spc-D

and thus, about 0.2%.

4.2.5 List of Equipment

The equipment mentioned above and the other equipment are summarized in Table

4.4.

4.3 Result and Discussion

4.3.1 Flux Creep

To check the effect of the flux creep, the temporal change of the By was measured

at the center of the prototype just after the magnetization. Because the effect is larger

at high temperature and high field, the temperature was set as T = 60 K and Bs was

changed from +1.5 to +2 T. The temporal decrease in By due to the flux creep after the

rapid ramp of Bs was measured.

Fig. 4.6 shows the temporal change of the By at the center of the undulator after
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the solenoid field is swept from 1.5 to 2 T. The black dots shows the ratio of measured

By(t) and By0 = By(0). Here we defined t = 0 is the time that the By takes the

maximum during or just after the solenoid field change. The green line shows the fitted

line with the formula:

By

By0

= 1− A log

(
t

t0
+ 1

)
(4.6)

Here, A is the decay constant and t0 is the time constant for the decay. The fitted result

was A = 0.01854 ± 1.04389 × 10−5 and 1/t0 = 6.81196 ± 0.01649. The adjusted

coefficient of determination was R′2 = 0.99862.

From the above result, we found that although any suppression method of flux creep

should be used in the real machine, it is negligible for the field distribution measure-

ments in the following section. Let us discuss the detail. In Fig. 4.6, we used the (4.6)

for fitting because of the following reason. The temporal decrease of the critical density

J in the flux creep state is expressed by

J

Jc0
= 1− kBT

U∗
0

log

(
t

t0
+ 1

)
(4.7)

Here kB is Boltzmann constant, Jc0 = J(t = 0), and U∗
0 is the effective pinning

potential. By is determined by J and the region of the current flowing. In the flux

creep, the region volume is not changed. Thus the temporal change of By may show

a similar trend to that of J . With the fitted data A = 0.01854 and T = 60K, we

obtained U∗
0 ∼ 0.28 eV. This value is reasonable. This means that the temporal decrease

obeyed the law of the flux creep; therefore, we can apply the methods of the flux creep

suppression to suppress this decrease.

The decreasing ratio is not small at this temperature and field. The field decrease by

around 7% after 1000 minutes. The most serious problem is the rapid decrease after the

magnetization. However, we ignored the effect of the flux creep in the following results

and discussions because of the following reasons. First, we made the field distribution

measurement in the following section from t = 5 minutes to t = 15 minutes after the
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Figure 4.6: The temporal change of the undulator field amplitude at the center of the

prototype. The temperature was T = 60 K and Bs was changed from +1.5

to +2 T.
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magnetization, to avoid the rapid decrease near t = 0. Thus, we can consider that the

maximum absolute decrease was about 3.7% after the measurement and the relative

decrease during the measurement was about 0.8%; this is less than the probe error at

the field distribution measurement. Second, the effect is much smaller at 20 K and 40 K

or under the lower field than 2 T. However, the stability of the undulator field is crucial

for the use of the undulator radiation. Thus, in the future study, we have to discuss the

application of the method to suppress the flux creep [37].

4.3.2 Field Distribution Example

The vertical field distribution along z-axis By(z) is measured at 6, 20, 40, 60K.

Figure 4.7 shows the example of the vertical field distribution along z-axis By(z).

The prototype was cooled down with the solenoid field of Bs = −2 T. The measure-

ment was done with Bs = 0 T and T = 20 K. The sinusoidal magnetic field, i.e.,

undulator field, was successfully observed. The undulator field amplitude B0 was cal-

culated from the formula:

B0 =
1

4

4∑
n=1

|Pn − Pn+1|
2

. (4.8)

Here Pn(n = 1 · · · 5) are 5 central peaks (near z = −10,−5, 0,+5,+10mm) of the

cubic-spline fitted data of the measured field distribution. The undulator field amplitude

B0 was about 0.47 T. and the relative standard deviation ν was 0.46%.

There were two large peaks at the both end of the field distribution (near z =

−25,+25 mm). These peaks were, respectively, −0.74 and −0.71 T.

From the above result, we found that the sinusoidal magnetic field was generated

in the BHSAU. The variation of the center peaks is smaller than the measurement er-

ror. Thus, it is difficult to discuss the accurate field uniformity, however, it is not so

large without any field correction such as magnet sorting. We tolerated 15% individual

differences of the critical current density of the bulks at shipment time, while it can
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Figure 4.7: Vertical field distribution along z-axis. The five peaks from P1 to P5 are

used to derive the amplitude of the undulator field B0.

be reduced by performing triage. Furthermore, the critical current density was inho-

mogeneous in the sample. The reason why the variation of peak field were much less

than the individual differences is the following. The bulks have almost the same inten-

sity of magnetization independently of its critical current density. From Bean’s critical

state model, the current density in the bulk HTS is equal to the critical current density

(J = ±Jc) or zero (J = 0), and current starts flowing from the outer periphery of the

bulk to negate the field change inside the bulk. In a low-Jc bulk, the current-flowing

layer is large; in a high-Jc bulk, the current-flowing layer is small. Therefore, the bulks

have almost the same intensity of magnetization; the variation of peak field was re-

duced to much less than the individual difference of bulks. Quantitative discussions are

difficult with the measured data; thus we introduce related numerical results [38]. Al-

though only one bulk was assumed to have a different critical current density from the

others, the calculation showed that the difference between the peak amplitude near the
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bulk and the average amplitude is suppressed to 1/7–1/5 in the difference of the critical

current density. The experiment result was consistent with the numerical calculation.

This phenomenon that the appearance of the individual difference of magnets to the

undulator field is automatically suppressed, is not seen in other undulators and can be

an advantage of the BHSAU. Particularly in the high-field undulator, because the ab-

solute field error to be corrected is also high, the field correction based on the intrinsic

property of superconductor, which has an effect at a constant rate in any critical current

density, is important.

The situation is different when current flows almost everywhere in the bulk, i.e.,

saturation. Due to the finite volume of the bulk, the amount of loop current is limited

by volume and Jc. As the intensity of magnetization of the bulk, which has lower

Jc, approaches saturation, the difference in magnetization between low-Jc and high-Jc

bulks become larger. Investigation of the field correction method using the knowledge

about HTS will be an important topic especially if the BHSAU is used under a condition

close to saturation.

4.3.3 Solenoid Field Dependence

Measurements were performed under zero-field cooling (ZFC) and field cooling

(FC) conditions. These are implemented by controlling the bulk HTSs temperature and

the solenoid field independently as follows. In ZFC, the solenoid field Bs was zero

before superconducting transition of bulk HTSs, and changed to target value after cool-

ing bulk HTSs down to the measurement temperature. In FC, Bs of non-zero value,

for example −2 T, was applied before the transition, and changed to target value after

cooling. We define ∆Bs as the change in solenoid field before transition and at mea-

surement, and Bs0 as the initial Bs before transition. For instance, ∆Bs = 3 T at Bs =

+1 T under FC (Bs0 = −2 T) conditions.

Figure 4.8 shows the vertical field distribution along z-axis By(z) with changing the
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Figure 4.8: The field distribution under the various solenoid field. The amplitude of

the field increased with ∆Bs.

solenoid field. The prototype was cooled down with the solenoid field of Bs = −2 T.

The measurement was done with Bs = −1, 0,+1,+2 T and T = 20 K. All vertical

field distribution were geometrically similar.

Figure 4.9 shows the B0 dependence on Bs. The prototype was cooled down under

ZFC and FC (Bs0 = −2 T) condition. The measurement was done with T = 6 K. All

vertical field distribution were geometrically-similar.

From the above result, we found the following. The undulator field reached 0.85 T.

This value is higher than that of IVU. The undulator field amplitude can be controlled

by the solenoid field.

The time to change the undulator field from 0 to 0.85 T (K ≈ 0.8) was about 10

minutes except By measurement time. This depends the factory-preset field ramping

rate of the solenoid shown in Table 4.3. Because increase of the temperature of bulk

HTSs was not observed during the field ramping, the ramping rate can be increased and
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the time to require field tuning will be at most several minutes. For PMU, the time to

change the undulator field from zero to K = 1 is about one minute. The time for the

field tuning in BHSAU is as rapid as comparable with the conventional undulator.

From the B0 dependence on Bs under both ZFC and FC conditions, we found the

following. In Fig. 4.9, B0 at Bs = +2 T for ZFC and B0 at Bs = 0 T for FC are

almost the same, where ∆Bs is 2 T under both conditions. In other words, B0 was

independent of Bs but dependent on ∆Bs. This result is explained as follows. Because

the critical current density of QMG-GdBCO does not have a large field dependence at

6 K [39], the critical current density at any point in any bulk HTS is almost constant

irrespective of the field at the point. In the case when ∆Bs monotonically increases,

since the current density is the same as the critical current density, the amount of loop

current and its distribution inside the bulk HTS are always the same whenever ∆Bs

is the same. Because the y-component of the field is only generated by the current in

bulks, B0 therefore depends not on Bs but on ∆Bs.

In the case when ∆Bs decreases from a certain point, B0 decreases with a decrease

of ∆Bs. The loop current in inverse direction starts flowing from the periphery of the

bulk and the loop current in the original direction flows inside of the bulk. Thus, the

B0 curves at the increase and the decrease of ∆Bs are different in a precise sense.

From the above results, one easily finds that any combination of the solenoid field

before and after the superconducting transition can generate an undulator field corre-

sponding to ∆Bs. This brings two benefits: one is that the required solenoid field to

generate the same strength in the undulator field can be reduced by a factor that is

half for FC; the other is that Bz under operating conditions in an accelerator is tun-

able because Bz depends on Bs and ∆Bs. This has potential in resolving the largest

problem of conventional staggered-array undulators, stemming from using only soft-

ferromagnetic pieces. The problem is the undesirable divergence of the electron beam

when Bz is strong. However, to reap both benefits, further investigation, for example
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Figure 4.10: Dependence of ∆Bs-B0 curve on temperature. The measurement was

done with FC (Bs0 = −2 T) condition at T = 20, 40 K, and ZFC condition

at T = 60 K

on the variation in Bz, is required.

4.3.4 Temperature Dependence

Figure 4.10 shows the dependence of ∆Bs-B0 curve on the temperature. The mea-

surement was done with FC (Bs0 = −2 T) condition at T = 20, 40 K, and ZFC con-

dition at T = 60 K. The initial gradient dB0/d∆Bs|∆Bs=0 was found to be about 0.24

at any temperature. The gradients of the curves show the decrease at high ∆Bs. The

curve of the lower temperature is higher than that of the higher temperature.

From the above results, we found that the experiment result shows similar behavior

with the result of theoretical analysis, i.e., that the gradients were the same at any

temperature and that the curve of the lower temperature is higher than that of the higher

temperature. This means that the description of the theoretical model is correct, in
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Figure 4.11: Normalized critical current density of QMG-GdBCO. The both Jc and B

is normalized by Jc,max at each temperature.

which the current starts to flow from the periphery of the bulk HTSs and the depth of

the current-flowing layer increase with an increase of ∆Bs.

The only exception is in case of that the current distribution at each different T has

different shape under equal ∆Bs/∆Bs,max. This is caused if Jc − B curve has large

shape change depending on T . However, we found that the curves in Fig. 4.11 from the

DC magnetization method did not show large shape change depending on T and also

the effect did not appeared on the initial gradients measured in chapter 4.

4.3.5 Cracking

No phenomena related to cracking was observed. It was confirmed by that the field

distribution was not changed largely if the amplitude was changed and has the repro-

ducibility at the same experiment condition after warm up. It is not clear whether or
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not any cracking will not occur in the BHSAU after multiple use. However, it is worth

while to investigate the detail.Tanaka et al. reported that the crackings happened with

many samples in their experiment of CU+ at 77 K and under the magnetic field of be-

low 2 T [16]. We used the same bulk HTS, QMG-GdBCO, from the same company,

Nippon Steel Corporation, with them. The critical current density of their experiment

might be over 10 times lower than that in our experiment at 6 K and the applied mag-

netic field was almost the same. Then, the magnetic force in the bulk HTS might be

over 10 times smaller than our experiment.

While Tanaka et al. observed the cracking in CU+, we didn’t observed any cracking.

One reason is that, in CU+ the bulk HTSs of upper and lower series are moved against

the attractive force of each other with only the two point are held. Another is that, in the

BHSAU the inner wall of the sample holder make the compressive force to bulk HTSs

because of the difference of coefficient of thermal expansion between copper and bulk

HTS. This is the way commonly used also in other bulk HTS applications. The other is

that, because we used helium and it took a long time (about two or three hours) to cool

down the prototype, thermal shock due to the temperature difference in bulk HTS was

small.

4.4 Conclusion

This is the first ever experimental study of the BHSAU. The most important con-

clusion of this study is that the high undulator field generation and the good and rapid

tunability of the field (from K = 0 to K ∼ 1 in 10 minutes) are demonstrated in the

experiment by using the prototype of the BHSAU. The measured undulator field 0.85

T is higher than that of the same period and gap IVU. Higher undulator field can be

expectable by using the stronger solenoid. The undulator field can be controlled from 0

to 0.85 T by changing the solenoid field change from -2 to 2 T. Although the flux creep
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was observed, it was negligibly small for the measurements in this study. No cracking

was observed during the experiment.

The knowledge of this study is useful for the future experiment and also for the

validation check of the numerical simulation results. The future perspectives of exper-

imental study are, for instance,

1. More precise measurement of the field strength and distribution to check field

uniformity and high-harmonic components, because they affects the properties

of undulator radiation. Also with the precise field distribution, validation of the

analytical or numerical models can be made with the distribution, whereas now

only amplitude of the field is compared.

2. Measurement of the z-component of the field inside the prototype.

3. Measurement of the long term stability of the undulator field at multiple points to

check the change of the field profile, which occur if the current degradation rate

due to the flux creep are different at each point.
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Chapter 5

Numerical Calculation of BHSAU

5.1 Introduction

In chapter 3, we introduced the simple analytical model of BHSAU. That model

considers the two-dimensional space (the infinite structure in x-direction) and the infi-

nite periodic number in z-direction. However, real undulators have the finite sizes. For

the design of the undulators, three-dimensional magnetstatics computation codes are

commonly used. For example, RADIA [40], which was developed in ESRF Insertion

Device Laboratory, is commonly used to design undulators using PMs, nonlinear soft

magnet materials, and/or electromagnetic coils.

For an undulator using bulk HTS, the conventional methods cannot be used because

of the difficulty of calculating the magnetization of bulk HTSs. The superconducting

loop current inside a bulk HTS depends on the critical current density Jc, the current

distribution, and the history of the applied field after the superconducting transition. To

further complicate matters, Jc at a certain point in a bulk HTS depends on the magnetic

field at the point. To calculate the magnetization of bulk HTSs, there are multiple steps

depending on the required accuracy. The first step is to use a simple current distribution

that does not vary in the z-direction and a constant Jc corresponding to the average
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critical current density in all bulk HTSs. The second is to use a current distribution

that varies in the z-direction and a constant Jc. The third is to use a current distribution

that varies in the z-direction and with a Jc that depends on the field. And the more

extensional treatments of bulk HTS can be considered. However, it is not clear that

which step of study is required to sufficiently investigate the field property of BHSAU.

In this chapter, a three-dimensional numerical model of the BHSAU is proposed

based on Bean’s critical state model. The two methods named center field (CF) method

and energy minimization (EM) method are used to determine the current distribution in

the numerical model. The former assumes a constant Jc and a simple current distribu-

tion as a natural extension of the analytical model to three-dimensional geometry. The

latter assumes a constant Jc and the current distribution that varies in the z-direction

inside each bulk HTS so that the magnetic energy is minimized. Comparison of results

obtained by these two methods may reveal the effect of the current distribution on the

undulator field calculation. In section 5.2, three-dimensional model of bulk HTS and

BHSAU, the CF method, and the EM method is introduced. The numerical compu-

tation methods of them are also described. In section 5.3, the results of the numerical

calculation are shown. In section 5.4, mainly discussed are the differences in the results

obtained by two methods and the importance of treating the current density. In section

5.5, we make the conclusion of the numerical study and give the future perspectives

of the numerical study. The quantitative evaluation of the numerical models are made

with the experimental results in the next chapter.

5.2 Three-dimensional Numerical Model of BHSAU

5.2.1 Overview

The numerical model of BHSAU consists of the three-dimensional representation

of the bulk HTS and the two methods to determine the current distribution in that. The

66



bulk HTS is represented by a set of current loops. The two methods determines the

loops in which the current flows or does not flow.

5.2.2 Three-Dimensional Representation of Bulk HTS

The path of the loop current inside the bulk is fixed and spatially-discretized. Figure

5.1 shows the three-dimensional representations of the rectangular bulk (upper) and D-

shape bulk (lower). The rectangular bulk is used for the comparison of the two methods

and the comparison with the analytical calculation. Because a sufficiently large Dx

(Dx = 10λu) is assumed for the rectangular bulk, the calculation geometry is similar to

that used in the two-dimensional analytical calculation (Dx → ∞). The D-shape bulk

is the same shape as the bulk used in the experiment (R = 12.5 mm). The left figures

are cross sectional views in the yz plane and the right figures are cross-sectional views

in the xy plane. Here, Nz and Ny are the numbers of divisions of the bulks in the z- and

y-direction, respectively. The stars indicate the center of the bulks. We assumed that

the loop current flows only in the plane perpendicular to the z-axis. This is because the

z-component is dominant in the solenoid field and in a field generated on a bulk HTS

by other bulk HTSs. The loop numbered by ij has the current:

Iij =

∫
Sij

Jc(B) dS.

Here, Sij is the cross sectional area of divided area. According to the assumption of

Bean’s critical state model for a type-II superconductor, the critical current density is

constant throughout the bulk; thus, each loop has an equal current:

Iij =
Ic = Jbulk

c DzDy

2NzNy

.

5.2.3 Geometry of Calculation

In the numerical calculations, single bulk HTS or 2N bulk HTSs for N periodic

number are located in the coordinates as shown in Fig. 5.2 or Fig. 5.3. In Fig. 5.2, the

67



Figure 5.1: Loop Current Model of Bulk HTS.

(a) Rectangular bulk (upper) (b) D-shape bulk (lower). The bulk HTS is represented

by Ny times Nz loops with fixed geometry. The stars indicate the centers of the bulk

HTSs.
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Figure 5.2: Geometry for single bulk HTS. The points P’, Q’, and R’ are observation

points.

observation points we use later are shown. The points P’ and R’ are the center of the

bulk HTS, the center of the surface of bulk HTS, respectively. The point Q’ is on the

z-axis and at the same z-position with the point R’.

The solenoid field is given as the z-direction uniform background in infinite cal-

culation space. As shown in Fig. 5.3, the positions of the bulk HTSs are fixed by the

period, λu, independent from the thickness of the bulks, Dz. The first figure is for

Dz = 0.5λu (f = 0.5). The second figure is for Dz = 0.8λu (f = 0.2).

5.2.4 Center Field Method

The basic idea of the center field method (CF method) is the same as that used in

the analytical calculation. The loop current flows to negate the change in the solenoid

field at the center of the bulk.

The key differences of this method from the analytical calculation are the finite

periodic number and, for the D-shape bulk, the three-dimensional geometry. Because

of the finite periodic number, we assumed that each bulk HTS has a different depth at

which the current flows, dy,G (G = 1, . . . , 2N). Here, N is the periodic number of
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Figure 5.3: Geometry for N -periodic-number BHSAU. The first figure is for Dz =

0.5λu (f = 0.5). The second figure is for Dz = 0.8λu (f = 0.2).
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the undulator and 2N is the number of the bulks. We also assumed that each depth is

determined by the change in Bz at the center of each bulk HTS, Bz(rc,G). By defining

BGH as the magnetic field generated by the Hth bulk at the center of the Gth bulk, we

obtained Bz(rc,G) as

Bz(rc,G) =

[
2N∑
H=1

BGH(dy,H)

]
z

. (5.1)

By using the assumption Bz(rc,G) = −∆Bs,[
2N∑
H=1

BGH(dy,H)

]
z

+∆Bs = 0. (5.2)

To determine all dy,G, the iterative computation was performed.

In the computation, dy is discretized by ny. Here, ny is the discretized depth of

the layer in which the current flows (0 ≤ ny ≤ Ny). Moreover, to obtain a high-

precision result with a small number of divisions in the y-direction (Ny), we assumed

that the current Ic flowed in ny lines and that a current of αIc (0 ≤ α < 1) flowed in

the (ny + 1)th line. Here, α is calculated from the residual ∆Bs − Bz(rc,G) in each

iteration. Then, the field at the center of the Gth bulk generated by loop ij in Hth bulk

is obtained using the discretized Biot-Savart law:

BGHij =
µ0Ic
4π

Nc∑
p=1

∆sp × r

r3
. (5.3)

Here, Nc is number of the line elements (the number of divisions of the loop), ∆sp is

the pth line element of loop ij in the Hth bulk, and r is the distance between rc,G and

the center of the line element. Then, the field BGH is expressed by

BGH(ny,H) =
Nz∑
i=1

(
ny,H∑
j=1

BGHij + αBGHi(ny,H+1)

)
. (5.4)

5.2.5 Energy Minimization Method

The energy minimization method (EM method) was proposed by Badı́a et al. to

determine the critical state in which a system organizes itself [41]. Sanchez and Navau
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applied the method to a single bulk HTS with a finite height and cylindrical symmetry

[42]. The shielding current distribution of a finite cylinder can be obtained with a

constant Jc or field-dependent Jc under a uniform/nonuniform applied field.

In this study, to use the EM method for the three-dimensional problem of bulk

HTSs with an arbitrary shape, we assumed the path of the loop current and used the

discretized Neumann formula for inductance computation.

The EM method is as follows. The energy required for the current to flow is the sum

of the work required for the current to flow against the magnetic field induced by other

loops and the energy obtained upon the vanishing of the external field. For current Iij

to flow in loop ij, the required energy is written as

Eij = Iij
(
Φint

ij − Φext
ij

)
= Iij

(
NyNz∑
kl

Mij,klIkl −
∫
Sij

Bext dS

)
. (5.5)

Here Φint
ij is the magnetic flux on the surface surrounded by the loop ij generated by

the other loops, Φext
ij is the magnetic flux on the same surface from the external field,

and Mij,kl is the mutual (ij ̸= kl) or self- (ij = kl) inductance between the loops. If a

constant Jc is assumed, Iij and Ikl are both equal to Ic. The calculation procedure is as

follows:

1. Calculate Eij for every loop that does not have a current.

2. Finish the calculation if there is no loop with Eij < 0.

3. Find the loop with the minimum Eij .

4. Flow a current in the loop.

5. Repeat the calculation from step 1.

The current distribution after the calculation shows the critical state.
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The model can be applied to three-dimensional problems with bulk HTSs of an

arbitrary shape if the path of the loop current is determined in advance. We assumed

the current path shown in Fig. 5.1 in common with the CF method. The current flows in

a fixed plane normal to the z-axis. This is similar to the thin-film approximation used

in finite element analysis for bulk HTS. However, in the thin-film approximation, the

current path is free in the plane normal to the z-axis; in this model, the current path is

fixed in the plane to calculate the inductances in advance.

For a loop current with an arbitrary shape, it is difficult to find analytical formulae

for the mutual inductance and self-inductance. Therefore, we numerically calculated

the mutual inductance and the self inductance. The vector potential generated by loop

kl at position r is described by the Biot-Savart law:

Akl(r) =
µ0Ikl
4π

∮
Ckl

ds2
r

. (5.6)

Here Ikl is the current flowing in loop kl and Ckl is the loop. The magnetic flux gener-

ated by loop kl on the surface surrounded by loop ij is expressed by

Φij,kl =

∮
Cij

Akl · ds1

=
µ0Ikl
4π

∮
Cij

∮
Ckl

ds1 · ds2
r

. (5.7)

By discretizing the formula, we obtain the mutual inductance between loops ij and kl:

Mij,kl =
Φij,kl

Ikl
=

µ0

4π

Nc∑
p

Nc∑
q

∆sijp∆sklq
rpq

. (5.8)

Here ∆sijp and ∆sklq are respectively the pth and qth line elements of loops ij and kl,

rpq is the distance between the centers of the two elements, and Nc is the number of

line elements (the number of divisions of the loop). The self-inductance of loop ij is

calculated as the mutual inductance between loop ij and a slightly larger copy of loop

ij, which is at some distance from loop ij. The distance is 0.78Dy/2/Ny. For a torus

which has major radius Rij and minor radius Dy/2/Ny/2, the calculation using this
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distance matches the analytical solution of the self-inductance. For a bulk HTS with an

arbitrary shape, we define Rij as the smallest distance in y-direction between loop ij

and the center of the bulk HTS (the star in Fig. 5.1).

5.2.6 Details of Computation

The typical values of the divisions used in the computation were Ny = 200, Nz =

50, Nc = 1024–8192. The large number of Nc was required in the computation of the

mutual inductances to avoid physically funny current distribution. To compute the mu-

tual inductance in the high precision level with the short computation time, the values

of Nc were adjusted by the distance of the two current loops. Many numerical methods

were applied to shorten the computation time by using the symmetry and/or the par-

allel translation invariance of the problems. Furthermore, parallel computations were

made for the computations of the mutual inductances. The combination of OpenMP

and MPI, so-called ’Hybrid MPI’, was used to allow large memory to one MPI process

by sharing the memory in the OpenMP threads. The MPI node was consist of 2 of 16

core AMD Opteron 6000 series 2.5 GHz CPU and 64 GB memory. At most 12 nodes,

i.e., 384 CPUs were used. The typical computation time for one geometry was about

from several hours to three days depending on the geometrical parameters (mainly on

the periodic number N ) and the number of nodes.

5.3 Result

5.3.1 Single Bulk HTS

Figure 5.4 shows the cross sectional view of the current distribution (x-direction

current in zy plane) in bulk HTS by CF method (left) and EM method (right). The

rectangular indicates the cross section of bulk HTS in zy plane. The black area indicates
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Figure 5.4: Cross sectional view of current distribution (x-direction current in zy

plane) in single bulk HTS by CF method (left) and EM method (right).

the current flowing layer. The same z-direction magnetic field of about 2 T is applied

to single bulk HTS having Jc = 10 kA/mm2 in both method. The difference of the total

current is less than 1%. However, the distributions are much different. In CF method,

the current flowing layer has the same depth as is clear from the assumption. In EM

method, on the other hand, the depth of current flowing layer is large at the both edge.

Figure 5.5 shows the dependence of By at Q’ on ∆Bs by CF and EM method. The

difference of By is large where ∆Bs is small. The both method shows the same By at

the saturation.

5.3.2 Current Distribution and Undulator Field in BHSAU

Figure 5.6 shows the cross sectional view of current distribution (x-direction cur-

rent in zy plane) in BHSAU by EM method. The depth of the current flowing layer at
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Figure 5.5: Dependence of By at Q’ on ∆Bs by CF and EM method.

the bulk edge and the bulk center was much different, even in the bulk near the undu-

lator center. Figure 5.7 shows the solenoid field dependence of undulator field by CF

method (black) and EM method (red). The undulator field from EM method is much

smaller than that from CF method at the same ∆Bs. The initial gradients of the curves,

dB0/d∆Bs|∆Bs=0 of the EM and CF methods were 0.24 and 0.4, respectively, for all

Jbulk
c .

5.3.3 Dependence on Thickness of Bulk HTS

Figure 5.8 shows the dependence of B0 on the parameter f , which is defined by

f = 1 −Dz/λu: the ratio of the horizontal gap between two bulk HTSs to the period.

The numerical calculation was performed by the CF and EM methods with N = 12. To

compare the numerical and analytical results, the numerical (analytical) fields at various

f were normalized by the numerical (analytical) values for f = 0.5. In the analytical

calculation and the numerical calculation by the CF method, for both f < 0.5 and
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Figure 5.6: Cross sectional view of current distribution (x-direction current in zy

plane) in BHSAU by EM method. The black and the gray areas indicate

the regions in the bulk HTS in which the current flows and does not flow,

respectively.
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Figure 5.7: Solenoid field dependence of undulator field by CF method (black) and

EM method (red).

f > 0.5 the almost same degradation of B0 was observed for all ∆Bs. In contrast, in

the numerical calculation by the EM method, the f > 0.5 condition sometimes resulted

in a higher B0 than the f = 0.5 condition at low ∆Bs.

5.4 Discussion

From the result of section 5.3.1, we found the following. Although the total cur-

rent is almost the same for two methods, the current distribution is much different. In

EM method, the depth of the current flowing layer at the both surface (z = ±Dz/2)

is much larger than that at the center (z = 0). This is because the more current is re-

quire to negate the field change at the surface. The current distribution in EM method

is as expected. Thus, EM method looks more reasonable than CF method for single

bulk HTS. However, the issue is not the difference of the current distribution, but the
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Figure 5.8: Dependence of B0 on f (analytical, CF, and EM, g/λu = 0.4). For com-

parison, the analytical (numerical) fields at various f are normalized by the

analytical (numerical) value for f = 0.5.
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difference of By at Q’. This affects the undulator field.

From the result of section 5.3.2, we found that the depth of the current flowing

layer at the bulk edge and the bulk center was much different, even in the bulk near

the undulator center. As a consequence of that and small By mentioned above, the

undulator field is found to be smaller than the expectation. This is directly shown. The

total amounts of the current calculated by both methods were almost the same, however,

the current distributions were much different. This is the reason of the difference in the

undulator field amplitude.

From the result of section 5.3.3, we found a major difference in the dependences of

B0 on f by the calculation methods. As shown in Fig. 5.8, a higher B0 was observed

for f > 0.5 than when f = 0.5 for the same value of ∆Bs. Because the CF method

and the analytical calculation did not exhibit this phenomenon, it is not due to the

effect of the finite periodic number but to the current distribution inside the bulk HTSs

shown in Fig. 5.6. Here we discuss this in detail. Currents with two different directions

that are symmetric with respect to the z-axis generate equal value of By on z-axis with

opposite signs. When f < 0.5, the numbers of such pairs increases with increasing bulk

thickness; therefore, B0 decreases. However, currents with two different directions that

are symmetric with respect to a certain point on the z-axis generate the same By at

the point. When f > 0.5, the numbers of such pairs decreases with decreasing bulk

thickness; therefore, B0 also decreases when f > 0.5 as with when f < 0.5. However,

only in the EM method, there is an effect that increases B0 when f > 0.5. In the EM

method, the depth of the layer in which the current flows is large at the edge of the

bulk. If the position of the edge moves in the z-direction to a point far from the field

peak, the absolute field at the point decreases, although the By component increases in

some cases. Therefore, in the EM method, B0 increases or decreases depending on the

current distribution at a certain ∆Bs when f > 0.5.

This dependence on f is opposite that for a conventional SAU, in which the undu-
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lator field is high at f < 0.5 [29].

5.5 Conclusion

In this chapter, the effect of the current distribution in bulk HTSs on the undulator

field of BHSAU is clarified. It was considered as the most important for the precise

computation of the undulator field in BHSAU. To clarify the effect of the current distri-

bution, the numerical result of center field method and the energy minimization method

are compared. As a result, we found the following:

1. By introducing the current distribution into the calculation for single bulk, By at

Q’ was small

2. The depth of the current flowing layer at the bulk edge and the bulk center was

much different, even in the bulk near the undulator center.

3. As a consequence of above two facts, the undulator field is found to has the

difference from the expectation.

4. The undulator field can be large by selecting suitable ratio of the bulk thickness

to the period.

Introduction of the current distribution bring us the precise undulator field calculation;

and show the possibility of structure optimization which is impossible only with the

theoretical study.

The future perspective of the numerical study of the BHSAU is as follows.

1. As a remained work of this thesis, the profile of By along the z-direction in

the calculation by the CF and EM methods should be compared precisely. The

undulator field may not a complete sinusoidal function of λu but the superposition

of the harmonics. By comparing the high-harmonic components of the undulator
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fields obtained by two methods, the effect of the current distribution on the field

harmonics, which affect the radiation spectrum, may revealed.

2. One can use the numerical methods in this chapter to study the effect of the

individual differences in the critical current densities of the bulk HTSs on the

errors of the undulator field. Especially, the effect on the residual field integral

and the phase error should be studied for the practical use of BHSAU. It is easy to

introduce the different current densities to the bulk HTSs in the numerical code,

and to calculate the errors numerically. The compensation methods for those

errors can also be studied with that kind of numerical codes.

3. As a next step of the calculation by the EM method, one can introduce the de-

pendence of Jc on the magnetic field (Jc–B relation) into the EM method. The

methods to treating Jc–B relation has already established by Sanchez and Navau

[42]. From the comparison of the results obtained by EM methods with and

without Jc–B relation, the effect of that on the undulator field in the BHSAU

may revealed.

4. The way to include the loop current which is not normal to z-axis should be

considered. It may precisely calculate the field in the both ends of the undulator.

However, because both the calculation by the CF and EM methods require the

current path that are fixed in advance to the calculation, it is difficult to introduce

such loop current into the calculation by those methods. The application of the

full three-dimensional finite element methods for bulk HTSs to the calculation

for the BHSAU is a candidate.
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Chapter 6

Comparison of Experiment,

Analytical-, and

Numerical-Calculation

6.1 Introduction

In this chapter, we perform three studies by integrating the knowledge of the anal-

ysis, experiment, and numerical calculation. In section 6.2, the comparison of the

calculation and the experiment is performed to validate the numerical model and re-

veal the average critical current density in the experiment. It is difficult to evaluate the

agreement with absence of exact value of Jc. To solve the problem, the dependency

curve of B0 on ∆Bs is compared. The dependence curve in the experimental is com-

pared with not only that in the EM method but also in the curve in the CF method

to confirm the importance of the current distribution to reproduce the experiment. In

section 6.3, the semi-empirical formula for the required solenoid field is derived by

modifying the analytical formula using the results of the comparison between the an-

alytical and numerical results with EM method. Though it is found in section 6.2 that
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the EM method can precisely calculate the field inside BHSAU, it takes not small time

and resources.The semi-empirical for the required solenoid field formula and the ana-

lytical formula of the undulator field can calculate the fields in the BHSAU including

the factor of the current distribution inside the bulk HTSs. In section 6.4, the magnetic

performance of BHSAU is estimated. To show how to use the formulae and values in

tables, various example calculation is made.

6.2 Comparison between Experiment and Numerical Cal-

culation

The experiment was performed with a 6-periodic-number, 10-mm-period, 4-mm-

gap prototype with a 2 T superconducting solenoid and a helium gas cooling system.

To equalize the geometry, the calculation was performed with a D-shape bulk with the

same size as one used in the experiment, f = 0.5, N = 6, λu = 10 mm, and g = 4

mm. The experimental results have an error of 4% owing to the measurement error. The

detailed setup of the experiment is described in Chapter 4. The detail of the numerical

calculation is described in Chapter 5.

Figure 6.1 shows a comparison of the experimental and calculated solenoid field

dependences of the undulator field. The experimental results show data obtained at

T =20, 40, and 60 K. The calculation results show data obtained at Jc =10, 5, 2, and

1 kA/mm2. The green dotted lines indicate the results obtained by the CF method. The

pink solid lines indicate the results obtained by the EM method. The initial gradients

of the curves, dB0/d∆Bs|∆Bs=0 of the experiment were 0.24 for all T , and those of the

EM and CF methods were 0.24 and 0.4, respectively, for all Jbulk
c .

Figure 6.2 shows a comparison of the experimental and calculated field distributions

of By along the z-axis. In the experiment, after the prototype was cooled to 20 K under

a solenoid field of Bs = -2 T, the solenoid field was changed to Bs = 0 T (∆Bs = +2
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Figure 6.1: Comparison of the dependence of B0 on ∆Bs in the experiment and cal-

culation with CF method (green dotted line) and EM method (pink solid

line)
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Figure 6.2: Comparison of By distribution along z-axis in the experiment and calcula-

tion with EM method.

T) at T = 20 K. This is known as field cooling. The calculation was performed by the

EM method with Jc = 5 and 10 kA/mm2.

6.2.1 Discussion

Here we evaluate the agreement between the calculation and experiment. It is diffi-

cult to compare the By profile or B0 at a single value of ∆Bs without the exact value of

the average Jc in the experiment. Thus, we used the dependence curve of B0 on ∆Bs.

As is clear from Formulae (3.32), and as shown in Fig. 3.7 in Chapter 2, the shape of

the ∆Bs–B0 curve and its initial gradient dB0/d∆Bs|∆Bs=0 do not depend on Jc but on

the geometrical parameters. This was also true in the numerical calculation even when

the depth of the layer in which the current flowed had a distribution in the z-direction

inside the bulk, as shown in the numerical ∆Bs–B0 curve in Fig. 5.7. The only excep-
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tion is the case that the current distribution at each different T had a different shape

for an equal ∆Bs/∆Bs,max. This is caused when the shape of the Jc–B curve changes

markedly with T . However, we know from the DC magnetization measurement that the

shape of the Jc–B curves did not show large shape change markedly with T and also

this effect did not appear in the initial gradient of the experimental ∆Bs–B0 curve in

Fig. 6.1. Thus, by comparing the initial gradient, we can discuss the agreement without

knowing the exact value of Jc.

From the comparison between the calculation and experiment, we clearly found

that the results obtained by the EM method showed agreement with those of the ex-

periment. The initial gradients of the curves in the experiment and the EM method are

identical, whereas the initial gradient in the CF method is 1.7 times larger than that

in the experiment. Moreover, the dependence curve of B0 on ∆Bs in the calculation

by the EM method is similar to that in the experiment. From the comparison, we can

estimate the range of the average Jc in the experiment. Because the average Jc changes

with the field, it is difficult and meaningless to estimate the exact value to fit the curve.

The estimated average ranges of Jc were 5 - 10 kA/mm2 at T = 20 K, 2–3 kA/mm2 at

T = 40 K, and approximately 1 kA/mm2 at T = 60 K. These ranges are almost within

the ranges from Jc(B = 0) to Jc(B = 2 T) in Table 4.2, and are thus thought to be rea-

sonable. From these findings, we can conclude that the results of the EM method show

agreement with those of the experiment. Additionally, we found that the macroscopic

Jc in the bulk HTSs was almost equal to that of the small sample. This means that the

large degradation due to the difficulty of manufacturing large bulk HTSs or cracking

did not occur.

The reason for the agreement is next discussed. The geometrical parameters N , λu,

g, Dx, Dy, and Dz and the bulk shape were equal in the experiment, the CF method,

and the EM method. As stated in Section III.A, the total amounts of the current inside

the bulk at the same ∆Bs are only slightly different for the two calculation methods.
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The only remaining factor is the geometrical shape of the current, i.e. the current

distribution inside the bulk. Therefore, we conclude the following. The reason why

the EM method closely reproduced the experiment is that it closely reproduced the

current distribution in the experiment. The current distribution inside the bulk must be

considered to precisely estimate the field inside the BHSAU,

We next discuss the results shown in Fig. 6.2. On the basis of above discussion,

the calculation was performed by the EM method with Jc = 5 and 10 kA/mm2. The

difference between the results obtained experimentally and by calculation for both Jc

is less than 5% except near the peak at z ∼ −32 mm. By considering the fact that

the measurement has an error of 4%, the difference of 5% is not large. The difference

near the peak at z ∼ −32 mm is about 30%. There are two possible reasons for this

large difference. One is that the individual differences in Jc among the bulk HTSs

particularly affects peaks near the ends of the undulator. The other is that the current

distribution cannot be reproduced well near the ends of the undulator even by the EM

method when the magnetization is not perpendicular to the xy-plane. The former effect

can be included in the calculation by including the individual differences in Jc among

the bulk HTSs. For the latter case, it is difficult to measure the actual current distri-

bution inside the bulk HTSs. However, the difference can be evaluated by comparing

a much larger amount of data, i.e., the By and Bz distributions in three-dimensional

space near the ends of the undulator. If a difference appears, the assumption that the

current flows only in the plane perpendicular to the z-axis should be changed in a future

calculation.

Although the amplitude of the undulator field can be obtained by the empirical

formulae derived in the next section, the numerical code remains useful in the future

study. As PMs have the individual difference in magnetization, bulk HTSs also have

that in critical current density, which cause the errors in the undulator field, so called

phase error and residual field integrals. The compensation methods for these errors are
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the practically important and the next topic of our study. It is not difficult to modify the

numerical code to treat the individual difference in the critical current density of bulk

HTS. Therefore, the numerical code can be used to study the compensating methods

for these errors.

6.3 Semi-Empirical Formula

6.3.1 Comparison between Analytical and Numerical Calculations

Figure 6.3 shows the difference in the analytical and numerical values of ∆Bs

required for the same B0. Here, the superscripts An and Nu indicate analytical and

numerical values, respectively. The numerical calculation was performed by the EM

method with N = 12. BAn
0 and ∆BAn

s are the values obtained by Formulae (3.16) and

(3.17) in Chap. 3. In the numerical calculation, a larger ∆Bs than the analytical value

was required to generate the same B0, particularly for low B0. For f = 0.5, the numeri-

cal value of ∆Bs required was up to 50% higher than the analytical value. For f > 0.5,

the requirement was moderate at low B0. The divergence at high B0 for f > 0.5 means

that B0(f) (f > 0.5) cannot reach to B0,max (f = 0.5).

6.3.2 Semi-Empirical Formula for Required Solenoid Field

Here we modify the analytical formulae by using the results obtained by comparing

the numerical and analytical calculations. The maximum B0 in the numerical calcula-

tion is equal to that in the analytical calculation; therefore, the target range of the modi-

fication is the reasonable operation range discussed above, and modification should be

applied to the formula for ∆Bs but not to the formula for B0:

BNu
0 = BAn

0 , (6.1)

∆BNu
s = (1 + α)∆BAn

s . (6.2)
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Figure 6.3: Difference in the analytical and numerical values of ∆Bs required for the

same B0 (analytical and EM, g/λu = 0.4). The superscripts An and Nu

indicate analytical and numerical values, respectively. The numerical cal-

culation was performed by the EM method with N = 12.
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Table 6.1: Parameters for Formula (6.3)

a+ bx+ c exp(dx) effective range

f a b c d B0/B0,max [%]

0.55 0.296 -0.294 - - 20–90

0.60 0.176 -0.188 7.93 ×10−9 18.2 20–90

0.65 0.0995 -0.107 1.50 ×10−5 11.2 20–80

0.70 0.0551 -0.0346 1.47 ×10−4 9.89 20–70

As shown in Fig. 6.3, the factor α is at most 50%. However, if a suitable f is chosen

for the target operation point, it can be less than 5%. We fit the curves by the empirical

formula

α = a+ b
BAn

0

BAn
0,max

+ c exp

(
d

BAn
0

BAn
0,max

)
. (6.3)

(for a, b, c, and d, see Table 6.1)

The fitting results of the parameters a, b, c, and d are shown in Table 6.1. The error of

the formula is less than 1% in the effective range shown in Table 6.1.

Additionally, we consider the effect of the periodic number. Because we used N =

12 in the calculation for Fig. 6.3, the required ∆Bs should be modified as

∆BNu
s (N) = β(N)× (1 + α)∆BAn

s . (6.4)

Here, β is a function of the periodic number, and the right term of the multiplication is

the value when N = 12. By fitting the dependence curve of ∆Bs on N for B0/B0,max =

50%, we have

β(N) = 1.098− 1.060
1

N
− 1.519

1

N2
. (6.5)

The error of this formula is less than 1% in the range of 6 ≤ N and 20 ≤ B0/B0,max ≤

90.

91



Formula (6.4) reproduces the numerical B0 and ∆Bs with an error of less than 2%

for Dy = λu/2, g/λu = 0.4, 6 ≤ N , and the effective B0/B0,max range shown in

Table 6.1. Moreover, because it is clear from Table 3.2 that the shape of the ∆Bs–B0

curve has a difference of less than 2% among various values of g/λu, this modified

formula can be applied to a wide range of conditions (0.1 ≤ g/λu ≤ 10) with an error

of less than 3%.

6.3.3 Performance Estimation of BHSAU

Here we estimate the magnetic performance of the BHSAU as an example of using

the formulae and the values obtained above. As examples of performance estimation,

we calculated two patterns with λu = 18 mm and g = 3.6 mm by targeting a twice as

large field as that generated in the IVU but with an equal period and gap. Next, we

calculated two patterns with λu = 10 mm and g = 4 mm by targeting K = 2 and two

patterns with λu = 5 mm and g = 1 mm by targeting K = 1 and 2. Here, K is called the

diffraction parameter and is defined by K = eB0λu/(2πmc), where e and m are the

electron charge and mass, respectively. To obtain bright undulator radiation, K ∼ 1–2

is required.

In Table 6.2, we show estimated B0, and the values of ∆Bs and the operation tem-

perature T required to obtain each B0. Here, ∆Bs is the value for N = 50. Note that Γy

is not the actual depth of the layer in which the current flows and is simply the index

in Table 3.2. We set Jbulk
c , Γy, f , and T to meet the following conditions: (i) ∆Bs/2

does not exceed 6 T, (ii) J bulk
c is in the range from Jc(B = 0) to Jc(B = ∆Bs/2) at

T , (iii) f is chosen to obtain a small α. Here, we assumed the field cooling method,

i.e., the undulator is cooled to below the superconducting transition temperature under

a solenoid field of −∆Bs/2 and operated under a solenoid field of ∆Bs/2. Thus, we

used J bulk
c in the range between Jc(B = 0) and Jc(B = ∆Bs/2).

As shown in the table, an undulator field twice as large as that of the present IVU
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Table 6.2: Performances of BHSAU

λu g Jbulk
c Γy f B0 ∆Bs/2 T K

[mm] [mm] [kA/mm2] [%] [T] [T] [K]

18 3.6
2.4 30 0.6 2.6 4.8 40 4.4

7.1 5 0.7 2.6 2.3 20 4.4

10 4
8.0 20 0.6 2.1 6.0 20 2.0

12.0 10 0.65 2.1 4.4 10 2.0

5 1
7.1 30 0.6 2.1 3.9 20 1.0

16.7 20 0.6 4.2 6.0 4 2.0

but with an equal period and gap can be obtained at temperatures of approximately 20–

40 K. Moreover, K = 1 or 2 can be achieved with a short period such as 5 or 10 mm.

Because B0 of over 4 T is required to achieve K = 2 at λu = 5 mm, it is impossible

to achieve this using PM undulators even with g = 0. Although T = 4 K is required

to achieve the condition of the bottom row in Table 6.2 with currently available bulk

HTSs, if the critical current density of the bulk HTS is doubled as a result of future

material developments, the BHSAU can be operated at approximately 20 K. We believe

that the magnetic field strength of the BHSAU is sufficiently high for future high-field

short-period undulators.
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Chapter 7

Summary

This thesis discusses the characteristics of BHSAU aiming at the realization of the

short-period high-field undulator using the bulk high-temperature superconductor.

The results are summarized as follows.

1. The analytical formulae of the field inside the BHSAU was derived from the

model based on the two-dimensional approximation and Bean’s critical state

model for hard type-II superconductor, by using the two-dimensional Biot-Savart’s

law. The analytical calculation revealed the field profile inside BHSAU and their

degree of dependence on the geometrical parameters, the critical current density

of the bulks, and the solenoid field. The calculation showed that the theoretical

maximum of the undulator field of the BHSAU is much higher than that of the

conventional undulators and that the undulator field amplitude can be controlled

by the solenoid field in the wide range.

2. The prototype experiment was performed in the small 6-period prototype with

the 2-T superconducting solenoid and the helium gas cooling system. The sinu-

soidal magnetic field, i.e. the undulator field, was generated successfully. The

amplitude of the undulator field was well controlled by the solenoid field. The
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undulator field of 0.85 T was achieved. This value is higher than that of the

present permanent magnet undulators. Further increment of the undulator field

with a strong solenoid can be expectable from the curve of the undulator field

dependence on the solenoid field.

3. The three-dimensional numerical model of BHSAU was created. The numerical

calculation was performed with CF and EM methods. From the comparison of

the results by two methods which derive the different current distribution, we

found that the undulator fields by two methods are much different whereas the

amounts of the currents inside bulk HTSs are almost the same. We also found

additional characteristics of BHSAU by the EM method which is not found in the

analytical calculation; the undulator field can be increased several tens percent

under the equal solenoid field by using the bulk thinner than the half of the period.

4. Comparison between the calculation and experiment was made. The numeri-

cal results with the EM method show good agreement with the experiment. We

found that the current distribution is important to estimate precise undulator field

inside BHSAU. Comparison between the analytical and numerical calculation are

performed. By using the result of that, we proposed a semi-empirical formula of

the solenoid field by modifying the analytical formulae to include the factor of

the current distribution. The formulae, i.e., the analytical formula of the undula-

tor field and the semi-empirical formula of the solenoid field, can calculate the

fields in the BHSAU with the difference of within 3% from the numerical results

without large time and hardware resources for the calculation. We showed the

various magnetic performance estimation of BHSAU using the formulae and the

values obtained in this thesis. The estimation showed that the undulator field of

the BHSAU at approximately 20-40 K was twice as large as that of IVU but with

the same period and gap (IVU in SACLA, the period of 18 mm and the gap of

3.6 mm). Also the estimation showed the possibility of the realization of a short-
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period, high-field undulator by the BHSAU. The diffraction parameter (K value)

of 1 and 2 can be achievable at approximately 20-40 K with 6-T solenoid and

10-mm-period and 4-mm-gap. The diffraction parameter (K value) of 1 and 2

can be achievable at approximately 4-20 K with 6-T solenoid and 5-mm-period

and 1-mm-gap.

In summary, the characteristics of BHSAU were studied in the analytical, numer-

ical, and experimental ways. The practical strength undulator field generation was

demonstrated.

The future perspective of the study is as follows. For the undulator field, not only

the field strength but also the quality of the field is important to obtain the high quality

undulator radiation. The most important work in future is increasing the measurement

accuracy of the magnetic field inside BHSAU under the condition of very narrow gap,

low temperature, and in-vacuum. With the precise magnetic field over the wide ranges

of the undulator field and the solenoid field, the trajectory of the electron beam and

the spectrum of the radiation from it can be calculated, and, if the need arises, the

compensation methods of them can be investigated. The numerical model of BHSAU

also can be discussed at the more precise level. Then, the compensation methods for

field quality can be discussed by using the numerical code. Another important work

is investigating the method to keep the undulator field constant under the flux creep

phenomenon. The methods mentioned in chapter 4 should be studied.
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Appendix A

Integration for Magnetic Field

Let us integrate the equation:

b∗(ξ) = − µ0

2πi

I

λu

∫ ∞

−∞

1 + 2
∑∞

n=1 cos βz
′

z′ − ξ
dz′. (A.1)

Here, ξ = z+iy and β = 2nπ/λu. Executing the integration for the first term, we have

PV

∫ ∞

−∞

1

z′ − ξ
dz′ =

+iπ (ℑ(ξ) > 0),

−iπ (ℑ(ξ) < 0).

(A.2)

Here, we adopt Cauchy’s principal value and ℑ(ξ) is the imaginary part of ξ.

To execute the integration for the second term, let us think the integration paths in

Fig. A.1. Here, Cu and Cl are the loop path around the upper and lower semi-circle

with the radius R, respectively. Su and Su are only the arc of those. Note that cosine

Figure A.1: Upper (LEFT) and lower (RIGHT) integration path
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function has essential singularity at infinite distance. Then, we have∫ ∞

−∞

cos(βz′)

z′ − ξ
dz′ =

1

2

∫ ∞

−∞

eiβz
′
+ e−iβz′

z′ − ξ
dz′

=
1

2
lim
R→∞

[(∮
Cu

−
∫
Su

)
eiβζ

ζ − ξ
dζ +

(∮
Cl

−
∫
Sl

)
e−iβζ

ζ − ξ
dζ

]

=

+πi
[
Res(e+iβζ , ξ)

]
(ℑ(ξ) > 0),

−πi
[
Res(e−iβζ , ξ)

]
(ℑ(ξ) < 0).

(A.3)

Here, Res(e+iβζ , ξ) is the residue of the e+iβζ dζ at ζ = ξ. The integration along Su and

Sl are vanished at R → ∞.

As a result, we obtain

bz = sgn(y)
µ0I

2λu

[
1 + 2

∞∑
n=1

cos(βz)e−β|y|

]
, (A.4)

by = −µ0I

λu

sin(βz)eβ|y|. (A.5)
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