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Abstract 

 

Urban areas are expanding rapidly because of the inability of existing 

urban infrastructure to sustain the population and its activities. Ulaanbaatar is 

one of cities in developing countries in terms of its swift development, and this 

has occurred particularly since its transition from a planned economy to a 

free-market economy in 1992. However, the insufficient authority of the current 

master plan and the lack of implementation of the land privatization policy since 

2003 have resulted in a failure to effectively manage land use. Consequently, 

large numbers of residential plots have been developed in peripheral regions of 

the city. This research aims to clarify the urban expansion processes and 

understand their environmental impacts in Ulaanbaatar. Remotely sensed 

imagery has recently become a standard tool for the analysis of urban expansion 

processes, but analysis conducted using only a specific type of remotely sensed 

imagery can lead to a misunderstanding of such processes. Therefore, the use of 

multi-scale analyses using remotely sensed imagery with different spatial and 

temporal resolutions should be explored. In this research, very high spatial 

resolution satellite imagery from IKONOS and Quickbird, and medium-resolution 

satellite imagery from the MODerate resolution Imaging Spectroradiometer 

(MODIS) were mainly used. Analysis using object-based spatial data of urban 

components extracted from very high spatial resolution satellite imagery in a time 

series was used to delineate the residential-scale process of urban expansion in 

a fringe area. This, in combination with a spatial modeling approach, indicates 



 

that urban infrastructure significantly contributed to the urban expansion. To 

understand the urban expansion processes in a wider range of the city, the 

pixel-based analysis was applied using MODIS time series with a more spatially 

rough, but high frequency resolution. The breaks for additive seasonal and trend 

(BFAST) method, which is able to robustly and automatically derive the timing 

and locations of land cover changes from spatio-temporal data, was applied for 

the first time in urban expansion analysis. This analysis showed that land cover 

changes occurred at the edge of the city center region in Ulaanbaatar in earlier 

time, and that the changes tended to occur at a later time with increasing distance 

from the city center during the period 2000–2010. Owing to the population 

concentration, which is the primary cause of urban expansion in Ulaanbaatar, 

vegetation biomass and vegetation land cover around the city have been highly 

affected by anthropogenic pressures. Thus, environmental changes to vegetated 

surfaces were estimated as a proxy of the environmental impacts of urban 

expansion. This analysis found that vegetation biomass decreased around the 

urban area in grassland and forests where anthropogenic activities such as 

overgrazing and illegal logging were reported. This research highlights the effects 

of the clash between two different land management legislation frameworks, the 

master plan and the land privatization policy. This research not only reinforces 

the need for an effective urban plan for Ulaanbaatar, but also provides 

operational information such as maps and GIS layers for planning purposes, 

which document the actual extent of the urban surfaces, the patterns of 

development, and the location of expanded and degraded areas of urban 

expansion using remote sensing technologies. 
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CHAPTER 1 INTRODUCTION 

1-1 BACKGROUND 

Rapid urbanization is an urgent issue that needs to be addressed, 

monitored, and controlled. The global population is forecasted to rise from 7 

billion in 2011 to more than 8 billion by 2030, with 60% of this population 

concentrated in urban areas (United Nations, 2012). On average, urban areas in 

developing countries are expanding at a rate that is twice as fast as the rate of 

population growth (Angel, Parent, & Civco, 2012). These areas are economic, 

social, cultural, and political centers that serve as the hub of regional 

development (Seto, Roberto, & Fragkias, 2010). However, substantial urban 

development comes at a price, with haphazard expansion affecting 

environmental sustainability in and around urban areas. Such a phenomenon 

drives land cover changes, which potentially result in environmental degradation 

such as the loss of farmland (Döös, 2002; Habibi & Asadi, 2011),natural 

resources (DeFries, Rudel, Uriarte, & Hansen, 2010; Hasse & Lathrop, 2003), 

and biodiversity (Mcdonald, Kareiva, & Forman, 2008; Rojas, Pino, Basnou, & 

Vivanco, 2013). From the perspective of human habitation, one of the most 

crucial problems faced by developing countries is the rapid growth of informal 

settlements in peripheral regions (Augustijn-Beckers, Flacke, & Retsios, 2011; 

Dubovyk, Sliuzas, & Flacke, 2011). Such informal settlements develop without 

planning controls, and the basic infrastructure required for living is significantly 
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lacking (Augustijn-Beckers et al., 2011). Accordingly, an understanding of urban 

expansion processes and their environmental impacts is essential to enable 

urban planners and policy makers to realize well-balanced urban growth for 

citizens and environments. 

As with other capital cities in developing countries, Ulaanbaatar, 

the capital of Mongolia, has rapidly expanded in parallel with an increase in 

its population, causing critical developmental issues (Kamata, Reichert, 

Tsevegmid, Kim, & Sedgewick, 2010). Mongolia experienced a drastic 

transition from a central planning system to a market-based economy in the 

1990s. Following a change in policy that previously restricted internal 

migration, many Mongolians moved from rural areas to Ulaanbaatar seeking 

education, employment, an income, and an improved standard of living 

(Byambadorj, Amati, & Ruming, 2011; Solongo, 2007). In accordance with 

this population concentration, many residential plots have developed rapidly 

in the peripheral regions, where 60% of the population of Ulaanbaatar now 

lives (Kamata et al., 2010).  

The unprecedented development of residential plots in the fringe 

areas of Ulaanbaatar has a negative impact on the natural environment and 

on living conditions (UN-Habitat, 2010). The main problem in peripheral 

areas is the deficit of basic infrastructure, such as the lack of a piped water 

system, sanitation facilities, paved roads, public transportation, and heating 

systems (Kamata et al., 2010). It is therefore considered important to 
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address topics of social and spatial inequality, water supply and sanitation, 

waste management, flood risk reduction, and air pollution within these areas.  

Remotely sensed imagery from space-borne sensors has become 

a standard tool in the implementation of analysis of urban expansion 

processes. When using such imagery, it is important to consider spatial 

resolution (the size of the area on the ground that comprises the image 

derived from satellite sensors) (Myint, Gober, Brazel, Grossman-Clarke, & 

Weng, 2011), which  is a fundamental characteristic of remotely sensed 

imagery (Woodcock & Strahler, 1987). However, investigators are limited to 

specific scales of observation (Woodcock & Strahler, 1987). For example, 

medium-resolution satellite imagery from the MODerate resolution Imaging 

Spectroradiometer (MODIS) satellite, monitors a wide range of surfaces that 

include urban areas, but such imagery cannot fully capture individual urban 

objects due to insufficient spatial resolution. On the contrary, Very High 

spatial Resolution (VHR) satellite imagery taken by such as IKONOS and 

Quickbird satellites, visually capture urban land cover in detail, but such 

imagery is subject to a limited spatial extent of observation. It is also 

necessary to consider the frequency of observation; while medium-resolution 

satellites can observe at a certain time interval, regular monitoring using VHR 

imagery is always limited. Thus, analysis using only one specific type of 

remotely sensed imagery can deliver a misleading interpretation of the 

process of urban expansion. It is considered necessary to explore the use of 
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undertaking multi-scale analysis using remotely sensed imagery at different 

spatial and temporal scales.  

 

1-2 RESEARCH OBJECTIVES 

The main objective of this research is to clarify the process of urban 

expansion and its environmental impacts in Ulaanbaatar. In handling urban 

expansion, the government should consider when and where urban 

expansion occurs, obtain knowledge of the factors causing such expansion, 

and understand the extent of the associated environmental impacts. Such 

knowledge would be useful for urban planners and policy makers in their 

management of urban expansion and related environmental issues. In order 

to gain an understanding of this on different scales, urban expansion 

processes are analyzed on a residential-scale level and a city-scale level. 

These are implemented using VHR and medium spatial resolution satellite 

imagery, respectively. The analysis of environmental impacts is examined on 

a municipality-scale level, and also uses medium spatial resolution satellite 

imagery. In particular, the aims of this study are to: 

1. Delineate time-series changes on urban surfaces on a 

residential-scale level, and to determine their driving forces; 

2. Explore the spatio-temporal changes in land cover on a city-scale 

level; 



 

 5 

3. Estimate environmental changes on vegetated surfaces as a proxy of 

environmental impacts caused by population concentration and urban 

expansion in the municipality of Ulaanbaatar. 

 

1-3 RESEARCH OUTLINE 

Chapter 2 presents the conceptual background related to urban 

expansion and the use of satellite sensors for monitoring of it. Chapter 3 gives 

an overview of the study area within the Municipality of Ulaanbaatar. It also 

explains the data acquisition used in the analysis of urban expansion and its 

environmental impacts. Chapter 4 depicts the urban expansion from time-series 

object-based GIS data, and detects the driving factors using a spatial model. 

Chapter 5 estimates the land cover changes from MODIS time-series in order to 

monitor the urban expansion processes. Chapter 6 presents an estimation of the 

environmental changes on vegetated surfaces as a proxy of the environmental 

impacts, with focus on the change in vegetation biomass and vegetation cover in 

Ulaanbaatar. Chapter 7 concludes these findings and offers recommendations 

for a future urban plan.   
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CHAPTER 2 MONITORING URBAN EXPANSION 

PROCESSES 

2-1 URBAN EXPANSION  

Urban expansion is defined as the increase in developed and 

residential areas within urban and suburban areas (Zhan, Jiang, & 

Townshend, 2000), and often occurs on urban fringes around developed city 

centers (Frenkel & Ashkenazi, 2008; Sudhira, Ramachandra, & Jagadish, 

2004). Although the land cover of urban areas in the form of built -up 

or paved-over areas occupies less than 2% of the earth's land surface 

(Lambin et al., 2001), urban areas are expanding due to the inability of existing 

urban infrastructure to sustain the population and its activities. (Seto, Fragkias, 

& Gu, 2011). When urban areas expand, natural land cover such as 

grasslands, forests, and agricultural land cover are transformed into 

residential, industrial, and commercial land (Ji, Ma, Twibell, & Underhill, 

2006). Such anthropogenic changes affect not only hydrological systems, the 

biogeochemistry, local climate, and biodiversity, but also human living 

environments (Seto et al., 2011). Because of rapid emergence of unplanned 

and uncontrolled development at urban fringes, there is often a lack of basic 

infrastructure such as sewerage, electricity, garbage disposal, roads, and 

shops; this lack of infrastructure can inflate the cost of urban management 

(Frenkel & Ashkenazi, 2008; Hasse & Lathrop, 2003).  
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In managing the rapid urban expansion of cities in developing 

countries, future development needs to be planned and properly monitored in 

order to maintain internal equilibrium through the sustainable management of 

natural resources (Tv, Aithal, & Sanna, 2012). Appropriate strategies for 

managing urban expansion must be identified and effectively employed 

(Angel, Parent, Civco, Blei, & Potere, 2011). It is therefore clear that an 

analysis of urban expansion would assist regional planners and 

decision-makers in understanding growth patterns, thereby allowing plans to 

be made include the provision of essential infrastructure (Verbesselt, 

Hyndman, Newnham, & Culvenor, 2010). 

 

2-2 CURRENT ISSUES IN RESEARCH IN RELATION TO URBAN EXPANSION  

Past studies of urban expansion have often been implemented at a 

city or metropolitan scale level (J. Cheng & Masser, 2003; Fang, Gertner, 

Sun, & Anderson, 2005; Gimblett, Daniel, Cherry, & Meitner, 2001; Irwin & 

Bockstael, 2004; Ji et al., 2006; Martinuzzi, Gould, & Gonzalez, 2007; 

Sudhira et al., 2004; Weber & Puissant, 2003). Through these studies, many 

techniques using spatial grids have been developed to detect and analyze 

land cover change by urban expansion and to then apply these techniques to 

different regions. The most popular techniques are: post-classification 

comparison, principal component analysis (PCA), and wavelet 

decomposition (Alphan, 2003; Deng, Wang, Deng, & Qi, 2008; Galford et al., 
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2008; Jat, Garg, Khare, & Jat, 2008; Kleynhans et al., 2011; Lasaponara, 

2006; Lu, Mausel, Brondízio, & Moran, 2003; Lunetta, Knight, Ediriwickrema, 

Lyon, & Worthy, 2006; Millward, Piwowar, & Howarth, 2006; Running et al., 

1995; Verbesselt, Hyndman, Newnham, et al., 2010; Weber & Puissant, 

2003; X. J. Yu & Ng, 2007). The post-classification comparison technique is 

used to compare images in which the land use/cover has been classified over 

different time periods using high spatial resolution satellite imagery such as 

that of Landsat and SPOT. This method has been widely used (Alphan, 2003; 

Jat et al., 2008; Weber & Puissant, 2003; X. J. Yu & Ng, 2007); however, a 

certain amount of pre-processing of these images is necessary due to 

differences between observing sensors, serious effects of atmospheric 

disturbances, missing data due to clouds and shadows, and correction of 

inaccurately observed time spans (Patino & Duque, 2013). PCA is a simple 

and effective technique for enhancing information in relation to land cover 

change, but it usually neglects seasonal variation by intentionally 

summarizing time series data (e.g. yearly composite imagery), resulting in 

the loss of temporal change information (Deng et al., 2008; Lasaponara, 

2006; Lu et al., 2003; Millward et al., 2006). In comparison, wavelet 

decomposition, normally using vegetation indices like the normalized 

difference vegetation index (NDVI), which is the most commonly used 

measure of vegetation, is a useful basis for the development of a land cover 

change analysis (Galford et al., 2008; Kleynhans et al., 2011; Lunetta et al., 

2006). NDVI reflects changes in chlorophyll content and vegetation biomass, 

and has proved to be a useful tool in the monitoring of vegetation resources 
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(Bajgiran, Shimizu, Hosoi, & Omasa, 2009; Hirano, Komiyama, & Toriyama, 

2006), using the calculation: 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 (2-1)  

where 𝜌𝑅𝐸𝐷 and 𝜌𝑁𝐼𝑅 are the reflectance for the red band (620–

670 nm) and the near-infrared band (841–876 nm), respectively. However, 

until recently, one of the main problems associated with the application of 

wavelet decomposition was that it required the determination of several 

thresholds (Galford et al., 2008; Kleynhans et al., 2011; Lunetta et al., 2006), 

and it often led to misleading outputs, caused by the different spectral and 

phenological characteristics of differing land cover types (Verbesselt, 

Hyndman, Newnham, et al., 2010).  

Although these above approaches explore pixel-based land cover 

changes on urban surfaces, urban expansion is ultimately a spatial 

phenomenon driven by accumulated human activities influenced by complex 

forces (e.g. social, economic, political, and physical ones), their interactions, 

and associated processes (Hu & Lo, 2007; Irwin, Bell, & Geoghegan, 2003; 

Irwin & Bockstael, 2004). Due to the inability to integrate information related 

to these things, it is usually difficult to utilize object-based GIS data which 

represent human activities on urban surface in the analysis. Although 

national and local governments may possess optimal databases for official 
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land management systems, which contain detailed land information (such as 

land boundaries and ownership), administrative offices in developing 

counties are often not allowed to share such data with the public because of 

a lack of law allowing the publication of official data. In most cases, 

government-owned data such as cadastral maps are considered to be secret 

sources because of the associated security and privacy. In addition, some 

governments may not be able to afford an up-to-date database for land 

management information, and such limited governmental funds are also an 

obstacle to allowing government-owned data to be made public. 

Consequently, owing to a lack of spatial data available for urban objects, this 

contributes to the difficulty in understanding urban expansion directly and 

precisely.   

 

 2-3 THE USE OF SATELLITE SENSORS FOR MONITORING URBAN 

EXPANSION PROCESSES 

Since the advent of the Landsat Multispectral Scanner System 

(MSS) in 1972, remotely sensed imagery has become an effective tool for 

characterizing urban landscapes (Novak & Wang, 2004). However, it 

remained difficult to monitor and comprehend individual urban components 

on a residential scale for many years because of the low resolution of remote 

sensing sensors (e.g., 80 m and 30 m for the Landsat MSS and Landsat -7 

Enhanced Thematic Mapper Plus (ETM+), respectively). Today, owing to the 
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development of VHR satellite sensors, these sensors enable determination 

of urban components individually (Taubenbock, Esch, Wurm, Roth, & Dech, 

2010). For example, IKONOS (launched in 1999) and Quickbird (launched in 

2011) have spatial resolutions of 3.3 m and 2.4 m, respectively, and thus both 

of these satellites can observe buildings, houses, and roads in detail (J. 

Cheng & Masser, 2003; Digital Globe, 2007; Tatem & Hay, 2004; Volpe & 

Rossi, 2003). The development of fine-scale digital elevation model (DEM) 

data has also been a relatively recent occurrence. The Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 

DEM (GDEM), released to the public in 2009, is a DEM dataset with a 

resolution of approximately 26 m, in which cloudy pixels have been removed 

and residual anomalies corrected (ASTER GDEM Validation Team, 2009).  

Despise the lack of fine spatial resolution, the MODIS time series is 

an alternative tool for monitoring urban expansion because it has the 

advantage of being able to make frequent observations at regular intervals at 

no cost. The MODIS applications are of interest not only to researchers in the 

land, ocean, and atmosphere disciplines but also for application by 

interdisciplinary, and environmental scientists, because MODIS senses the 

Earth's entire surface in 36 spectral bands spanning the visible (0.415 µm) to 

infrared (14.235 µm) spectrum at nadir spatial resolutions of 1 km, 500 m, 

and 250 m (Qu & Kafatos, 2006). This is one of five instruments carried on 

board the Terra and Aqua satellites launched in December 1999 and May 

2002, respectively (Justice et al., 2002; Qu & Kafatos, 2006). The MODIS 



 

 12 

science team has made significant progress in characterizing the 

performance of the MODIS instrument, and have developed MODIS 

instrument data (Level 1B) and high-order geophysical products (Levels 2, 3 

and 4) (Justice et al., 2002). For example, MODIS data product MOD09A1 is 

constructed by calibrating reflectance for seven spectral bands within the 400 

nm to 2500 nm spectral region, and surface reflectance quality control flags 

at a resolution of 500 m pixels. Each MOD09A1 pixel contains the best 

possible observation during an 8-day period, selected on the basis of high 

observation coverage, low viewing angle, the absence of clouds or cloud 

shadow, and low aerosol loading (Vermote, Kotchenova, & Ray, 2011). 

Recently, MODIS time series have been applied to several pieces of urban 

expansion research in the analysis and implementation of land cover 

detection (Buyantuyev & Wu, 2009; Buyantuyev & Wu, 2012; Lunetta et al., 

2006).  
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CHAPTER 3 STUDY AREA AND DATA ACQUISITION 

3-1 STUDY AREA  

The study area comprises the main part of the Municipality of 

Ulaanbaatar; approximately 4000 km2 in which the urbanized area is located 

in the central region between mountains (Figure 1). The Municipality of 

Ulaanbaatar consists of nine administrative districts, which are sub-divided 

into 124 sub-districts, called “khoroos”. Two districts, Baganuur and 

Bagakhangai are excluded from the study area because of their remote and 

disparate locations. There are two national parks in the study area. One is 

the Gorkhi-terelj national park, located in the eastern part of the study area, 

which is a famous natural sightseeing spot with a beautiful landscape in close 

proximity to Ulaanbaatar. Although in principle a variety of environmental 

regulations and land use restrictions apply to this region, in reality humans 

heavily utilize large parts of the area, and increasingly it is put under the 

pressure of heavy grazing by livestock and tourist developments (The World 

Bank, 2009a). Another is the Bogd-khan national park, located to the south of 

the urban area, which is a protected holy foothill that was declared a nature 

reserve in 1778.  

In Ulaanbaatar, the average elevation, temperature, and annual 

precipitation are 1,573 m, -0.83 ℃, and 238.53 mm, respectively (Figure 2). 

The study area contains ten different types of land cover (Figure 3, Table 1)  

(Saandar & Sugita, 2004). The principal land covers are mountain meadow 
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steppe, mountain forest, and urban, which together make up 71% of the 

study area. Forested areas, mainly composed of larches, birches, and shrubs, 

are found in mountain taiga, mountain forest, and mountain meadow steppe. 

Grasslands are distributed across the entire study area except cropland, 

mountain taiga, and a part of urban, which are all affected by livestock 

grazing. 
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Figure 1. Study area. 
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Figure 2. Annual temperature and precipitation in study area. 
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Figure 3. Land cover types in study area. 

(Source: Saanda and Sugita, 2004) 
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Table 1. Land cover types and percentage of each area in the study area. 

(Source: Saanda and Sugita, 2004)  

  

Code Land cover Description Percentage 

of the area 

(%) 

CR Cropland Cropland 0.3 

MLP 
Mountain lowland 

pasture 

Sedge-rush-bent, bent-herb with participation of 

willow's grove 
1.9 

MSW 
Meadow and 

meadow-swamp 

Complex marsh: Lymegrass-sedge, grass-herb, 

achnatherum's grove with Russian thistle-herb  
2.3 

MS Meadow steppe Stony needlegrass-wormwood-herb 1.3 

MF Mountain forest 
Herb-grass, needlegrass-herb, fescue-herb, stand on 

larch and larch-birch forest 
23.0 

MMS 
Mountain meadow 

steppe 

Needlegrass-herb，blue grass-sedge-herb，little 

soddygrass-herb needlegrass-sedge-herb, 

fescue-herb in herbaceous larch-birch forest 

25.8 

MT Mountain taiga Mountain taiga forest 6.4 

RVM River valley meadow 
Herb-grass in combination with grove of willow and 

marshy sedge-bent-herb  
2.1 

SDS Steppe and dry steppe Needlegrass-little soddygrass-lymegrass 14.7 

UR Urban Khoroo areas  22.2 

  Total 100.0 
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The urban area is divided into three main areas: the city center area; 

ger areas; and others (Figure 4) (The World Bank, 2009b). The center of the 

city is located around Sukhbaatar Square, in front of the governmental palace, 

and has been extensively developed with high-rise offices and apartment 

buildings. Ger areas have developed mainly in suburban areas, and over 

recent years have rapidly expanded (Figure 5). Migrants typically relocate to 

the city by disassembling its ger (traditional Mongolian dwellings designed 

for a nomadic lifestyle, built easily from wood, and covered with felt), loading 

it and its contents on a truck, and reassembling it in Ulaanbaatar (Figure6) 

(Badarch, Batsukh, & Batmunkh, 2003). They claim open land, build 

khashaas – wooden fences– at the property boundary, and finally build a ger 

or a detached house on the enclosed land (Kamata et al., 2010). Today, 

migrants from rural areas continue to arrive in the city to claim their own land 

and build gers and khashaas (Figure 7). Ger areas are also found in the 

northern part of the study area, where developments mainly comprise 

summer camps, known as “zuslans”. These areas originally contained 

summer houses and second homes for city residents, but the area is now 

being exploited by new residents, and a large number of settlement clusters 

have now been established (Badamdorj, 2004). Although residential plots are 

found both in the city center and ger areas, those in the city center have 

experienced a gradual conversion to apartment blocks (Figure 8) (Kamata et 

al., 2010). Other areas of note within the study area include: parts of the 

forest, the riverside, grasslands, and industrial areas such as electronic 

plants, factories, and the airport. The Tuul River, one of the largest rivers in 
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Mongolia, runs to the south of the study area, and divides Ulaanbaatar north 

and south.  
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Figure 4. Land cover in urban areas.  

Two khoroos in the Songinokhanirkhan district and the Bayansurkh district are excluded 

because of their remote and disparate locations. 
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Figure 5. Typical landscape in ger areas. 
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Figure 6. Ger in the city center. 
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Figure 7. Residential plots in a fringe area of Ulaanbaatar. 
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Figure 8. Apartment construction in the city center. 
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Although Mongolia has abundant natural land resources, its 

population has been increasingly concentrated in the Municipality of 

Ulaanbaatar since the dramatic transition from a planned economy to a 

free-market economy in 1992, leading to a severely unbalanced population 

distribution in the country. In 2011, Ulaanbaatar contained 44% of the 

Mongolian population with an annual rate of increase of 4.6%, mainly 

because of internal migrations from rural areas (The data was obtained from 

National Statistical Office, Mongolia.) (Figure 9). During the period 2001–

2004, the number of in-migrants to Ulaanbaatar increased rapidly because of 

a revision of land policy implemented in 2003 (see below). During 2010–2011, 

the number of in-migrants living in Ulaanbaatar increased a little because of a 

natural disaster, called a “dzud,” affecting the whole of Mongolia. A dzud is a 

combination of a summer drought followed by heavy winter snows and low 

temperatures, during which livestock die of starvation due to an inability to 

find grass and fodder (UNFPA Mongolia, 2010). Following the loss of their 

livestock, many herders abandoned their homeland and migrated to 

Ulaanbaatar, lured by the opportunity of finding a job. 
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Figure 9. The population and in-migrants to Ulaanbaatar during the period 2000–2011. 

(The data was obtained from National Statistical Office, Mongolia.)  
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The Mongolian government has implemented land law reforms in 

the form of the “Law on Allocation of Land to Mongolian Citizens for 

Ownership” in 2003 to accelerate the development of a free market economy  

(Bruun & Odgaard, 1996; Byambadorj et al., 2011; K. C. Cheng, 2003; 

Kamata et al., 2010). This law has allowed Mongolians to own land for the 

first time in Mongolia’s history (Asian Development Bank, 2003; Batbileg, 

2007; Kamata et al., 2010). The new land tenure system introduced 

Mongolians to a combination of three land rights: “ownership,” for Mongolian 

citizens only; “possession rights” for up to 60 years, with possible extension, 

available to Mongolian citizens and joint ventures; and “land use rights,” valid 

for up to five years with possible extension, for which foreigners are also 

eligible (Kamata et al., 2010).  

Land ownership is tied to the land fee system, which the 

government introduced in 1997 under the “Law of Mongolia on Land Fees”  

(Kamata et al., 2010). However, the “Law on Allocation of Land to Mongolian 

Citizens for Ownership” stipulates that each household is entitled to own up 

to 700 m2 in Ulaanbaatar; up to 3,500 m2 in aimags (administrative units at 

prefectural level); or up to 5,000 m2 in soums (administrative units at county 

level). The associated land fee was set low: about 90% of the land fee up to 

700 m2 was originally exempt in Ulaanbaatar (Kamata et al., 2010). After 

some minor revisions, the land reform policy eventually came to stipulate that 

each citizen of Mongolia is allowed to privatize and possess one plot of land 

at no cost until 2018.  
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In general, a proper urban plan based on up-to-date and reliable 

spatial information is essential when dealing with urban expansion (Novack & 

Kux, 2010). Four urban plans formulated at a Russian urban planning 

institute were enforced between 1954 and 1986, while the current urban plan 

for Ulaanbaatar was developed by Mongolians in 2002; this was the first time 

that Mongolians had developed their own plan for Ulaanbaatar. However, the 

current urban plan has not helped control urban expansion owing to the lack 

of regulation and the loose association between the plan and land reform 

policy (Byambadorj et al., 2011). 

The main reason for the unrestricted development of ger areas is 

the clash of two different legislation frameworks for land management: 

between the current master plan and the land reform policy. The current 

urban plan of Ulaanbaatar seeks to challenge the legitimacy and permanency 

of these regions, which are viewed as being available only for temporary land 

use, while the land reform seeks to give ger areas formal, permanent, and 

legal status (Byambadorj et al., 2011). As a result, residential plots have 

become prevalent, particularly in the c ity’s fringes (Byambadorj et al., 2011; 

Kamata et al., 2010; The World Bank, 2009b).  

To remedy this situation, policy directions, such as the “Compact 

City” concept of the UB Master Plan 2030, which is the revision of the current 

urban plan under the assistance of Japan International Cooperation Agency 

(JICA) in 2002 (Japan International Cooperation Agency, 2009), have 

emerged more clearly in recent years to control spatial expansion and 
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promote high-density development for ger areas (Kamata et al., 2010). This 

new plan is expected to restructure and improve the situation in ger areas 

(Japan International Cooperation Agency, 2009). For example, the project 

proposes a land use zoning which controls development in land 

unsustainable for urbanization and conserves existing natural networks of 

forests, waterways, and green areas (Japan International Cooperation 

Agency, 2009). Although the activities of the project contain new attempts to 

reduce urban expansion that the conversion of ger areas into apartment 

buildings and the gradual improvement of urban services for existing ger 

areas are addressed in plan (Japan International Cooperation Agency, 2009; 

Kamata et al., 2010), the scientific understanding concerning urban 

expansion in Ulaanbaatar is essential because it is still vague about spatial 

dynamics of urban expansion. The government needs to monitor the urban 

expansion because it is still progressing by encroaching the land in the 

peripheral areas.  

 

3-2 DATA ACQUISITION 

For identifying time-series changes in urban surface, it is quite 

difficult to obtain the official governmental spatial data which represent the 

boundary and ownership of each residential plot on a GIS system in the 

Administration of Land Affairs, Geodesy, Cartography (ALAGaC) because of 

the security and privacy. Additionally, the ALAGaC suffers from the limited 
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availability of its database because of unsatisfactory or insufficient cadastral 

surveys and mapping, and inadequate registration of land owners (Kamata et 

al., 2010). This database is updated when people register their own land, 

while not a few residential plots remain unregistered. According to the study 

by Batbileg (2007), only 28.76% of household in Ulaanbaatar registered their 

own land to ALAGaC due to the inability to pay the registration fee or the 

insufficient advantage of the registration. Accordingly, GIS data for urban 

objects are derived from VHR imagery.  

All the remotely sensed imagery and GIS data for this study are 

listed in Table 2. VHR images from IKONOS for the year 2000 and from 

Quickbird for 2006 and 2008, ASTER data are acquired. For the 

implementation of pixel-based change analysis in land cover and the 

estimation of the environmental changes, MOD09A1 data for the period 

2000–2010 are prepared. Regarding MOD09A1 data, seven data that were 

lacking, due to the pre-observation of MODIS between 1 January and 25 

February 2000, were set to NA, to complete the full time-series datasets 

during the study period (i.e. 46 data × 11 years = 506 data).  

While the main data source is remotely sensed imagery, GIS data 

are supplementary obtained from JICA –The Study on City Master Plan and 

Urban Development Program of Ulaanbaatar City–. The GIS data on the 

boundary for the Municipality of Ulaanbaatar and khoroos, and the location of 

water kiosks were constructed by the Second Ulaanbaatar Services 

Improvement Project (USIP2), one of the key activities in Ulaanbaatar by the 
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World bank, to understand the urban structures in Ulaanbaatar in 2007 

(Japan International Cooperation Agency, 2009; The World Bank, 2012). 

Land cover data shown in Figure 3 and listed in Table 1 are 

obtained from Saanda and Sugita (2004). This data are utilized in Chapter 6 

to estimate the environmental changes. Although the original source of this 

data is old (investigated in 1981), this is solely useful database which 

summarize the vegetation on the land in 1981 into GIS data. 
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Table 2. Data acquired in this research. 

Data Period Frequency Spatial resolution 

IKONOS 2000 – 3.3 m 

Quickbird 2006, 2008 – 2.4 m 

ASTER 2007 – 26 m 

MOD09A1 2000–2010 8 days 500 m 

Location of water kiosk 2007 - - 

Administrative boundary - - - 

Land cover 1981 - - 
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CHAPTER 4 RESIDENTIAL-SCALE MONITORING AND 

MODELING OF URBAN EXPANSION IN A FRINGE AREA 

4-1 INTRODUCTION 

Since residential plots have become prevalent especially in the 

urban fringe, it is quite important to monitor the detailed process of urban 

expansion. However, its obstacle is a lack of useful spatial data for land use 

have remained because the availability of this official data is not 

straightforward. The approach for extracting object-based spatial data from 

VHR imagery is an alternative way to build spatial database. Owing to the 

development of VHR satellite sensors in recent years, each urban object can 

be individually identified. Therefore, the aim of this chapter is to monitor the 

urban expansion by identifying time-series land cover changes at a 

residential-scale level in the fringe of Ulaanbaatar. In addition, an attempt is 

made to clarify the spatial characteristics of the urban expansion by 

constructing a spatial model and to predict the distribution of settlements in 

near future. Evaluation of spatial characteristics and prediction of a future’s 

pattern of the distribution of settlements would be important  for use in urban 

planning applications to deal with urban expansion. 
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4-2 STUDY AREA 

A fringe of the urbanized area of Ulaanbaatar where the ger area 

has been expanding during the last decade is selected. The study area is 

located in the western part of Ulaanbaatar between 106°43′ E and 106°52′ E, 

and 47°54′ N and 47°56′ N, with a total area of approximately 33 km2 (Figure 

10). One of the main roads, named Enkhtaivan Avenue, runs in an east-west 

direction along the southern edge of the study area. Residential plots are 

mainly found on flat land and hillsides located on the north side of Enkhtaivan 

Avenue. The south side of the road is a part of the city center where some 

apartments and commercial facilities are found. The other type of land uses 

is constitutes by factories, schools, and governmental facilities. The rest 

parts of land are open land constituted by grasslands and bare lands. There 

are highly affected and degraded by anthropogenic activities. 
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Figure 10. Location of the study area. 
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4-3 METHODOLOGY 

Logistic regression models are of great utility when evaluating 

spatial characteristics relating to urban expansion (J. Cheng & Masser, 2003; 

Dubovyk et al., 2011; Fang et al., 2005; Hu & Lo, 2007; Huang, Zhang, & Wu, 

2009; Petrucci, Salvati, & Seghieri, 2004; Sudhira et al., 2004; Zeng, Wu, 

Zhan, & Zhang, 2008). A wide variety of spatial modeling techniques has 

been employed to determine the spatial characteristics of urban expansion 

processes, including cellular automata (Fang et al., 2005; Li, Sato, & Zhu, 

2003), agent-based modeling (Augustijn-Beckers et al., 2011; Matthews, 

Gilbert, Roach, Polhill, & Gotts, 2007), and artificial neural networks (Dai, Wu, 

Shi, Cheung, & Shaker, 2005; Pijanowski, Tayyebi, Delavar, & Yazdanpanah, 

2009). However, logistic regression models have been shown to be 

particularly effective in the analysis of land use change owing to their 

explanatory power and spatial explicitness (J. Cheng & Masser, 2003; 

Dubovyk et al., 2011; Poelmans & Van Rompaey, 2010). For example, 

Cheng and Masser (2003) applied a logistic regression model to find and 

compare determinants of urban growth patterns for Wuhan City, China, for 

the period 1993–2000. They found the major determinants to be urban road 

infrastructure and pre-existing developed areas and suggested that the role 

of master planning was diminishing. Similarly, Dubovyk et al. (2011) applied 

a logistic regression model to analyze the driving forces of informal 

development in Istanbul, Turkey, and were able to identify probable locations 

of new informal settlements.  
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Although such models are known to be effective for the analysis of 

urban expansion, problems can arise if spatial autocorrelation is found in the 

residuals of models (J. Cheng & Masser, 2003; Dubovyk et al., 2011; Huang 

et al., 2009), because such models do not typically consider spatial 

dependence (J. Cheng & Masser, 2003). Thus, spatial autocorrelation, which 

violates the assumption of independent residuals, is often ignored when 

logistic regression models are used because the statistical methodology 

typically adopted to assess autocorrelation is not well developed for logistic 

regression models (Hu & Lo, 2007). Such models should not be considered 

appropriate for use if spatial dependence is detected in the residuals 

because this dependence suggests that the models are unable to capture all 

of the spatial features expressed in the data (Overmars, de Koning, & 

Veldkamp, 2003). Improper model use in this manner can lead to unreliable 

estimation of model parameters and incorrect conclusions (J. Cheng & 

Masser, 2003; Dubovyk et al., 2011).  

To overcome this problem, autologistic regression models and 

random sampling schemes have been developed (J. Cheng & Masser, 2003; 

Hu & Lo, 2007; Petrucci et al., 2004; Poelmans & Van Rompaey, 2010; Zeng 

et al., 2008). An autologistic regression model incorporates components 

describing spatial autocorrelation into an existing logistic regression model. 

However, as noted by Dormann (2007) , such models consistently 

underestimate the effects of environmental variables in the model and 

produce biased estimates compared to non-spatial logistic regression. 
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Random sampling has been proposed as an alternative means of minimizing 

spatial autocorrelation in model residuals, where sampled pixel points are 

selected randomly to utilize the model while maintaining spatial 

independence among points (Hu & Lo, 2007). Thus, in the present study, a 

random sampling scheme was employed in the analysis of a logistic 

regression model and reduced the number of samples until no spatial 

autocorrelation remained in the residuals statistically. In total, 500 points 

were sampled randomly in the study area. 

A logistic regression model is a multivariate analysis model where 

there is a nonlinear relationship between the dependent variable and 

independent variables. A logistic regression model is expressed as follows: 

y=loge (
P(z)

1-P(z)
) =a+b1x1+b2x2+⋯+bmxm+ε 

(

(4-1)  

where 𝑃(𝑧)  is the probability of the dependent variable 𝑧 ; 

x1, 𝑥2, ⋯ 𝑥𝑚  are independent variables; the parameter 𝑎  is an intercept; 

𝑏1, 𝑏2, … , 𝑏𝑚  are regression coefficients; and 𝜀 is a binomially distributed 

error. The variable 𝑧 is binary (0 or 1) and represents the existence of a land 

use. 𝑃(𝑧) represents the probability of the occurrence of a land use and its 

value is between 0 and 1. Regression coefficients represent the contribution 

of each independent variable on 𝑃(𝑧) . A positive regression coefficient 

indicates that the independent variable supports an increase in the 
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probability of change, whereas a negative indicates the opposite effect (J. 

Cheng & Masser, 2003).  

This logistic regression model was evaluated in terms of spatial 

dependency and performance. Spatial dependency was tested by calculating 

Moran’s I for residuals under a normality assumption, such that  each value 

represents an independent data point drawn from a single normal distribution. 

The null hypothesis states that the spatial distribution of residuals is not 

influenced by spatial autocorrelation. The performances of this model was 

evaluated according to the area under the receiver operating characteristics 

(ROC) curve method, also known as the area under curve (AUC) method 

(Gimblett et al., 2001; Muñoz & Felicísimo, 2004; Overmars et al., 2003; Park, 

Jeon, Kim, & Choi, 2011). The AUC method has been used widely in 

image-based studies and represents the performance of diagnosis and event 

occurrence by plotting true- and false-positive proportions (Fang et al., 2005; 

Swets, 1988). In this context, true-positive, plotted on the vertical axis, is the 

ratio of the number of pixels correctly classified as positive in the diagnosis to 

the total number of pixels classified as positive. Conversely, false-positive, 

plotted on the horizontal axis, refers to the ratio of the number of pixels 

incorrectly classified as positive in the diagnosis to the total number of pixels 

classified as negative (Fang et al., 2005; Park et al., 2011; Swets, 1988). The 

AUC value can range from 0.5 (no discrimination) to 1 (perfect 

correspondence) (Swets, 1988), where the true- and false-positive 

proportions are equal at 0.5. 
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4-4 DATA PROCESSING  

In the present study, feature-oriented GIS data of urban 

components were constructed from VHR satellite imagery to explore 

processes of urban expansion. GIS data relating to residential plots, 

buildings, roads, main roads, and other land uses (i.e., factories, schools, 

governmental facilities, and others) were constructed from IKONOS images 

for 2000 and Quickbird images for 2006 and 2008. Images for 2000 and 2006 

were compared with the characteristics of the study area before and after 

implementation of the land reform policy in 2003, whereas the image for 2008 

was selected to monitor the characteristics achieved under continuation of 

the policy. Individual packages of residential plots were identified based on 

the enclosing khashaas and digitized them manually in a vector format along 

with other land use types (e.g., buildings including apartments and 

commercial facilities, roads) based on the images for each observed year 

(Figure 11). Main roads that were paved and had one or more lanes in 2000 

were digitized separately using IKONOS imagery.   

For the implementation of the logistic regression model, distances 

from roads, main roads, and water kiosks were calculated and combined with 

binary data representing the existence of private land in 2000 and 2008. In 

addition, elevation and slope were calculated based on ASTER GDEM data.  

The variables of this logistic regression model are listed in Table 3 and Figure 
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12. All independent variables were standardized according to the following 

formula: (𝑥 − 𝑚𝑒𝑎𝑛(𝑥)) 𝑆𝑡𝑑(𝑥)⁄ ). This enabled comparison of the quantitative 

effects of regression coefficients between variables. The calculation and 

evaluation of the model were conducted in the R software package. 
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Figure 11. Examples of GIS data digitized from VHR imagery. 

Left: A main road (green line) and other roads (purple lines) 

Right: Residential plots (green polygons) enclosed by khashaas 

0 50 10025 m

Main roads Roads Residential plots

±
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Table 3. Variables in logistic regression model. 

 

  

Type of factor Variable Description 
Nature of 

variable 

Dependent Residential plots in 2008 
0 : No residential plots 

1 : Existence of residential plots  
Binary 

Independent Residential plots in 2000 
0 : No residential plots 

1 : Existence of residential plots  
Binary 

Independent 
Distance from roads in 

2000 
Distance from roads in 2000 (m) Continuous 

Independent Distance from main roads Distance from main roads (m) Continuous 

Independent Elevation Elevation (m) Continuous 

Independent Slope Slope (°) Continuous 

Independent Distance from water 

kiosks 

Distance from water kiosks (m) Continuous 
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Figure 12. Raster layers of independent variables in logistic regression model. 

Residential plot in 2000 is excluded.
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4-5 RESULTS 

The spatial distributions of residential plots in 2000, 2006, and 2008 

are illustrated in Figure 13. These time-series maps demonstrate significant 

expansion of areas occupied by residential plots. The expansion of 

residential plots and roads was particularly prominent during the period 

2000–2006: residential plots were found primarily on flat terrain along main 

roads in 2000, whereas these plots had spread across hillsides and even into 

steep areas in the period leading up to 2006 and 2008. Road extension 

occurred primarily in mountainous areas, as residential plots spread along 

roads over the years. The number of plots of residential plots increased from 

6,747 in 2000 to reach 12,656 in 2006 and 13,064 in 2008 (Table 4). Although 

the distribution of buildings remained mostly unchanged throughout the study 

period, the rate of change of the number of residential plots decreased from 

87.58% during the period 2000–2006 to 6.05% during the period 2006–2008. 

Moreover, the proportion of residential plots in the study area increased from 

17.69% in 2000 to 30.58% in 2006 and 32.00% in 2008. Road extension is 

also apparent in the time series, with road length increasing from 409.9 km in 

2000 to reach 576.5 km in 2006 and 619.3 km in 2008. Thus, the rate of 

increase of road length was lower (higher) than that of private land during the 

period 2000–2006 (2006–2008). 
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Figure 13. VHR images and maps detailing residential plots, buildings, roads, main roads, 

and other land uses in 2000, 2006, and 2008.  

2000 



 

 48 

 

Figure 13.  (Continued). 

2006 
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Figure 13. (Continued). 

2008 
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Table 4. Changes in the number of residential plots, proportion of residential plots and 

buildings within the study area, and the total length of roads. 

 2000 2006 2008 
Change from 

2000 to 2006  

Change from 

2006 to 2008  

Number of residential plots  6,747 12,656 13,064 5,909 408 

(% change) - - - (87.58) (6.05) 

Proportion of residential 

plots in the study area (%) 
17.69 30.58 32.00 12.89 1.42 

(% change) - - - (72.82) (5.88) 

Proportion of buildings in the 

study area (%) 
1.70 1.84 1.84   

(% change) - - - (0.14) (0.00) 

Total length of roads (km) 409.9 576.5 619.3 166.6 42.8 

(% change) - - - (40.64) (7.42) 
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The results obtained using the logistic regression model are 

presented in Table 5. The distribution of residential plots in 2008 were found 

to exhibit a statistically significant positive relationship with the distribution of 

residential plots in 2000. Conversely, a statistically significant negative 

relationship was found between the distribution of residential plots in 2008 

and distance from roads and water kiosks. No statistically significant 

relationships were found between the distribution of residential plots and 

distance from main roads, elevation, or slope. 

Values of Moran’s I for the residuals of the model were found to be 

0.025 and statistical testing of autocorrelation in the residuals indicated no 

statistical significance. Consequently, the model can be considered well 

developed in terms of spatial dependence. The AUC value in the model was 

0.838, indicating a prediction accuracy of 83.8%.  
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Table 5. Statistical results for logistic regression model. 

  Coefficients 

Dependent variable Residential plots in 2008  

Independent variables 

(Intercept) 

Residential plots in 2000 

Distance from main roads 

Distance from roads in 2000 

Elevation 

Slope 

Distance from water kiosks 

-0.636 *** 

1.060 *** 

0.053 

-0.551 * 

0.090 

-0.164 

-0.781 *** 

AUC value  0.838 

Moran’s I in residuals  0.025 

    

   *: Statistically significant at the 5% level (p-value ≤ 0.05) 

   ***: Statistically significant at the 0.1% level (p-value ≤ 0.001) 
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4-6 DISCUSSION 

Until recently, studies concerning the spatial modeling of urban 

expansion have found it difficult to incorporate the effects of disaggregated 

human behaviors on urban surfaces. Land use changes in Ulaanbaatar have 

been analyzed at the metropolitan scale using MODIS, Landsat, and SPOT 

imagery in some previous studies (Amarsaikhan et al., 2009). However, 

residential-scale land use changes, which can depict urban expansion more 

precisely, have not been investigated in detail to date owing to the lack of 

time series of feature-oriented data reflecting urban components. In this 

context, one of the primary achievements of the present study is the 

construction of residential-scale GIS datasets and the use of these datasets 

to express urban expansion in detail. (Figure 13). 

Habibi & Asadi (2011) noted that the most important factors driving 

urban expansion are as follows: population and income growth; the low price 

of land and access to appropriate housing, the low price of transportation 

systems; the promotion of a commuting network; new centers for jobs that 

are located in suburbs; and the use of infrastructure, subsidies, and public 

services. However, it is also important to understand the spatial dynamics 

and patterns of urban expansion when developing policies and implementing 

sustainable development policies for a given region (Habibi & Asadi, 2011; 

Sudhira et al., 2004). The results obtained using the logistic regression 

model demonstrate the spatial characteristics of the distribution of residential 

plots. The development of private land has a positive feedback effect, 
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fostering the development of further private land through the neighborhood 

effect Moreover, our results confirm the aggregated (rather than scattered) 

formation of ger-areas. The distance from roads appears to be one of the 

primary forces governing the formation of ger-areas. Most of the roads in 

ger-areas began as informal tracks to private land in response to residents’ 

demands for better access to social and public infrastructure. Subsequently, 

these tracks evolved in a haphazard manner to become earthen roads 

(Kamata et al., 2010). Based on these results, it is clear that road 

accessibility is important for migrants when selecting a location for their own 

private land. Water kiosks are also a key factor controlling the formation of 

ger-areas. To be able to survive in ger-areas, residents must purchase water 

at water kiosks when required (Kamata et al., 2010) No house or ger in any 

ger area has a private connection to a water distribution network, so 

residents have to purchase water at kiosks. In a blueprint of development 

strategy, water kiosks are located within 500 m such that each serves 

approximately 900–1,200 people (Kamata et al., 2010).  

Although we found no significant relationship between distance 

from main roads and the distribution of private land, our model results 

indicate that land far from main roads has been developed most recently, 

likely because most of the land along or near main roads has already been 

occupied by private land, buildings, or other land cover types. Similarly, 

elevation and slope, which are indicators of landform, do not appear to have 
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impeded the recent development, although the newer development appears 

to occur primarily at higher elevations and in areas of flatter slope.  

Potential “hot spots” for the future development of residential plots 

can be estimated spatially by comparing regression coefficients. These hot 

spots, which are typically closer to water kiosks and roads, exhibit much 

greater probability of being developed. Accordingly, residential plots are 

likely to become concentrated around these hot spots, exhibiting spatial 

characteristics consistent with the aggregated formation of ger-areas during 

the period 2000–2008. Figure 14 illustrates the predicted probabilities for 

future development of private land derived from the results of our logistic 

regression model during 2008–2016. These results suggest that 

development is most likely to occur in unoccupied land adjacent to existing 

private land. Although these predictions do not reflect patterns of private land 

development considering disaggregated human behaviors, our results may 

still provide valuable insight into the future development of ger-areas and 

their spatial relationships with geographical factors. In particular, our results 

demonstrate that social infrastructure exhibits a much closer relat ionship 

than natural geographical factors with the formation of ger-areas. 

The models used in the present study are subject to data 

constraints, which is a universal problem in urban land use modeling (Huang 

et al., 2009). Accordingly, it can prove difficult to integrate all possible factors 

affecting the expansion of ger-areas. However, results obtained using more 

complex models that include most of the factors that could possibly affect 



 

 56 

urban expansion are generally difficult to interpret accurately. Accord ingly, 

such results do not highlight the advantages of mathematical models 

particularly well. Although the models applied in the present study are simple, 

they can reflect real situations to a considerable extent while avoiding spatial 

autocorrelation in the residuals. 
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Figure 14. Predicted probabilities of development of residential plots based on the logistic regression mode , 2008–2016. 
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4-7 CONCLUSION 

In this study, more realistic characterization of spatial expansion 

processes of ger areas has been achieved at the residential scale than was 

possible previously by utilizing VHR imagery to observe time-series changes 

of the formation of ger areas in the fringe of Ulaanbaatar. Furthermore, the 

application of the logistic regression model produced some fruitful 

quantitative insights regarding the patterns and possible controlling factors 

for the expansion of residential plots. Consequently, this study demonstrated 

that failures in land management resulted in the expansion of ger areas in the 

fringes of Ulaanbaatar. This expansion resulted in deterioration in living 

standards and induced a disordered spatial pattern of urban fringes from 

which it will be difficult to recover with the present urban plan. Most demand 

for land is associated with residential use; accordingly, the associated 

concentration of (and increase in) population is likely to give rise to an 

unprecedented land use situation. Urgent action by both urban planners and 

decision makers is necessary to mitigate the effects of urban expansion.   
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CHAPTER 5 PIXEL-BASED LAND COVER CHANGE 

DETECTION IN URBAN AREAS  

5-1 INTRODUCTION 

Appropriate strategies for managing urban expansion must be 

identified and effectively employed (Angel et al., 2011). It is therefore obvious 

that an analysis of urban expansion would assist regional planners and 

decision-makers in understanding growth patterns, thereby allowing plans to 

be made that include certain essential infrastructures (Verbesselt, Hyndman, 

Newnham, et al., 2010). Detecting and characterizing changes in land cover 

is a natural first step towards identifying and understanding the drivers and 

mechanisms for such change (Verbesselt, Hyndman, Newnham, et al., 

2010).  

A new approach is proposed, using the Breaks For Additive 

Seasonal and Trend (BFAST) method, which is a type of wave decomposition 

technique developed to overcome the limitations of the methods described in 

section 2.2 (Verbesselt, Hyndman, Newnham, et al., 2010). It is much more 

useful in estimating land cover change than other techniques, because it is 

able to robustly and automatically derive both the time and location of land 

cover changes from NDVI time series, without needing to select a reference 
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period, set thresholds, or define a change trajectory (Verbesselt, Hyndman, 

Newnham, et al., 2010; Verbesselt, Hyndman, Zeileis, & Culvenor, 2010) .  

Although the BFAST method has been shown to be useful, it has not 

previously been used in an urban expansion analysis. It could be applied 

widely and should therefore be made more available, to allow it to be a 

practical tool for urban planners when monitoring urban expansion. A robust 

and feasible method is needed to estimate land cover change in Ulaanbaatar 

in particular, because urban expansion is rapidly accelerating in this 

developing city. Therefore, to estimate changes in land cover in the urban 

area of Ulaanbaatar, BFAST method is applied and explored to be a tool for 

urban expansion analysis.  

 

5-2 STUDY AREA  

This analysis is focused on the urban area, comprising 122 khoroos 

in seven districts of the Municipality of Ulaanbaatar, with a total area of 

approximately 756.25 km2 (see Figure 4). Two khoroos in the 

Songinokhanirkhan district and the Bayansurkh district are excluded from the 

study area because of their remote and disparate locations.  
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Since natural land covers are not as affected by anthropogenic land 

cover changes, compared to urban surfaces (Lunetta et al., 2006), the forests 

and the Tuul River are masked from the analysis in order to focus on land 

cover changes caused only by anthropogenic disturbances. 

 

5-3 METHODOLOGY  

BFAST integrates the iterative decomposition of time series data 

into trend, seasonal, and remainder components, with methods for detecting 

changes (Figure 15) (Verbesselt, Hyndman, Newnham, et al., 2010). The 

model is used iteratively to fit a piecewise linear trend and a seasonal model, 

given by the equation: 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡  (t=1,…, n) (5-1)  

where 𝑌𝑡 is the observed data at time t, 𝑇𝑡 is the trend component, 

𝑆𝑡  is the seasonal component, and 𝑒𝑡  is the remainder component 

(Verbesselt, Hyndman, Newnham, et al., 2010). It is assumed that 𝑇𝑡  is 

piecewise linear with segment-specific slopes and intercepts on the different 
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segments of 𝑚 + 1 (𝑚 ≥ 0). Thus, there are m breakpoints 𝜏1
∗,…, 𝜏𝑚

∗ , such 

that: 

𝑇𝑡 = 𝛼𝑖 + 𝛽𝑖𝑡    (𝜏𝑖−1
∗ < 𝑡 < 𝜏𝑖

∗) (5-2) 

where i = 1, . . . , m and we define 𝜏0
∗ = 0  and 𝜏𝑚+1

∗ = 𝑛 . 𝑆𝑡 

represents the piecewise phenological cycle on different 𝑝 + 1  ( 𝑝 ≥ 0 ) 

segments divided by the seasonal breakpoints, 𝜏1
#,…, 𝜏𝑝

# (𝜏0
# = 0 and 𝜏𝑝+1

# =

𝑛), shown as: 

𝑆𝑡 = ∑ [𝛾𝑗,𝑘 sin (
2𝜋𝑘𝑡

𝑓
) +  𝜃𝑗,𝑘 cos (

2𝜋𝑘𝑡

𝑓
)]𝐾

𝑘=1    (𝜏𝑖−1
# < 𝑡 < 𝜏𝑖

#) (5-3)  

where the coefficients are 𝛾𝑗,𝑘  and 𝜃𝑗,𝑘 , K is the number of 

harmonic terms, and 𝑓 is the frequency. We employed the harmonic model 

proposed by Verbesselt et al., (2010) which sets K = 3 in eq. 5-3. This model 

has a robust approach that avoids noise, and parameters that can be easily 

used to characterize phenological change (Verbesselt, Hyndman, Zeileis, et 

al., 2010). The frequency is set as f = 46 for annual observations of an 8-day 

time series in this study. The remainder component is the remaining variation 

in the data beyond that defined by the seasonal and trend components 

(Verbesselt, Hyndman, Zeileis, et al., 2010).  
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Breakpoints in trend and seasonal components are detected 

iteratively (Jong, Verbesselt, Schaepman, & Bruin, 2012; Verbesselt, 

Hyndman, Newnham, et al., 2010; Verbesselt, Hyndman, Zeileis, et al., 

2010) as follows: 1) breakpoints 𝜏1
∗ ,…,  𝜏𝑚

∗  are estimated using the 

residuals-based moving sum (MOSUM) test, and are assessed by minimizing 

Bayesian information criterion (BIC) from the seasonally adjusted data 

𝑌𝑡 − �̂�𝑡 , where �̂�𝑡 is first found by the STL method (R Development Core 

Team, 2011); 2) �̂�𝑡, �̂�, and �̂� are estimated using robust regression based 

on M-estimations; 3) breakpoints 𝜏1
# ,…,  𝜏𝑝

#  are similarly estimated by 

MOSUM and BIC from the de-trended data 𝑌𝑡 − �̂�𝑡; 4) revised �̂�𝑡 is estimated 

based on the M-estimation; 5) the estimation of parameters is iteratively 

performed until the number and position of breakpoints are unchanging.  

All parameters above are determined automatically. BFAST 

requires only the parameterization of the minimal segment size between 

potentially detected breaks (Schucknecht, Erasmi, Niemeyer, & Matschullat, 

2013); in this study, this was set to two years.  

 

5-4 DATA PROCESSING AND IMPLEMENTATION  
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BFAST is implemented through the ndvits package in the R 

statistical software (Frelat & Gerard, 2011; R Development Core Team, 

2011). Interpolated time-series images were clipped along the boundary of 

the study area, and datasets were then extracted in chronological order by 

the ExtractFile function within the R-ndvits package. In this study, a high 

frequency of breakpoints is found in the trend components during the period 

2000–2010 (e.g. Figure 15). Since the trend component represents gradual 

changes due to interannual climate variability or land degradation (Jong et al., 

2012; Verbesselt, Hyndman, Newnham, et al., 2010), its breakpoints do not 

assist in the detection of land cover changes on urban surfaces well. Instead, 

breakpoints in the seasonal component do indicate changes in seasonal 

trend patterns, and therefore we focus only on the breakpoints in these 

seasonal components, which could represent a change in land cover.   
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Figure 15. Fitted seasonal, trend, and remainder components for MODIS time series during 

the period 2000–2010, generated by BFAST method. 

The dashed lines represent the dates of detected breakpoints, together with the ir 

confidential intervals (red).  
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5-5 RESULTS  

The BFAST method was implemented in the study area to detect 

the number and timings of breakpoints in the seasonal components. The 

frequency of detection of seasonal components changes during the period 

2000–2010 (Figure 16). Changes are detected in 22.51% of the study area, 

and are mostly seen just once during the 11-year period. Since the forest and 

Tuul River areas are masked, the changes are detected within the areas 

affected by anthropogenic disturbances. These areas are distributed 

spatially in locations governed by the extent of ger areas, the internal 

development of ger areas, and land degradation due to anthropogenic 

activities, such as the development of earthen roads. The main concentration 

of detected change is around the edge of the city center, corresponding to 

locations in and around ger areas. A smaller number of breakpoints are found 

in the zuslan areas in the northern part of the study area. The temporal 

periods of the detected seasonal component changes are shown in Figure 17, 

and the timing of the changes estimated by BFAST are summarized each 

year to facilitate a comparison, similar to that performed by Verbesselt et al. 

(2010). In the areas around the city center, change was mostly detected 

during 2004 and 2005, and it is clear that the later a change is detected, the 

further that area will be from the city center (see Figure 17). Most of the 
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change occurred within the suburban areas between the years 2005 and 

2007.  

Significant difficulties were encountered in evaluating the 

performance of change detection methods, and result from an inability to 

adequately characterize outcome accuracies (Lunetta et al., 2006). 

Therefore, in order to verify that our detected results are in accordance with 

actual land cover changes, the spatial distribution of detected areas in a 

sample area was compared with bi-temporal VHR images from IKONOS in 

2000, and Quickbird in 2008 (Figure 18). Apartments are illustrated in the 

southern portion, ger areas in the central part, and mountainous areas in the 

northern part of the sample area. Each residential plot is colored to facilitate 

the identification of the extent of ger areas. An expansion of ger areas, shown 

by the increase of residential plots towards the northern mountainous area, 

was clearly observed in the bi-temporal VHR images. In comparison with the 

BFAST data, few breakpoints of seasonal component changes are found in 

the apartment areas, while many are found in ger areas, mostly 

corresponding to areas experiencing internal development of ger areas, or 

the conversion of open lands to ger areas. Although some pixels are false 

findings of land cover changes, it is evident here that the spatial distribution 

of detected changes corresponds well to the areas of expansion. 
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Figure 16. Spatial distribution of the frequency of seasonal component changes. 
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Figure 17. Spatial distribution of the timing of seasonal component change occurrences (showing only the first detected changes).  
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Figure 18. Spatial distribution of detected changes in the sample area and the expansion of the ger area observed by bi-temporal images in 2000 

and 2008. 
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5-6 DISCUSSION 

Until recently, the expansion of urban areas from the city center 

outwards to peripheral areas was often confirmed by observing an urban 

surface with satellite images (J. Cheng & Masser, 2003; Habibi & Asadi, 

2011; Irwin, Bockstael, Hg, Puga, & Ma, 2007; Sexton et al., 2013; X. J. Yu & 

Ng, 2007). However, such an approach to understanding changes in land 

cover caused by urban expansion has been insufficient, because most 

studies have applied change detection techniques to less-frequently 

observed time-series images such as those from Landsat and SPOT (Deng 

et al., 2008; Dubovyk et al., 2011; Jat et al., 2008; Rojas et al., 2013; X. J. Yu 

& Ng, 2007; Zanganeh et al., 2011). These satellites could not capture ger 

areas precisely due to the insufficient spatial resolution. Furthermore, the 

patterns of change on urban surfaces are also not clear, especially in terms 

of their temporal characteristics. However, a MODIS satellite has the 

advantage of performing observations on a regular basis (although the 

images are of a lower resolution than those from Landsat and SPOT), and by 

using the break points detected by BFAST in the seasonal components, we 

were able to identify when and where the land cover changed. 

Results from a BFAST calculation over sample areas of open land, 

an area converted from open lands to ger areas, and an area of apartment 
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buildings, indicate the different wavelet characteristics of each land cover 

type (Figure 19). Although it was difficult to interpret the differences between 

each type of land cover using the observed data and the trend component, 

the characteristics were captured well by the seasonal component. The ger 

area (after the breakpoint in Figure 19 (b)) and the apartment area (Figure 19 

(c)) have a notably strong cyclic interannual variation with one peak in each 

year, while the hilly open areas (Figure 19 (a), and the period before the 

breakpoint in Figure 19 (b)) have a less obvious periodicity. The breakpoint 

shown in Figure 19 (b) indicates the structural change of the seasonal 

component and gives a profound insight into the changes of land cover from 

the NDVI time series. In this way, use of the NDVI time series, particularly by 

BFAST, is able to describe land cover changes. 

The results show that land cover changes occurred at the edge of 

the city center region in Ulaanbaatar (Figure 16), and that the changes have 

tended to occur at a later time with increasing distance from the city center 

(Figure 17). Due to the land reform legislation, the expansion of urban areas 

in Ulaanbaatar has accelerated since 2003. In the first stage of policy 

implementation, only lands at that time under unadmitted possession were 

privatized to families who lived on land in ger areas (Batbileg, 2007), and only 

those who lived there had the right to possess land. After this first wave of 

privatization, open land around the city center became attractive to new 
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migrants, and ger areas developed rapidly. The first step to claiming private 

land in open areas was the building of khashaas to clarify the property 

boundary, as described above, and as a result a vast number have been 

erected in ger areas (Byambadorj et al., 2011). The expansion of ger areas 

has also occurred to the north and north-west of the city, which are 

predominantly mountainous areas with steep slopes (Badamdorj, 2004). 

Previously, the BFAST method has only ever been applied in areas 

of rich vegetation, for instance, with the aim of distinguishing plantation land 

from grassland and detecting forest fires (Gitas, Katagis, & Toukiloglou, 

2012; Lambert, Jacquin, Denux, & Chéret, 2012; Schucknecht et al., 2013; 

Verbesselt, Hyndman, Newnham, et al., 2010; Verbesselt, Hyndman, Zeileis, 

et al., 2010). We have here identified that the BFAST method is also able to 

monitor land cover changes caused by urban expansion, however we 

acknowledge that the following lessons may be learned from further study. 

Firstly, in this investigation, we focused only on the seasonal component 

changes of BFAST, instead of the trend component changes. It is known that 

the detection of the trend component change in BFAST is much more 

sensitive than that of the seasonal component change (Verbesselt, Hyndman, 

Newnham, et al., 2010), as illustrated by the larger number of breakpoints in 

the trend component (areas of detected change were found to comprise 

39.17% of the study area by this method). However, the trend component 
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includes abrupt and gradual changes in the NDVI time series (Verbesselt, 

Hyndman, Newnham, et al., 2010), which are regarded as disturbances and 

noise against the seasonal component changes (Verbesselt, Hyndman, 

Zeileis, et al., 2010). Consequently, we were not able to capture any 

meaningful information relating to land cover changes from the trend 

component. Secondly, in any investigation, the study period should be of a 

sufficient length to grasp the target phenomenon. We set the study period to 

be 11 years, from 2000 to 2010, and were required to exclude the first two 

years (2000 and 2001) and last two years (2009 and 2010) in order to set the 

segment size as two years. When conducting an analysis of time-series 

satellite images, this limited period is still considered to be relatively short for 

the detection of long-term land cover change (Verbesselt, Hyndman, 

Newnham, et al., 2010; White et al., 2009). Urban expansion is still 

progressing in Ulaanbaatar and monitoring should be continued in order to 

manage it. Continuous long-term observations on a regular basis and the 

construction of a spatio-temporal database would be useful in further 

understanding interannual spatial phenomena (Sexton et al., 2013). Thirdly, 

it is essential to precisely distinguish land cover types. Forests and the Tuul 

river were masked to focus on the urbanized areas profoundly affected by 

anthropogenic disturbances, although many changes were also found in the 

masked areas covered by rich vegetation. The Tuul river and the forests have 

different characteristics in the NDVI time series, and are more highly affected 
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by natural disturbances than human ones. Although it is currently difficult to 

acquire precise land classification maps in rapidly developing urban areas, 

validation data for change detection need to be collected, to enable future 

analysis to provide sufficient documentation of change events (i.e., before 

and after) (Lunetta et al., 2006). Ground-based land cover maps also need to 

be developed to understand the detailed land use and land cover changes. 

Finally, an accurate assessment of the result has yet to be developed. An 

assessment of the identified areas in which land cover has changed could be 

carried out using traditional methodologies derived from a confusion or error 

matrix (Foody, 2002; Lunetta et al., 2006). However, as mentioned above, 

time-series spatial information of the entire land cover is insufficient for the 

assessment of land cover changes, especially in terms of temporal changes, 

and although IKONOS and Quickbird images give fully detailed land cover 

data, the frequency of observations and their spatial ranges are limited. New 

remote sensing instruments such as RapidEye, which has a spatial 

resolution of 5 m and was launched in 2008, would provide great 

opportunities for this large-scale assessment as it has wider spatial extents 

compared to IKONOS and Quickbird.  

Although these approaches can be considered in further studies, 

we believe that the use of BFAST in this investigation has provided 

meaningful results that are applicable in the monitoring of urban expansion 
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over large geographic regions. In addition, the application of BFAST, 

developed alongside a maximum utilization of MODIS time series, which 

cover the globe, and is available free of charge, could facilitate easy analysis 

in other regions.  
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 Figure 19. Results of applying BFAST method to sample sites.  

(a) open land; (b) area converted from open land to ger-area; and (c) apartment. 
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5-7 CONCLUSIONS  

Reliable information about land cover and land cover changes 

caused by urban expansion is clearly needed to enable informed planning 

decisions (Angel et al., 2011), because unplanned growth of ger areas and 

the unprecedented pace of urbanization in Ulaanbaatar have resulted in 

unemployment, traffic congestion, air pollution, and other negative 

environmental impacts (Kamata et al., 2010). The findings in this study could 

contribute to an understanding of the characteristics of urban expansion and 

consequently the countermeasures that must be taken to halt or minimize 

future haphazard urban expansion. 

The BFAST method was applied for the first time to urban 

expansion analysis, and was able to estimate the time and location of land 

cover changes at the fringes of Ulaanbaatar, simultaneously and 

automatically. The results are verified by comparing bi-temporal VHR images, 

which show the actual land cover changes caused by anthropogenic 

disturbances, such as the development of residential plots. The areas of 

detected change are concentrated around the city center, indicating the high 

influence of anthropogenic effects. BFAST is shown to be a robust and 

applicable method for the monitoring of urban expansion, when carefully 
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applied and focused only on anthropogenic activities using a long 

observation period centered on the target phenomenon.  
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CHAPTER 6 ESTIMATING ENVIRONMENTAL CHANGES IN 

THE MUNICIPALITY OF ULAANBAATAR 

6-1 INTRODUCTION 

In this chapter, it is attempted to estimate the environmental 

changes through the vegetation trend analysis of vegetation biomass and 

vegetation cover in the Municipality of Ulaanbaatar. Degradation of 

vegetation biomass by anthropogenic activities such as overgrazing and 

deforestation has been a serious issue in Mongolia since the country’s 

dramatic transition from a planned economy to a free-market economy in 

1992 (Y. Cheng, Tsendeekhuu, Narantuya, & Nakamura, 2008; Tsogtbaatar, 

2004). Although traditional nomadic pastoralism has supported a renewable 

and sustainable grassland ecosystem in Mongolia for more than 2000 years, 

excessive grazing pressure in recent times has been a major cause of 

vegetation degradation, as it depletes subsurface plant roots and inhibits 

re-growth after grazing (Research Institute for Humanity and Nature, 2013). 

The pasture usually recovers if it is free from grazing for a certain period; 

however, the resulting alkalization of the soil leads to the dominance of 

non-fodder plant species and further delays the recovery of the pasture when 

grazing continues (Research Institute for Humanity and Nature, 2013). The 

grazing pressure on grasslands was not significant during the socialist period, 
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because the livestock population was controlled by the authorities (Saizen, 

Maekawa, & Yamamura, 2010). However, since the transition to a market 

economy in 1992, the number of herders has more than doubled as a result 

of livestock privatization (Togtokh, 2008). Consequently, the number of 

livestock animals has also increased, especially goats for the export of 

cashmere (Saizen et al., 2010). This has caused degradation of vegetation 

biomass in the pastureland (Liu et al., 2013). In forested areas, deforestation, 

not only the degradation of vegetation biomass but also the diminishment of 

forest cover, has taken place due to anthropogenic activities (Allen, Barnes, 

& Barnest, 1985). Owing to the high demand for timber for fuel and industry, 

large parts of the forested areas have been destroyed by commercial and 

illegal logging in northern Mongolia and around Ulaanbaatar (Tsogtbaatar, 

2004; UNDP Mongolia, 2009). 

Decreases in vegetation biomass and changes in vegetation cover, 

such as conversions from forests to shrubs, or from grasslands to deserts, 

are markedly obvious in and around Ulaanbaatar (Hirano et al., 2006). 

Herders who have migrated into Ulaanbaatar usually bring their livestock, 

which consume fodder on the grasslands, resulting in the degradation of 

vegetation. Although the mechanisms by which vegetation biomass or 

vegetation cover changes as a result of overgrazing and deforestation have 

been presented by some researchers (Y. Cheng et al., 2008; Fujita et al., 
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2009; Tsogtbaatar, 2004), the spatial distribution of this degradation is not 

yet well understood. Since decreases of vegetation biomass and changes in 

vegetation cover are caused by multiple driving forces on different scales, 

monitoring and understanding them is essential for preserving local 

vegetation resources.  

 

6-2 STUDY AREA 

The study area comprises the main part of the Municipality of 

Ulaanbaatar; around 4,000 km2 in which the urbanized area is located in the 

central region between mountains (Figure 1).  

 

6-3 INDICATORS FOR ENVIRONMENTAL CHANGES 

NDVI is often examined as a proxy of vegetation biomass (Hirano & 

Batbileg, 2013; Kawamura et al., 2005; G.J. Roerink, Menenti, Soepboer, & 

Su, 2003). It has a great advantage for a wide range of monitoring of the 

vegetation biomass on land. Temporal observations from remote sensing 

instruments enable us to monitor the annual cycle of vegetation phenology 

(Pettorelli et al., 2005). Phenology is the study of the timing of recurrent 
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biological events, as well as the causes of such timing with regard to biotic 

and abiotic forces, and the interrelation among phases of the same or 

different species (Badeck et al., 2004; Lieth, 1974). By unpicking the greatest 

temporal increases in the NDVI, it is possible to retrieve phenological events 

from NDVI time series. For example, the start of the growing season (SOS), 

which is the onset day for the greening-up period within the annual cycle of 

vegetation phenology, can be estimated from NDVI time series and could be 

used as a proxy of vegetation cover (Alexander Buyantuyev & Wu, 2012; 

Jeong, Ho, Gim, & Brown, 2011; F. Yu, Price, Ellis, & Shi, 2003). Changes in 

vegetation cover are estimated from temporal changes in the SOS. For 

example, a degraded land surface as a result of overgrazing or a combination 

of overgrazing and climate stress may delay the SOS (F. Yu et al., 2003). 

Therefore, the NDVI and SOS are used as indicators of vegetation 

degradation and vegetation cover change, respectively. 

 

6-4 METHODOLOGY 

It is difficult to evaluate vegetation biomass by using NDVI during 

the winter seasons, due to the presence of snow in Mongolia (F. Yu et al., 

2003). As such, annual vegetation biomass is estimated from the average of 

NDVI values collected only during the summer season each year. The 
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summer season is regarded as the period between the days of the year 

(DOY) 113 and 274 (or DOY 114–275, if it is a leap year). Then, NDVIavg is 

calculated as the average of annual vegetation biomass during the study 

period. In order to detect significant changes in the annual vegetation 

biomass from the time series, NDVIslope is calculated by time series 

regression, selecting only those pixels that were statistically significant 

according to their p-value (p < 0.05). 

The calculation of SOS was conducted using the half -maximum 

method (Figure 20) (White, Nemani, Thornton, & Running, 2002). The 

satellite-derived SOS is determined as the day in which the NDVI lastly 

exceeds the threshold, which is half of the maximum NDVI in a year, in an 

upward direction between DOY 1 and 180 (Schwartz, Reed, & White, 2002; 

White et al., 2002; F. Yu et al., 2003). Similar to NDVIavg, SOSavg is 

calculated as the average of SOS days during the study period. In order to 

detect significant changes in vegetation cover from the time series, 

SOSslope is calculated by time series regression, selecting only those pixels 

that were statistically significant, according to their p-value (p < 0.05). A field 

survey was conducted in September 2012, and it confirmed that the results 

from these remote sensing studies correspond to actual vegetation changes 

in the appropriate regions.  
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Figure 20. Calculation of SOS corresponding to half of NDVImax.  

The SOS is determined only when the NDVI lastly exceeds the half of NDVImax in an 

upward direction between DOY 1–180. 
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6-5 RESULTS 

The distributions of NDVIavg and NDVIslope are shown in Figure 

21. NDVIslope found the area with statistically significant positive/negat ive 

vegetation biomass to be 540.50 km2. Most of the NDVIslope values 

indicated negative trends, accounting for 527.25 km2. The positive gain in 

vegetation biomass was seen in a mountain taiga region, across 13.25 km2 of 

the Bogd-khan national park. The areas exhibiting negative trends in 

NDVIslope were widely distributed across mountain taiga, mountain forest, 

and mountain meadow steppe in the northern part of the study area. 

Focusing on the Gorkhi-terelj national park, the majority of the negative trend 

is found in meadow steppe areas. The spatial average of NDVIavg for each 

type of land cover (Figure 22) shows it to be highest in mountain taiga (0.6), 

followed by mountain forest, meadow steppe, and mountain lowland pasture. 

In contrast, steppe and dry steppe and urban areas have low values, of 0.30 

and 0.36, respectively. Of those areas with negative trends in land cover 

(Figure 23), the percentage loss is highest in mountain meadow (43.3%), 

followed by mountain lowland pasture, mountain forest, and mountain 

meadow steppe. The distributions of SOSavg and SOSslope are shown in 

Figure 24. SOSslope found the area with statistically significant 

positive/negative land cover changes to be 65.00 km2. Most of the SOSslope 

indicates positive (later SOS) trends, amounting for 62.75 km2, and areas 
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having positive trends in SOSslope are distributed mainly in mountain forest 

and mountain taiga areas in the northwestern part of the study area, as well 

as being sparsely distributed in mountain meadow steppe and urban areas. 

The spatial average of SOSavg in different land cover types (Figure 25) 

shows it to be earliest in the steppe and dry steppe areas (134.1), followed by 

mountain taiga (134.5), and urban (138.1) areas. The latest SOSavg value is 

145.4 in meadow steppe, and ranges 140–143 in the other land cover types. 

The percentage area with positive trends for each land cover type is highest 

in mountain taiga (4.3%), followed by mountain forest and mountain meadow 

steppe (Figure 26). 
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Figure 21. Spatial distributions of NDVIavg and NDVIslope.
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Figure 22. Spatial average of NDVIavg for each land cover type. 

See land cover abbreviations in Table 1. 

 Figure 23. Ratio of the area showing a significant decreasing trend in NDVIslope to the 

total area, for each land cover type. 

See land cover abbreviations in Table 1. 
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Figure 24. Spatial distribution of SOSavg and SOSslope.
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Figure 25. Spatial average of SOSavg for each land cover type.  

See land cover abbreviations in Table 1. 

Figure 26. Ratio of the area showing a significant decreasing trend in SOSslope to the total 

area, for each land cover type. 

 See land cover abbreviations in Table 1. 
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6-6 DISCUSSION 

The results show that the NDVIavg tends to be larger, the earlier 

the SOSavg is. For example, mountain taiga shows an early SOSavg and a 

large NDVIavg, while the inverse is seen in meadow steppe, as shown in 

Figure 21 and 24. Only Steppe and dry steppe has a different trend, showing 

an early SOSavg and a small NDVIavg. Since Steppe and dry steppe areas 

have sparse vegetation due to the high pressure of overgrazing (The World 

Bank, 2009a), this land cover tends to show a small NDVIavg. In addition, its 

earlier SOS compared to that of vegetated areas corresponds to the results 

of previous studies (Bradley, Jacob, Hermance, & Mustard, 2007; G J 

Roerink, Danes, Prieto, Wit, & Vliet, 2011). Focusing on the mountain forest 

and mountain meadow steppe areas, although there are not significant 

differences in SOSavg between the two land cover types, the NDVIavg in 

mountain forest is larger than in mountain meadow steppe. In this way, the 

characteristics of land covers can be summarized using NDVIavg and 

SOSavg values. 

Negative trends in NDVIslope are found in the complex land covers 

that include forests and grasslands, while trends in SOSslope toward a later 

SOS are found mainly in forested areas. These areas detected by remote 

sensing are related to the degraded areas, which are affected by overgrazing 
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and deforestation. For example, a combination of decreasing trends in 

NDVIslope is found in meadow steppe areas in the Gorkhi-terelj national park 

(Figure 21). This corroborates the report by The World Bank (2009), which 

observes that the lands are significantly affected by intense use and resultant 

degradation of land resources. Permanent houses and dense settlements, 

including tourist camps, have been spreading here. Most herders living close 

to this park do not tend to move for richer fodders, instead causing land 

degradation through intense grazing of a single region (The World Bank, 

2009). In the north-west part of the study area, decreasing trends in the 

NDVIslope as well as later trends in SOSslope are found. In particular, later 

trends in SOSslope are sparsely distributed around those areas that have a 

high vegetation biomass or early SOS. This result is in agreement with the 

report by UNDP Mongolia (2009) that documented illegal logging of a large 

area of forest for domestic purposes. The vegetation cover in these detected 

locations confirmed the conversion from larch trees to shrubs in the field 

survey. Although the SOSslope is not able to identify vegetation cover 

changes in grasslands, a change can be detected in forested areas. Positive 

trends in NDVIslope were found only in the central part of Bogd-khan national 

park, because this park is a strictly preserved area. However, the peripheral 

areas of the park show decreasing trends in NDVIslope, indicating that some 

settlements and tourist camps have been developed in these regions. 
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6-7 CONCLUSION 

Changes in vegetation biomass and land cover are detected in 

Ulaanbaatar, using MODIS time series for the period 2000–2010. By 

analyzing temporal trends in NDVI over 11 years, results show that 

vegetation biomass has decreased across around 13% of the study area. 

This result corresponds to previous reports on land degradation caused by 

anthropogenic activities, especially in the Gorkhi-terelj national park and 

forested areas of the north-west part of the study area. In addition, by 

analyzing temporal trends of SOS in the 11-year study period, significant 

later trends in SOS are detected around areas with rich vegetation biomass. 

This result corresponds to the areas that have experienced vegetation cover 

changes, the conversion from larches to shrubs because of logging activity. 

Although the SOS does not contribute to the detection of land cover changes 

in grasslands, it is able to support estimations of drastic changes in forested 

areas.   
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CHAPTER 7 GENERAL CONCLUSION 

An understanding of the spatio-temporal characteristics and 

changes in land cover, as well as the environmental impacts caused by urban 

expansion, are clearly required to enable informed planning decisions in the 

future (Angel et al., 2011). In the case of Mongolia, the unplanned growth of 

ger areas and the unprecedented pace of urbanization in Ulaanbaatar have 

resulted in poor living conditions, including unemployment, traffic congestion, 

and air pollution (Kamata et al., 2010). The findings of this research may 

contribute to the scientific understanding of the characteristics of urban 

expansion and its impacts on vegetation in a number of ways, detailed below.  

In chapter 4, it was shown that residential plots have been 

expanding towards the outer boundary of Ulaanbaatar’s city center. By using 

object-based GIS data, the residential-scale process of urban expansion in 

Ulaanbaatar was illustrated for the first time. In addition, a logistic regression 

model was applied, providing some valuable quantitative insights into the 

patterns and possible controlling factors of the ger area expansion. In 

chapter 5, the BFAST method was used to show pixel-based land cover 

changes in Ulaanbaatar, enabling simultaneous and automatic estimation of 

the timing and location of land cover changes. The areas undergoing land 

cover changes were found to concentrate around the city center, and expand 
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towards the outer boundary of the city center each year, indicating the 

significant effects of anthropogenic activity on land cover. Environmental 

changes were evaluated through vegetation trend analysis,  and the results 

indicated that a decrease in vegetation biomass had occurred across 13% of 

the Municipality of Ulaanbaatar during the period 2000–2010. Within the 

major agglomeration, the decreasing trend of vegetation biomass 

corresponded to those areas where severe land degradation had been 

reported, as a result of anthropogenic activities. Changes in vegetation cover 

from larches to shrubs, as a result of logging activities, were seen around 

areas with a rich vegetation biomass.  

The results in chapter 4 and 5 indicate that the land reform policy 

was a critical event in the social development of the region, accelerating the 

concentration of population and the expansion of ger areas in Ulaanbaatar. 

Considering the environmental problems caused by such an expansion, the 

encroachment into peripheral areas should be restricted by land use 

regulation, however it will be difficult to control the phenomenon without first 

solving the prevailing political issues. Although the government promoted the 

construction of high-rise apartments under the 40,000 housing units program 

around 2003, and the 100,000 housing project around 2008 (Byambadorj et 

al., 2011; Kamata et al., 2010), the low-income groups residing in ger areas 

are resistant to moving into apartments because of the large expenses 
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involved (Japan International Cooperation Agency, 2009). Thus, alternative 

countermeasures are needed for the poorer demographic, to improve their 

living conditions. Here, I would like to propose such a countermeasure, which 

is a conceptual strategy to prevent irrational encroachment of urban 

developments. Based on the fact that ger areas are undergoing continual 

expansion, as addressed in chapter 4 and 5, it is recommended that 

residents of ger areas who do not fully meet the living standards are 

preferentially given the right to migrate to new residential areas that are 

totally supported by both urban planning and land reform policy, which may 

be developed instead of improving infrastructure in existing ger areas (Figure 

27). To implement this, the government would first prohibit extra settlement 

development in ger areas by land control, and strictly register all private land 

in a land management system. The government may then concentrate its 

budgets on the development of new residential zones with the minimum living 

infrastructure necessary, for the benefit of residents that are dissatisfied with 

their current living situation in ger areas. Although there may be residents 

who are not eager to leave, and wish to stay in the ger areas, the government 

should not make further developments there. In this way, the government can 

increase the extent of such residential zones gradually, by controlling land 

use, and halt the expansion of ger areas allowing their development to be 

more efficiently managed. This research has highlighted several 

environmental problems that, from a scientific viewpoint, are the result of 
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human activities and the failure of land-use policies. There is nothing to say 

that comprehensive legal system between the new master plan and land law 

should be stipulated clearly.    
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 Figure 27. Conceptual strategy for preventing urban expansion in ger areas. 
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This study not only reinforces the necessity for an effective urban 

plan for Ulaanbaatar, but also provides operational information for planning 

purposes, including maps and GIS layers of the actual extent of ger areas, 

the patterns of development, and the locations of developed and degraded 

areas, through the use of remote sensing technologies. To manage the 

ongoing urban expansion, it is essential to continue further research and 

conduct continuous and real-time monitoring over a wider range of peripheral 

areas, as well as in the city center of Ulaanbaatar. For approaches using 

VHR imagery, there is still a lack of robust technology to extract the GIS data 

that characterizes urban objects. Thus, the data processing employed in 

Chapter 4 is time-consuming because the data are manually extracted from 

the VHR imagery. It will therefore be necessary to develop an automation 

scheme for data processing, which has been shown to be feasible in some 

cases through the integration of VHR imagery with machine learning 

technology (Hussain, Chen, Cheng, Wei, & Stanley, 2013; Myint et al., 2011; 

Taylor, Street, & Wt, 2010). Such a scheme will enable us to fulfill a large 

proportion of the monitoring requirement, because of the broad availability of 

such images. For approaches using MODIS time series, the results given by 

BFAST still lack information about real-time changes in land cover, as a 

result of the minimal segment size used in the analysis. To overcome this 

limitation, accurate and robust techniques would need to be developed in the 

near future, to detect real time changes in land cover using MODIS time 
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series. Developments in these types of rapid monitoring systems and related 

studies in the future would assist immediate decision-making and sustainable 

urban management.  
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