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Abstract 

Sea turtles have long history since they appeared in the Cretaceous, 

in addition to the migratory life history containing some cryptic 

features. For conservation management of these endangered 

migratory species, it is important to understand the evolutionary and 

demographic underpinning of contemporary biodiversity, and to 

reveal the connectivity between populations and aggregations that 

relates to their migrations and behaviors. Genetic information is 

useful for uncovering these features in wide range of temporal and 

spatial scales. This study uncovered relationships between 

individuals and populations of sea turtles in the Yaeyama Islands of 

Japan and the Pacific, and made proposals for conservation. 

Firstly, the patterns of mitochondrial DNA (mtDNA) variation in 

green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) 

turtles nesting in the Yaeyama Islands, which represent the northern 

limit of their nesting in the western Pacific Ocean, indicated 

historical introgressions by individuals with divergent haplotypes 

from both Pacific colonies and Indian and Southeast Asian colonies.  

Secondly, the population genetic structure of nesting green turtles 

in the Yaeyama Islands revealed the significant genetic 

differentiation, at least between southwestern Iriomote Island and 

Ishigaki Island based on mtDNA, indicating precise female natal 

philopatry compared to other Pacific and Indian regions. On the other 

hand, microsatellite analyses of four markers revealed no significant 

genetic differentiation, indicating the existence of male mediated 

gene flow. 

Thirdly, the genetic compositions of consecutive Japanese feeding 

aggregations of green turtles along the Kuroshio Current were 
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examined by mixed-stock analyses of mtDNA control-region 

sequences. The results indicated that the southern feeding 

aggregation around Yaeyama was sourced from various Pacific 

rookeries in the Yaeyama, Ogasawara, Western Pacific, and Indian 

Oceans and Southeast Asia. Among northern feeding aggregations, 

the Ginoza aggregation was also sourced from the Western Pacific 

Ocean, but the Nomaike, Muroto, Kanto, and Sanriku aggregations 

were contributed mostly by the closer Ogasawara rookeries. The 

reduced contribution from tropical Pacific rookeries to northern 

feeding aggregations and the significant correlation between genetic 

differentiation and geographical distance matrices of feeding 

aggregations indicated that most hatchlings from these regions 

transported by the Kuroshio Current settle in upstream feeding 

grounds along the Japanese archipelago, implying that current flow 

influences the composition of feeding aggregations. 

Lastly, historical patterns of population dynamics and 

differentiation in green and hawksbill turtles in the Pacific were 

estimated based on mtDNA sequence polymorphisms. Phylogenetic 

relationships of the haplotypes indicated that both turtles in the 

Pacific underwent very similar patterns and processes of population 

dynamics over the last several million years, with population 

subdivision during the early Pleistocene and population expansion 

after the last glacial maximum. These significant contemporary 

historical events were suggested to have been caused by climatic and 

sea-level fluctuations. On the other hand, regional differences in 

historical population dynamics compared to the Atlantic are 

suggested. 

The above results indicate the following proposals for conservation 

management: 

1) Nesting females of green turtles in the Yaeyama Islands have 

precise natal philopatry at ecological timescales although they had 

been formed by emigration from divergent tropical colonies at 
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historical timescales. Considering that natal philopatry is related to 

their response to changes in availability of nesting sites over time, 

Yaeyama nesting populations may have a high priority in 

conservation. Despite relatively high male mediated gene flow, this 

study indicated phylogeographic features and conservation priority of 

northwest Pacific green turtles. 

2) Differences in the composition among the feeding aggregations of 

green turtles in the Japanese coastal areas indicate that both regional 

and multinational conservation strategies are needed. hazards that 

affect declining nesting populations in Ogasawara may also affect a 

wide range of Japanese feeding aggregations, especially northern 

feeding aggregations. This indicates the importance of regional 

management in Japan. On the other hand, the Yaeyama and Ginoza 

feeding aggregations of Japan are estimated to have migrated from 

remote Pacific rookeries. Therefore, any source of mortality in 

nesting rookeries in the tropical Pacific is likely to affect remote 

feeding aggregations in Japan. Conversely, effects on feeding 

aggregations in Japanese waters could affect nesting populations in 

other countries because of natal philopatry. 
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Chapter 1  
Background 
 

1.1 Introduction 

Recent progress of information and communication technology has resulted 

in a flood of various kinds of data that include both useful and useless 

information for us. In this information society, it is necessary to uncover 

knowledge from a vast quantity of data by using computational and 

informational approaches. Biological data are no exceptional and are 

flooding in at an unprecedented rate. For example, advancement of remote 

monitoring of physiological and behavioral variables, known as 

biotelemetry and/or bio-logging, has enabled us to understand the 

physiology, behavior, and energetic status of unrestrained organisms in 

their natural environment (Boyd et al. 2004, Cooke et al. 2004). In addition, 

innovations in molecular genetic techniques (e.g. the development of 

polymerase chain reaction (PCR) which amplifies specified stretches of 

DNA to usable concentrations and automated sequencing techniques) 

(Hedrick & Miller 1992, Sunnusk 2000) have provided a great amount of 

genetic information. Actually, new sequence data and genotypic data of 

various organisms have become apparent one after another as represented 

by human and other genome projects (Hedrick 2001). However, there is a 

considerable gap between the availability of genetic data and a scientific 

understanding of that information (Fogel & Corne 2003), for example 

genetic characterization of genes and conservation of genetic diversity. This 

gap can be filled through the interdisciplinary approach bringing together 

biology, computer science, statistics, and information theory to analyze 

biological data for interpretation and prediction (Fogel & Corne 2003).  

This study explored the use of genetic information in biological 

conservation, providing the important example of effective utilization of 

vast amounts of biological information. Using the genetic markers with 

computer-based simulations and statistics, this study uncovered 
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relationships between individuals and populations of sea turtles, species of 

conservation interest, and made proposals for conservation. In the 

following sections, I overviewed the importance of biological conservation, 

genetic information, status of sea turtles, and then summarized the aims of 

this study. 

1.2 Importance of Biological Conservation 

Because of the increase in the human population and the expansion of 

human-related activity in recent decades, many species have become extinct 

or are on the verge of extinction (Hedrick & Miller 1992, Frankham et al. 

2002). Increased human activity has directly and indirectly led to 

exploitation and dramatic habitat fragmentation and loss; hence, extinction 

rates have arisen alarmingly over the last few decades (Hedrick & Miller 

1992, Frankham et al. 2002). Many species now require benign human 

intervention to improve their management and ensure their survival. 

The reason for biological conservation is that humans derive many direct 

and indirect benefits from the living world. Thus, we have a stake in the 

conservation for the resources we use, for the ecosystem services it provides 

for us, for the pleasure we derive from living organisms and for ethical 

reasons (Frankham et al. 2002). Bioresources include all of our food, many 

pharmaceutical drugs, clothing fibres (wool and cotton), rubber and timber 

for housing and construction, etc (Frankham et al. 2002). Their value is 

many billions of dollars annually (Frankham et al. 2002). Further, the 

natural world contains many potentially useful novel resources. Ecosystem 

services are essential biological functions that are provided free of charge by 

living organisms and which benefit humankind (Frankham et al. 2002). 

They include oxygen production by plants, climate control by forests, 

nutrient cycling, natural pest control, pollination of crop plants, etc 

(Frankham et al. 2002). Moreover, humans derive pleasure from living 

organisms (aesthetics), as expressed in growing ornamental plants, keeping 

pets, visits to zoos and nature reserves, and ecotourism (Frankham et al. 

2002). This translates into direct economic value.  
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When we deal in biological conservation, it is essential to preserve the 

three levels of biodiversity, genetic diversity, species diversity, and 

ecosystem diversity as recommended by the World Conservation Union 

(IUCN) (Frankham et al. 2002, Reed & Frankham 2002). Conservation of 

genetic diversity is recommended by the two reasons (Reed & Frankham 

2002): (1) genetic diversity is required for populations to evolve in response 

to environmental changes and (2) heterozygosity levels are linked directly 

to reduced population fitness via inbreeding depression. Because genetic 

variation is a basis for evolution via natural and artificial selection 

(Frankham et al. 2002), populations with high genetic diversity will tend to 

survive through the environmental changes. For example, newly-emerged 

disease organisms require that species maintain the ability to adapt to the 

changes in the features of the disease organisms (Carius et al. 2001). It is 

also applied to changes due to human activities, for example global climate 

change which is forcing species to move or adapt (Hughes 2000).  

The detrimental effects of inbreeding, or the mating between the close 

relatives, on the fitness of a species have been long known. Early in the 

development of Mendelian genetics, researchers realized that the increased 

homozygosity resulting from inbreeding caused a loss in fitness, a 

phenomenon termed inbreeding depression (Hedrick & Miller 1992, 

Freeland et al. 2011). Inbreeding leads to inbreeding depression in virtually 

all species studied thus far and reduces reproductive fitness (Reed & 

Frankham 2002, Freeland et al. 2011). Thus, the loss of genetic diversity or 

heterozygosity has a deleterious effect on population fitness (Reed & 

Frankham 2002). 

1.3 Genetic Information 

The success of wildlife management strategies is contingent on 

understanding the evolutionary and demographic underpinning of 

contemporary biodiversity (Moritz et al. 2002). In this context, one of the 

major uses of genetic techniques in conservation is to use variation to 

uncover relationship between individuals, groups, populations, races, or 



 

4 
 

species (Moritz 1994, Marshall et al. 1999, Frankham et al. 2002). Genetic 

information is involved directly in the genetic diversity (Section 1.2) and is a 

crucial factor in species conservation. Therefore, understanding the genetic 

diversity based on genetic information, such as the number of haplotypes or 

alleles, heterozygosity, and genetic diversity indices (Freeland et al. 2011), is 

the first step of biological conservation.  

In addition to the fact that genetic information is necessary for 

understanding the genetic diversity of animals, it is also useful for providing 

new insights about ecology and evolution (Freeland et al. 2011). DNA 

sequence polymorphisms and patterns in the genetic diversity of natural 

populations represent their genealogy and the relative impacts of historical, 

geographic, and demographic events (Avise 2000, Nordborg & Innan, 

2002), useful for estimating population dynamics in evolutionary time 

scales. Gene genealogies provide insight into the relative impact of 

historical dispersal events on the contemporary distribution of evolutionary 

lineages (i.e. phylogeography; Avise 2000) and occurrence of genetic 

bottleneck (populations severely reduced in size) that can increase 

demographic stochasticity, rate of inbreeding, loss of genetic variation, and 

fixation of deleterious alleles and, thereby, reduce adaptive potential and 

increase the probability of population extinction (Frankham et al. 2002, 

Luikart & Cornuet 1998).  

In ecological time scales, quantifying population subdivision and gene 

flow can be used for estimating the behaviors of animals, including 

philopatry in migration. Gene flow is one of the most important 

determinants of genetic differentiation and essentially the movement of 

genes between populations (Freedman et al. 2011). When female animals 

nest at their natal areas, genetic differentiation among rookeries can be 

observed in mitochondrial DNA (mtDNA) that is maternally inherited 

(Encalada et al. 1996, Bowen & Karl 2007). By comparing the population 

genetic structure investigated by mtDNA markers and biparentally 

inherited nuclear DNA (nDNA) markers, we can assess the level of 

male-mediated gene flow and the breeding strategy of males (FitzSimmons 
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et al. 1997a, b). 

Furthermore, genetic isolation among populations has also afforded an 

opportunity to link populations of migratory species in different places 

(Pella & Masuda 2001, Bolker et al. 2003). Therefore, genetic information is 

useful for revealing cryptic features of animals, enabling us to establish 

adequate conservation management strategies. For example, migratory 

species go beyond our range of vision, but linkage between locations can be 

estimated by genetic information.  

1.4 Sea Turtles 

1.4.1 Overview 

Sea turtles (Fig. 1.1) are highly adapted to marine environment and 

distributed in tropical, temperate, and even sub-arctic waters worldwide 

(Pritchard 1997). They are basically creatures that spend their entire lives in 

marine or estuarine habitats and their only reptilian ties to terrestrial 

habitats are for nesting and restricted cases of basking (Musick & Limpus 

1997). A typical life history pattern of sea turtles is shown in Fig. 1.2 and 

below based on Miller (1997) and Bolten (2003). All sea turtles move 

immediately to the sea after hatchling, usually after dark, and swim actively 

offshore (Wyneken & Salmon 1992). Most then undertake a mostly passive, 

denatant migration drifting pelagically in oceanic gyre systems, but active 

swimming may play an important role in forming the settlement patterns of 

young juveniles (Okuyama et al. 2011, Scott et al. 2012, Manisfield & 

Putman 2013). Subsequently, after a period of years, these now larger and 

older juveniles actively recruit to demersal neritic developmental habitats in 

the tropical and temperate zones. When approaching maturity, pubescent 

turtles move into adult foraging habitats where are geographically distinct 

from juvenile developmental habitats in some populations. Upon maturity 

as the nesting season approaches adults make a contranatant migration 

toward the nesting beaches. Most mating occurs at poorly defined courtship 

areas that are close to the nesting beaches relative to the distant foraging 

areas. After mating the females move to their respective nesting beaches. 
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During the nesting season, females usually become resident in the 

internesting habitat in the vicinity of the nesting beach. 

Sea turtles have a long and ancient history (Pritchard 1997). They arose 

in the early Mesozoic, and for the next 100 million years, during the rise 

and reign of the dinosaurs, they shared the oceans with a rich diversity of 

other air-breathing marine reptiles. By the end of the Cretaceous era, the 

sea-going ichthyosaurs and plesiosaurs were extinct, but sea turtles 

tenaciously survived and flourished up very recent times. But today, their 

numbers are dramatically reduced to the point that all seven remaining 

species of sea turtles are considered either threatened or endangered on a 

worldwide basis (Lutcavage et al. 1997). They have extreme vulnerability to 

mankind, from loss of nesting beach and foraging habitats to mortalities on 

the high seas through pelagic fishing, and their inclusion on most lists of 

threatened or endangered species is a reflection primarily of past 

overexploitation and current need for better management rather than to 

inherently poor adaptation to post-Pleistocene conditions (Pritchard 1997). 

The Convention on International Trade in Endangered Species of Flora and 

Fauna (CITES) lists all sea turtles on its Appendix I (i.e. prohibited from 

international trade from or to signatory countries). The IUCN has listed all 

sea turtle species (except flatback turtles, Natator depressus) as Vulnerable, 

Endangered, or Critically Endangered (Seminoff & Shanker 2008, IUCN 

2013) (Table 1.1). 

On the other hand, sea turtles have various economic and noneconomic 

values (Campbell 2003, Witherington & Frazer 2003). Firstly, they provide 

bioresources for us. For example, tortoiseshell, traditionary obtained from 

the hawksbill turtle (Eretmochelys imbricata), has ranked among the 

world's luxury goods since earliest recorded times (Campbell 2003). Japan 

has a long history of crafting hawksbill shell (bekko) into various decorative 

items, some of which have been found in ruins of a seventh-century city. 

Bekko is crafted using traditional techniques and tools thought to be the 

same as those used 300-1000 years ago. Secondly, sea turtles are potential 

resources for non-consumptive recreation tourism, providing esthetic merit 
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(Wilson & Tisdell 2001, Witherington & Frazer 2003). Sea turtles lend 

themselves well to being watched, and in this admiration, there is an 

economic enterprise. The enterprise known as ecotourism can include sea 

turtles when visitors huddle around a female turtle on a beach to closely 

watch her nesting behavior, when tourists watch groups of hatchling 

scrambling from nest to sea, or when boat or diving tours bring people 

within sight of turtles in the water. The effect of turtle-watching visitors on 

the local economy was calculated to be approximately 800,000 AUD (0.45 

million USD) per year in Mon Repos, Queensland, Australia (Witherington 

& Frazer 2003). Thirdly, sea turtles are obligate terrestrial nesters that are 

ecologically important in both marine and terrestrial systems (Bjorndal & 

Jackson 2003). For example, sea turtles can transfer substantial quantities 

of nutrients and energy from nutrient-rich foraging grounds to 

nutrient-poor nesting beaches because they occur in oceanic and neritic 

habitats from the tropics and subarctic waters and venture onto terrestrial 

habitats to nest or bask in tropical and temperate latitudes (Bouchard & 

Bjorndal 2000). 

1.4.2 Sea Turtles in Japan 

Due to increasing concern about the conservation of sea turtles the demand 

of bekko, various projects have been carried out for conserving and 

enhancing the sea turtle population in Japan, including mitigation for their 

incidental captures with fisheries (Gilman et al. 2010), coastal management 

for conserving their nesting habitat (Watanabe 2010), and head-starting 

projects (Okuyama et al. 2010). In Japan, three species of sea turtles, 

loggerhead (Caretta caretta), green (Chelonia mydas), and hawksbill 

turtles, are mainly observed to nest. Loggerhead turtles nest on beaches 

widely in Japanese Archipelago and have been relatively well studied 

(Bowen et al. 1995, Sakamoto et al. 1997, Hatase et al. 2002a, 2002b, 

Kamezaki et al. 2003, Watanabe et al. 2011). On the other hand, there has 

been relatively less attention to green turtles and hawksbill turtles in Japan 

that have been reported to nest in restricted subtropical regions in Japan, 

mainly in Ogasawara and Ryukyus (green turtle; Hatase et al. 2006, 
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Hamabata et al. 2009) or Ryukyus (hawksbill turtle; Kamezaki 1989).  

In the Yaeyama islands of Ryukyu Archipelago, consistent number of 

green turtles nest (estimated number of total nesting females in Ishigaki 

Island of Yaeyama Islands is 75 at most; Abe et al. 2003). Whereas a 

majority of nesting on the island is done by green turtles, hawksbills also 

nest on at a lower frequency. Between 1995 and 2003, 14 hawksbill nests 

were observed in comparison with 427 green turtle nests (Abe et al. 2003). 

Despite the low level of hawksbill nesting, the coastal areas around the 

Yaeyama Islands including Ishigaki Island are considered a major foraging 

ground for both green turtles (Hamabata et al. 2009) and hawksbill turtles 

(Okayama et al. 1999). Therefore, information on behaviors and 

populations of sea turtles in this northwestern Pacific region is important 

for prioritization of sea turtle conservation in the Pacific. 

 

 

Table 1.1 Summary of current status of sea turtles on the IUCN Red List (modified from 

Seminoff & Shanker (2008)). 

Species Red List status Year 

Leatherback (Dermochelys coriacea) Critically Endangered 2000 

Hawksbill (Eretmochelys imbricata) Critically Endangered 1996 

Kemp’s ridley (Lepidochelys kempii) Critically Endangered 1996 

Olive ridley (Lepidochelys olivacea) Vulnerable 2007 

Loggerhead (Caretta caretta) Endangered 1996 

Green (Chelonia mydas) Endangered 2004 

Flatback (Natator depressus) Data deficient 1996 

 

 



 

9 
 

 

Fig. 1.1 A nesting green turtle. 

 

 

 

Fig. 1.2 A typical life history pattern of sea turtles illustrating the sequence of ecosystems 

inhabited (modified from Miller (1997) and Bolten (2003)). Some species or at least 

populations show different patterns: Leatherback (Dermochelys coriacea) and at least 

some populations of olive ridley turtles (Lepidochelys olivacea) remain pelagic foragers 

throughout their lives, and flatback turtles (Natator depressus) remain neritic throughout 

their lives (Bolten 2003). 

 

 



 

10 
 

1.5 Objectives 

Sea turtles have long history since they appeared in the Cretaceous, in 

addition to the migratory life history containing some cryptic features 

(Section 1.4). Therefore, for understanding the evolutionary and 

demographic underpinning of contemporary biodiversity, and revealing the 

connectivity between populations and aggregations relating to their 

migrations and behaviors, genetic information is considered to be useful. 

This study focused on the sea turtles observed in the Yaeyama Islands and 

in the Japanese coastal areas because information on behaviors and 

populations in this northwestern Pacific region is important for 

prioritization of sea turtle conservation in the Pacific. Green turtles were 

mainly analyzed in this study, but hawksbill turtles were also analyzed when 

possible, enhancing our understanding of sea turtles.  

I set two axes, temporal scale and spatial scale, for revealing the 

evolutionary and ecological implications for conservation of sea turtles. 

Firstly, this study worked on the phylogenetic origin of nesting turtles in the 

Yaeyama Islands, which enables us to estimate the historical colonization 

from equatorial regions and whether historical bottleneck had occurred in 

this region (Chapter 2). Secondly, more recent dynamics and migrations of 

nesting populations in the Yaeyama Islands were inferred from the 

information on the genetic subdivision and population structure (Chapter 

3). Next, I expanded the spatial scale from the nesting sites in the Yaeyama 

to broad Northwest Pacific. This involved the analysis of feeding 

aggregation, and estimated the origin and migration from natal beaches to 

the feeding grounds statistically by mixed-stock analysis based on Bayesian 

approaches (Chapter 4). Covering both nesting populations and feeding 

aggregations is important because surveys of multiple life stages are 

desirable to resolve conservation implications in migratory marine species 

(Bowen et al. 2005). Because the feeding aggregations were estimated to 

contain individuals originating multiple rookeries in the Pacific, further 

analysis of the feeding aggregations inferred the historical population 

dynamics of the Pacific sea turtles (Chapter 5).  
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The questions answered in this study can be summarized below:  

1. How did sea turtles colonize nesting sites in the Yaeyama Islands? 

From the conservation perspective, did they experience bottleneck by 

founder effect? (Chapter 2) 

2. What is the degree of genetic divergence between and among nesting 

populations, and how does this relate to natal philopatry of sea 

turtles? This question is important of setting the management units 

and conservation strategies of nesting sea turtles. (Chapter 3) 

3. How are the genetic structure of feeding aggregations around 

Japanese coastal areas and the contribution of individual nesting 

beaches to offshore feeding aggregations? This invokes the 

conservation of estimated corridors of migration. (Chapter 4) 

4. What patterns of historical population contraction have sea turtles in 

the Pacific experienced? The comparison with the Atlantic sea turtles 

(Reece et al. 2005) can provide insight into the features of genetic 

diversity of sea turtles in the Pacific. (Chapter 5) 

Based on the results of Chapters 1-5, I discussed the conservation 

management of sea turtles in the Yayama and Pacific regions in Chapter 6. 

This thesis might be an important comprehensive study about conservation 

of migratory marine species.  
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Chapter 2  
Phylogenetic Origin of Nesting Turtles  
in the Northwest Pacific 
 

Summary 

For conservation of endangered species, understanding genetic diversity is 

important. A factor influencing the genetic diversity is bottleneck 

(populations severely reduced in size) that can increase demographic 

stochasticity, rate of inbreeding, loss of genetic variation, and fixation of 

deleterious alleles and, thereby, reduce adaptive potential and increase the 

probability of population extinction. Bottlenecks can occur not only by the 

recent human activity, but in the beginning process of historical population 

colonization as a founder effect. Therefore, it is important to assess the 

relationships of biota in separate geographical regions and the relative 

impact of historical dispersal events on the contemporary distribution of 

evolutionary lineages (i.e. phylogeography) by the intraspecific gene 

genealogies. The Yaeyama nesting populations of green (Chelonia mydas) 

and hawksbill turtles (Eretmochelys imbricata), representing the northern 

limit of their nesting in the western Pacific Ocean, are thought to exhibit a 

genetic structure reflecting colonization from equatorial regions. In this 

chapter, the patterns of mitochondrial DNA (mtDNA) variation in nesting 

green (n = 67) and hawksbill turtles (n = 4) revealed haplotypes from 

distinct lineages in both species. Genetic diversity values were within the 

high end of the range found for other sea turtle populations. The results 

indicated historical introgressions by individuals with divergent haplotypes 

from both Pacific colonies and Indian and Southeast Asian colonies after 

glacial periods. In addition, populations of green and hawksbill turtles in 

the Pacific appear to have experienced very similar patterns and processes 

of distribution and subdivision over the last several million years. 
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imbricata) nesting on Ishigaki Island, Japan. Marine Turtle Newsletter 
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Chapter 3  
Genetic Population Structure  
in the Nesting Populations:  
Philopatry in the Northwest Pacific 
 

Summary 

Population genetic structure inside the Yaeyama Islands will provide 

important information for their conservation. The reason is that genetic 

differentiation among the rookeries reflects migration of sea turtles in 

ecological timescales, implications for natal philopatry. Female turtles are 

known to nest at their natal areas at ecological timescales, resulting in 

genetic differences in mitochondrial DNA (mtDNA), but the geographical 

specificity of homing is uncertain. Resolution of natal homing is essential to 

understanding how green turtles respond to changes in the availability of 

nesting sites over time. In addition, to investigate the breeding strategy of 

males, nuclear DNA (nDNA) markers can be used to assess the level of 

male-mediated gene flow and population subdivision. In this chapter, the 

genetic differentiation among Yaeyama nesting rookeries was examined, 

providing insight into the degree of natal homing and male-mediated gene 

flow in this region. The population genetic structure of nesting green turtles 

in the Yaeyama Islands revealed the significant genetic differentiation, at 

least between southwestern Iriomote Island (n = 26) and Ishigaki Island (n 

= 41) based on mtDNA, indicating precise female natal philopatry 

compared to other Pacific and Indian regions. On the other hand, 

microsatellite analyses of four markers revealed no significant genetic 

differentiation, indicating the existence of male mediated gene flow. 
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Chapter 4  
Genetic Composition of Feeding 
Aggregations: Estimating the Migration in 
the Pacific Ocean 
 

Summary 

The movements of migratory marine vertebrates from their natal sites and 

the composition of feeding aggregations have historically been difficult to 

elucidate. Recently, however, examination of differences in mitochondrial 

DNA (mtDNA) haplotype frequencies caused by genetic isolation among 

nesting populations has afforded an opportunity to link feeding populations 

back to their rookery of origin and to estimate the contributions of 

genetically differentiated nesting populations to foraging assemblages using 

mixed-stock analysis. The results of MSA are expected to be useful for 

understanding the migrations of sea turtles. The coastal waters of the 

Japanese archipelago provide feeding grounds for the green turtle along the 

strong Kuroshio Current. Feeding habitats in Japan may be occupied by 

individuals from these Japanese rookeries, but also carried by the Kuroshio 

Current from multiple tropical rookeries in the Pacific. Therefore, the 

genetic compositions of consecutive Japanese feeding aggregations of green 

turtles along the Kuroshio Current were examined by mixed-stock analyses 

of mtDNA control-region sequences. The results indicated that the southern 

feeding aggregation around Yaeyama was sourced from various Pacific 

rookeries in the Yaeyama, Ogasawara, Western Pacific, and Indian Oceans 

and Southeast Asia. Among northern feeding aggregations, the Ginoza 

aggregation was also sourced from the Western Pacific Ocean, but the 

Nomaike, Muroto, Kanto, and Sanriku aggregations were contributed 

mostly by the closer Ogasawara rookeries. The reduced contribution from 

tropical Pacific rookeries to northern feeding aggregations and the 

significant correlation between genetic differentiation and geographical 

distance matrices of feeding aggregations indicated that most hatchlings 
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from these regions transported by the Kuroshio Current settle in upstream 

feeding grounds along the Japanese archipelago, implying that current flow 

influences the composition of feeding aggregations. 

 

The detail of this chapter was partly published in: 

[1] Nishizawa H, Naito Y, Suganuma H, Abe O, Okuyama J, Hirate K, 

Tanaka S, Inoguchi E, Narushima K, Kobayashi K, Ishii H, Tanizaki S, 

Kobayashi M, Goto A, Arai N (2013) Composition of green turtle feeding 

aggregations along the Japanese Archipelago: implications for changes in 

composition with current flow. Marine Biology 160: 2671-2685 
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Chapter 5  
Historical Perspectives on  
Population Genetics of Pacific Sea Turtles 
 

Summary 

DNA sequence polymorphisms and patterns in the genetic diversity of 

natural populations represent their genealogy and the relative impacts of 

historical, geographic, and demographic events. In particular, 

mitochondrial DNA (mtDNA) polymorphisms have been used extensively in 

the study of maternal lineages and population structures. The Yaeyama 

Islands, located in southwestern Japan, are an important feeding ground 

for both green and hawksbill turtles. Considering that both green and 

hawksbill turtles nest and hatch on beaches in tropical regions and that 

their hatchlings undertake mostly passive migrations, the foraging 

aggregation of green and hawksbill turtles around the Yaeyama Islands may 

also comprise individuals from widespread rookeries throughout the Pacific. 

Therefore, the mtDNA haplotypes observed in the turtle feeding 

aggregations in the Yaeyama Islands may represent those of widespread 

areas of the Pacific as a whole, and would thus enable us to estimate at least 

part of the genealogy and historical dynamics of hawksbill and green turtles 

in the Pacific. In this chapter, historical patterns in population dynamics 

and differentiation of Pacific hawksbill and green turtles from the Yaeyama 

feeding ground were estimated by neutrality test statistics, observed 

distributions of pairwise nucleotide differences, and comparative 

phylogenies. Phylogenetic relationships of the haplotypes indicated that 

both turtles in the Pacific underwent very similar patterns and processes of 

population dynamics over the last several million years, with population 

subdivision during the early Pleistocene and population expansion after the 

last glacial maximum. These significant contemporary historical events 

were suggested to have been caused by climatic and sea-level fluctuations. 

On the other hand, regional differences in historical population dynamics 
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compared to the Atlantic are suggested. 

 

The detail of this chapter was published in: 

[1] Nishizawa H, Okuyama J, Kobayashi M, Abe O, Arai N (2010) 

Comparative phylogeny and historical perspectives on population 

genetics of the Pacific hawksbill (Eretmochelys imbricata) and green 

turtles (Chelonia mydas), inferred from feeding populations in the 

Yaeyama Islands, Japan. Zoological Science 27: 14-18 
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Chapter 6  

General Discussion:  
Conservation Implications for Sea Turtles  
in the Pacific 
 

6.1 Genetic Diversity and Conservation Priority 

In the Chapter 5, the regional difference in historical population dynamics 

in the Pacific sea turtles compared with those in the Atlantic (Reece et al. 

2005) would support the need for regionally varying conservation strategies 

(Seminoff & Shanker 2008). Chapter 2 and Chapter 3 revealed that the 

Yaeyama green turtle nesting populations exhibit relatively high genetic 

diversity, likely as a result of historical emigration from divergent tropical 

colonies, despite relatively small or obscure number of nesting turtles at 

least in Ishigaki Island (Abe et al. 2003). In Japan, green turtles as well as 

hawksbill turtles on nesting beaches have relatively high genetic diversity. 

Recently, regional management units have been suggested to provide a 

framework for assessing high diversity areas and evaluating conservation 

status of sea turtles (Wallace et al. 2010). Considering that green turtle 

nesting populations of Wan-an Island in Taiwan, another nesting rookery in 

Northwestern Pacific, also has high genetic diversity (Cheng et al. 2008) 

and significantly differentiated from those of Yaeyama islands, regional 

management unit of Northwestern Pacific green turtles (Wallace et al. 

2010) are indicated to be important in terms of the conservation of genetic 

diversity. Moreover, the significant genetic differentiation among the 

Yaeyama Islands as revealed by mtDNA analysis may indicate precise 

female natal philopatry, as among Taiwanese rookeries. The findings 

indicate that nesting females of green turtles in the Yaeyama Islands have 

precise natal philopatry at ecological timescales although they had been 

formed by emigration from divergent tropical colonies at historical 

timescales. Considering that natal philopatry is related to their response to 

changes in availability of nesting sites over time (Dethmers et al. 2006), 

Yaeyama nesting populations may have a high priority in conservation. 
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Despite relatively high male-mediated gene flow, this study indicated some 

phylogeographic features and conservation priority of northwest Pacific 

green turtles. 

6.2 Conservation Strategies based on the Migration 

The management of green turtles based on linkages between their feeding 

aggregations and rookeries will be needed for their conservation (Bowen et 

al. 2007). In the Pacific Ocean, the Hawaiian feeding aggregation of green 

turtles was estimated to originate mostly from Hawaiian rookeries, 

indicating a distinct regional population for management (Dutton et al. 

2008). On the other hand, the Colombian feeding aggregation in the 

eastern Pacific was estimated to be recruited from distant sites, indicating 

the importance of multinational conservation strategies (Amorocho et al. 

2012). In Japanese feeding aggregations, both of these types of sourcing 

were observed (Chapter 4). The estimated compositions of Japanese feeding 

aggregations have conservation implications. The Ogasawara nesting 

rookery was estimated to contribute significantly to all Japanese feeding 

aggregations analysed in this study. Among them, northern feeding 

aggregations from Japan, Nomaike, Muroto, Kanto, and Sanriku were 

estimated to have contributions primarily from Ogasawara. Therefore, 

hazards that affect declining nesting populations in Ogasawara may also 

affect a wide range of Japanese feeding aggregations, especially northern 

feeding aggregations. This indicates the importance of regional 

management in Japan. On the other hand, the Yaeyama and Ginoza feeding 

aggregations of Japan are estimated to have migrated from remote Pacific 

rookeries. Therefore, any source of mortality in nesting rookeries in the 

tropical Pacific is likely to affect remote feeding aggregations in Japan. 

Conversely, effects on feeding aggregations in Japanese waters could affect 

nesting populations in other countries because of natal philopatry (Chapter 

3). It emphasizes the necessity for multinational conservation strategies for 

green turtles in the western Pacific, as in other regions (Amorocho et al. 

2012) and for other sea turtle species (Bowen et al. 2007). 
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Although only small amount of green turtles born in Hawaii or the 

Eastern Pacific rookeries may be transported to the Japanese coastal area, 

particularly the Sanriku coastal area (Chapter 4), and return to their natal 

beaches to breed, the effects on the Sanriku feeding aggregations could 

influence remote nesting populations in Hawaii or the Eastern Pacific. 

6.3 Conclusions 

By using genetic information, this study uncovered relationships between 

individuals and populations of sea turtles in the Yaeyama and the Pacific 

Ocean: phylogeography, historical population dynamics, natal philopatry, 

and migrations. In this way, genetic information is valuable for 

understanding the cryptic features in wide range of temporal and spatial 

scales. These kinds of information include conservation implications for 

endangered sea turtles contributing to the management of genetic diversity 

or local populations. Exploring the effective utilization of important data for 

biological conservation from genetic information by using computer-based 

simulations and statistical methods is necessary for resolving social issues 

concerning the conflicts between humans and other animals. This study 

offers an important case of conservation management of endangered 

species based on genetic information. Techniques of this study can be 

applicable to other endangered species and/or migratory species. 
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