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Abstract

H∞ control is well appreciated as a powerful design methodology against system

uncertainty. It has been playing an important role in the field of robust control.

For infinite-dimensional systems such as time-delay systems, H∞ control problems

have been under extensive study since the mid-1980s. On the other hand, stable

controller design known as strong stabilization is also an important issue of robust

control from a practical point of view. This thesis presents a new solution to the

H∞ control problems for infinite-dimensional systems within the framework of strong

stabilization.

First, we study the problem of strong stabilization with sensitivity reduction for

multi-input multi-output plants having infinitely many unstable poles. The H∞ con-

trol problem can be reduced to an interpolation problem with a unimodular matrix

whose H∞-norm is less than one. In conjunction with the Nevanlinna-Pick interpo-

lation theory, this equivalence leads to a computation method of upper and lower

bounds on the minimum sensitivity achievable by a stable controller. We also give a

design procedure of stable controllers attaining the upper bound.

Second, we design stable controllers providing robust stability for single-input

single-output plants with infinitely many unstable poles. We transform this robust

control problem to an interpolation-minimization problem for a unit element in H∞.

By using the modified Nevanlinna-Pick interpolation, we obtain upper and lower

bounds on the maximum perturbation under which the plant can be stabilized by a

stable controller.

Third, strong stabilization with mixed sensitivity reduction is addressed. The

plants we consider are allowed to have pure delays and infinitely many unstable zeros.

To overcome the infinite dimensionality, the proposed method gives a new solution

rooted in an operator-theoretic approach to interpolation. We introduce a new two-

block problem for the design of stable H∞ controllers, and then convert the problem

to a one-block problem that has been solved by the operator-theoretic approach.

As a result, the proposed method offers a direct design procedure. This yields the

advantage that the desired controller is constructed with only linear computation as

in other interpolation-based methods.
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Notation

j :=
√
−1, the imaginary unit.

R: the real line.

Rn: n-dimensional Euclidean space.

C: the complex plane.

C+: the open right half-plane {s ∈ C : Re s > 0}.
C̄+: the closed right half-plane {s ∈ C : Re s ≥ 0}.
C̄e: the extended right half-plane C̄+ ∪ {∞}.
C−ε := {s ∈ C : Re s > −ε}.
jR: the imaginary axis {s ∈ C : Re s = 0}.
jRe: the extended imaginary axis {jω : ω ∈ R ∪ {∞}}.
D: the open unit disc {z ∈ C : |z| < 1}.
T: the unit circle {ζ ∈ C : |ζ| = 1}.
s̄: the complex conjugate of s ∈ C.
Re s: the real part of s ∈ C.
Arg s: the argument function of s ∈ C \ {0} whose range is (−π, π].

Log s := ln s+Arg s: the principal value of the complex logarithm for s ∈ C \ {0}.
M(R): the set of matrices with elements in a commutative ring R, of whatever order.

Rp×q: the set of p × q matrices with entries in a commutative ring R. When it is

necessary to show explicitly the size of a matrix, we use this notation.

A∗: the conjugate transpose of A ∈ M(C).
A1/2: the Hermitian square root of A ≥ 0.

A−1/2: the inverse of the Hermitian square root of A > 0.

‖v‖ := (v∗v)1/2, the Euclidean norm of v ∈ Cp.

‖A‖ := sup{‖Av‖ : v ∈ Cq, ‖v‖ = 1}, the Euclidean induced norm of A ∈ Cp×q.

B: the set of matrices whose norm is less than one: {A ∈ Cp×q : ‖A‖ < 1}.
H∞: the space of all bounded holomorphic functions in C+.

RH∞: the subspace of H∞ consisting of all real-rational functions. We say that a

function is real-rational if it is expressible is defined as the ratio of two real polynomials

with a nonzero denominator.

F∞: the field of fractions of H∞.

H2: the space of all holomorphic function f in C+ satisfing

sup
ξ>0

(∫ ∞

−∞
‖f(ξ + jω)‖2dω

)
< ∞.

detG: the determinant of G ∈ (F∞)p×p.

G′: the derivative of G.

G˜(s) := G(−s̄)∗, the para-Hermitian conjugate of G ∈ M(H∞).

‖G‖∞ := sups∈C+
‖G(s)‖, the H∞-norm of G ∈ M(H∞).
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(si, Ai)
n
i=1: the matrix-valued interpolation data of G(si) = Ai (i = 1, . . . , n) for a

matrix-valued function G.

(si, [ξi, ηi])
n
i=1: the tangential interpolation data of ξ∗iG(si) = η∗i (i = 1, . . . , n) for a

matrix-valued function G.
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Chapter 1

Introduction

1.1 Infinite-dimensional systems
Most works on control analysis and synthesis deal only with systems modeled

by ordinary differential equations. However, many types of systems in industry do

not fall into this category. For example, control systems via networks include time-

delays. In repetitive control, a delayed feedback loop is required for asymptotic

tracking to periodic reference commands [121]. Moreover, physical phenomena such

as heat conduction and structural vibration depend on both position and time. Such

a system is called an infinite-dimensional system because its state space is infinite-

dimensional. In contrast, a system represented by ordinary differential equations has

a finite-dimensional state space, so it is called a finite-dimensional system.

In this thesis, we employ a frequency domain approach. In other words, instead of

the state space representation, we take the transfer function as a model of a system.

The transfer function of a finite-dimensional system is a rational function, whereas

that of an infinite-dimensional system is an irrational function. This leads to the dif-

ficulty of dealing with essential singularities as well as infinitely many poles/zeros See

[20] and references therein for examples of transfer functions of infinite-dimensional

systems.

A controller design method for infinite-dimensional systems is to approximate the

system by a rational function and then apply techniques for finite-dimensional systems

to the approximation. This approach provides easily implementable controllers, but

the obtained controller stabilizes only a reduced-order model, and not the original

model. Hence it is not always successful due to the so-called spillover effects [2].

Spillover refers to the phenomenon that the uncontrolled modes lead to instability.

Furthermore, the approach introduces additional parameters for approximation. Such

approximation parameters may obscure the effects of the physical parameters of the

original system.

For this reason, we construct a controller directly from irrational transfer func-

tions in this thesis. Such a direct design has the disadvantage that the resulting

controller is generally infinite-dimensional and hence must be approximated by a

finite-dimensional system for implementation. However, it gives theoretical insight
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P (s)C(s)
e1u1+
−

e2
+

u2

Figure 1.1: Closed-loop system.

into the performance limitation of control systems, which is difficult to obtain by the

indirect controller design above.

1.2 Stable H∞ controller design
We denote byH∞ the space of all bounded holomorphic functions in C+. The field

of fractions of H∞ is denoted by F∞. For the commutative ring R, M(R) denotes

the set of matrices with entries in R, of whatever order. We say that G is stable if

G ∈ M(H∞). For G ∈ M(H∞), the H∞-norm is defined as ‖G‖∞ = sups∈C+
‖G(s)‖.

In this thesis, we consider the closed-loop system shown in Figure 1.1, where

P ∈ M(F∞) represents the plant and C ∈ M(F∞) is the controller. The plant P is

stabilizable if there exists C ∈ M(F∞) such that the transfer matrix H(P,C) from

(u1, u2) to (e1, e2) satisfies

H(P,C) =

[
(I + PC)−1 −(I + PC)−1P

C(I + PC)−1 I − C(I + PC)−1P

]
∈ M(H∞). (1.2.1)

For a given P , the set of all C ∈ M(F∞) leading to (1.2.1) is denoted by C (P ). P is

strongly stabilizable if M(H∞)∩C (P ) 6= ∅. We say that C stabilizes P if C ∈ C (P ),

and that C strongly stabilizes P if C ∈ M(H∞) ∩ C (P ).

In many situations, it is not enough to achieve only stability of the closed-loop

system with nominal model. This is because parameters that are not known exactly

can lead to modeling errors. Moreover, the actual system is subject to varied uncer-

tainties such as disturbance and sensor noise. These perturbations can destabilize the

closed-loop system and prevent it from achieving the desired performance.

Zames [128] proposed a new approach to robust control theory by introducing

a controller design as an optimization problem with the H∞-norm of a prespecified

transfer function. The H∞-norm here gives the maximal gain of the outputs against

the inputs, since it is identical to the induced norm of an operator acting on L2

spaces. Hence the optimization withH∞-norm leads to the worst case analysis against

system uncertainty. For instance, minimizing of theH∞-norm of a closed-loop transfer

function called the sensitivity function means that the closed-loop system is made less

sensitive to disturbance. Also, if we design a controller to reduce the H∞-norm of the

so-called complimentary sensitivity function, then the controller stabilizes the plant

having modeling errors. See also the section on motivation in Chapters 3 and 4 for

the details of these transfer functions.

Most researches on H∞ control theory impose no restriction on the stability of

controllers. However, if a sensor fails, an unstable controller can destabilize the closed-

loop system even with a stable plant. Moreover, it is sensitive to hard nonlinearities
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such as the amplitude or rate saturation of actuators. Note that we cannot deal

with such nonlinearities by the H∞-norm. The following example illustrates the

disadvantages of unstable controllers:

Example 1.2.1. Let the plant P and the weighting functions W1,W2 be

P (s) =
4s2 − 16s+ 3

s(4s2 + 12s+ 29)
, W1(s) =

1

10s+ 5.01
, W2(s) = 0.2(s+ 0.6).

Let us add the restriction that the real parts of the poles of H(P,C) in (1.2.1) are

smaller than −0.5. Here we minimize not∥∥[W1S W2T
]∥∥

∞
, (1.2.2)

but the following modified H∞ norm:∥∥[W1S W2T
]∥∥

∞,−0.5
:= sup

Re s>−0.5

∥∥[W1(s)S(s) W2(s)T (s)
]∥∥ . (1.2.3)

where S := 1/(1+PC) is the sensitivity function and T := 1−S is the complementary

sensitivity function.

The H∞ optimal controller Copt is given by

Copt(s) =
17.37(s+ 0.371)(s2 − 3.897s+ 10.272)

(s+ 0.501)(s2 − 9.891s+ 84.155)
, (1.2.4)

which has two unstable poles p1, p2 ≈ 4.95 ± 7.73i. The unstable controller Copt

achieves 3.474 in both norm (1.2.2) and (1.2.3).

We construct a stable H∞ by a MATLAB package HIFOO 3.0 [44]. The resulting

controller Cs is

Cs(s) =
9.683(s+ 6.989)(s2 + 2.587s+ 4.926)

(s+ 7.584)(s2 + 1.921s+ 28.196)
. (1.2.5)

The modified norm (1.2.3) is 601.3. This is because W1S and W2T have poles close

to {−0.5 + jω : ω ∈ R}. However, the stable controller Cs attains 3.135 in (1.2.2).

We can therefore use Cs for performance improvement and robust stabilization.

Figure 1.2 shows the step responses in the ideal situation where there are no

sensor failures or actuator amplitude or rate saturation. We see from Figure 1.2 (a)

that the output with the unstable controller Copt has better tracking performance in

terms of both response speed and overshoot than that with the stable controller Cs.

However, we next show that the unstable controller Copt performs poorly and can

lead to instability when sensor failures and actuator amplitude and rate saturation

occurs.

Sensor failures/packet losses between sensor and controller: The informa-

tion on the plant output is not always available to the controller due to sensor fail-

ures/packet losses, and hence the controller has access to the output intermittently.

Here we assume that the sensor failures/packet losses occur with probability α at

every t = 0.2n sec (n ≥ 0) and that it induces the lack of the information for 0.2 sec.
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Figure 1.2: Output and input responses without any sensor failures and actuator
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Figure 1.3: Unstable controller for α = 0.05, La = 15, and Lr = 50.
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Figure 1.4: Stable controller for α = 0.1, La = 5, and Lr = 5.

When sensor failures/packet losses happen, the controller generates its output from

the previous successfully transmitted data.

Actuator amplitude and rate saturation: Most actuators have physical con-

straints that limit the control amplitude and rate. We assume that the input of P

and its time derivative are limited to the range [−La, La] and [−Lr, Lr], respectively.



5

Figure 1.3 shows the output and input of P with the unstable controller Copt

for α = 0.05, La = 15, and Lr = 50. We see that the closed-loop system becomes

unstable and the input of P oscillates due to the saturation of the actuator amplitude

and rate after the first sensor failure at t ≈ 1 sec.

We also confirm numerically that Copt does not stabilize P for α = 0, La = 10,

and Lr = 45, that is, the case with no sensor failure. The responses are similar to

Figure 1.3, so we omit them.

In contrast, Figure 1.4 shows that the stable controller Cs keeps the closed-loop

system stable under a more limited situation with α = 0.1, La = 5, and Lr = 5.

In [50, 70, 75, 116, 117], further comparisons are made between stable and unstable

controllers.

From Example 1.2.1, we see that an unstable controller derived from H∞ opti-

mization can lead to instability of the closed-loop system in the presence of sensor

failures and actuator amplitude and rate saturation. This implies that an unstable

controller is sensitive to such failures and nonlinearities even if the controller is robust

in the sense of H∞ control theory. Hence stable controller design known as strong

stabilization is also an important issue in robust control from a practical point of view,

and it has been studied since the 1970s. The next section is devoted to a literature

review of strong stabilization.

1.3 Literature review

1.3.1 Strong stabilization

We say that a function is real-rational if it is expressible as the ratio of two real

polynomials with a nonzero denominator. A rational function is said to be proper if

the degree of the numerator polynomial does not exceed that of the denominator1.

Let RH∞ denote the subspace of H∞ consisting of all proper stable real-rational

functions.

If the plant and the controller are real-rational and proper, then the plant is

strongly stabilizable if and only if the plant satisfies the so-called parity interlacing

property [127]. For single-input single-output (SISO) systems, this property means

that the plant has an even number of real poles between every pair of real zeros in the

extended right half-plane C̄e (Figure 1.5). This result remains valid for input-delay

systems [1]. On the other hand, based on the results in [109], Quadrat [92] shows

that every stabilizable plant P ∈ M(F∞) is strongly stabilizable. However, in this

case, the controller C generally belongs to M(H∞) not to M(RH∞). This means

that C(s) ∈ C even for s ∈ R.
For SISO systems, Vidyasagar [114] obtains a parameterization of all strongly

stabilizing controllers by using complex exponential functions. Many interpolation-

based methods to construct stable real-rational controllers are developed for SISO

systems in [21, 23, 25, 87, 89] and for multi-input multi-output (MIMO) systems

in [49, 91, 96, 127], respectively. Furthermore, other various approaches for strong

1See also (4.2.11) for the definition of the properness of irrational functions.
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Figure 1.5: Parity interlacing property

stabilization of MIMO systems are proposed: H∞ optimization [96], algebraic Riccati

equations [130], and linear matrix inequalities [16, 46]. In [74, 86, 88, 102, 107], the

order of stable stabilizing controllers is discussed through the investigation on the

degree of a rational interpolating function in H∞.

For SISO time-delay systems, a design procedure of stable controllers is developed

by an interpolation-based method in [104]. Özbay [76] extends the results in [130] to

infinite-dimensional MIMO systems. The synthesis of proportional-derivative (PD)

controllers (or equivalently stable first-order controllers) is studied for system with

input/output-delays [80, 81] and for fractional-order systems [79].

All the results above are for continuous-time, time-invariant systems whose trans-

fer function has a single variable. However, strong stabilization is studied for varied

classes of systems. For systems with several variables, sufficient conditions and nec-

essary conditions for strong stabilization are obtained in [68, 123, 124, 126]. The

authors of [125] use the results in [123] and derive an algebraic criterion for strong

stabilization of time-delay systems by real-rational controllers. A sampled-data sys-

tem remains strongly stabilizable if so is the original continuous-time system and if

the sampling period is sufficiently small [51]. For discrete-time time-varying systems,

a sufficient condition for the existence of strongly stabilizing controllers is derived in

[29]. On the other hand, for continuous-time time-varying systems, it is shown in

[30] that internally stabilizable systems may not be strongly stabilizable unlike in the

time-invariant case [92].

Applications of stable stabilizing controllers can be found in high performance

robot derives [116], magnetic bearings [99], and two-link planar robots [117].

1.3.2 Stable H∞ controller design

The results on the design of stable H∞ controllers can be classified in terms

of whether they employ the parameterization of all H∞ sub-optimal controllers or

interpolation with an invertible H∞ function.

Let us first review the parameterization-based approach. Most works of this ap-

proach study the standard H∞ control problem for MIMO systems.

For finite-dimensional systems, the parameterization of all H∞ sub-optimal con-

trollers (see, e.g., [131]) offers a large number of design methods of stable H∞ con-

trollers by various calculation techniques, e.g., algebraic Riccati equations [6, 7, 15,

65, 66, 90, 129, 130], linear matrix inequalities [16, 46], and bilinear matrix inequali-

ties [13, 14]. For descriptor systems, the authors of [31] provide stable H∞ controller

design based on the results in [105].
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In [110, 111], the results of [14, 66, 130] are extended to systems with multiple

input/output-delays via the controller parameterization presented in [72]. For a more

general class of SISO time-delay systems, stable controllers for mixed sensitivity re-

duction are designed in [47], where the parameterization of [108] is used. However,

the above results for time-delay systems have computational difficulties due to the

infinite dimensionality of the sub-optimal H∞ controllers.

We now summarize the results of the interpolation-based approach. Many of

them study one-block problems such as sensitivity reduction and construct stable

H∞ controllers by the Nevanlinna-Pick interpolation; see Chapter 2 and references

therein for the details of the Nevanlinna-Pick interpolation.

Strong stabilization with sensitivity reduction for finite-dimensional systems are

studied in the SISO case [5, 38, 56] and in the MIMO case [95, 100], respectively. The

authors of [53] construct stable and robust controllers for finite-dimensional systems

by approximately reducing the robust stabilization problem to a nonlinear min-max

optimization problem. In [52], sensitivity improvement by a stable controller is dis-

cussed for sampled-data systems via an interpolation-based approach (not with an

invertible function).

The technique in [38] is generalized to plants with infinitely many unstable poles

in [48, 77]. This has the computational advantage that, by checking the positive

definiteness of finitely many Pick matrices, we can obtain the minimum sensitivity

achievable by a stable controller even for infinite-dimensional systems.

Using a toolbox HIFOO in MATLAB, we can construct stable H∞ controllers

with prescribed order [44]. The toolbox is based on nonsmooth and nonconvex opti-

mization.

Stable H∞ controllers are used in many applications, e.g., flexible structures [8, 9],

DC servo motors [98], and traffic networks [111]. Moreover, the authors in [112] point

to the design of stable H∞/µ controllers for high-precision wafer stage motion as a

future work.

1.4 Outline of the thesis
Our design methods of stable H∞ controllers are categorized into the latter: the

interpolation-based approach. The main contribution of this thesis is to propose

computationally attractive solutions to H∞ control problems for infinite-dimensional

systems within the framework with strong stabilization.

This thesis is organized as follows.

Chapter 2: We study the Nevanlinna-Pick interpolation with boundary conditions

in both matrix-valued and tangential cases. First by removing all interior conditions,

we reduce this interpolation problem to the problem with boundary conditions only.

We next extend the Schur-Nevanlinna algorithm to show that the reduced boundary

problem is always solvable.

Chapter 3: Chapter 3 addresses the problem of strong stabilization with sensitivity

reduction for MIMO systems. The plants can have infinitely many unstable poles in

C+. We compute lower and upper bounds on the minimum sensitivity achievable by
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a stable controller through the Nevanlinna-Pick interpolation. Moreover, we propose

a design procedure of stable controllers for sensitivity reduction.

Chapter 4: This chapter aims to construct stable controllers robustly stabilizing

SISO systems. The plants we consider may have infinitely many unstable poles as in

Chapter 3. We give a computation method for both lower and upper bounds on the

largest plant-perturbation permissible by a stable controller. The results are based

on the modified Nevanlinna-Pick interpolation proposed in [4].

Chapter 5: In this chapter, we propose the design of stable controllers that simul-

taneously achieve low sensitivity and robust stability. The plants here are allowed to

have pure delays and infinitely many unstable zeros. We introduce a new two-block

problem for the design of such stable H∞ controllers. The two-block problem can be

solved by matrix computation with the help of the skew Toeplitz approach in [33].

Chapter 6: This chapter summarizes the contributions of this thesis and gives some

perspectives on future research.

Figure 1.6 outlines the relations between the chapters.

1 

3 4 5 

6 

2 
Sec. 2.1 

Infinitely many 

unstable poles 

Infinitely many 

unstable zeros, 

Pure delays 

MIMO SISO 

Main results 

(Chap. 3-5) 

Figure 1.6: Organization of this thesis
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Chapter 2

Nevanlinna-Pick Interpolation with

Boundary Conditions

The Nevanlinna-Pick interpolation is useful in solving H∞ control problems. In

this chapter, we study the matrix-valued/tangential Nevanlinna-Pick interpolation

with boundary conditions. We use the interpolation problem to solve the problem of

strong stabilization with sensitivity reduction for MIMO systems with zeros on the

closed right half-plane. Using the associated Pick matrix, the authors of [3] have al-

ready given a necessary and sufficient condition for such an extended Nevanlinna-Pick

interpolation problem. In contrast, here we extend the Schur-Nevanlinna algorithm to

propose a new, inductive proof of the theorem. The main contribution of the present

chapter is to give a computationally efficient solution. This helps us to construct

controllers achieving nearly optimal performance.

2.1 Scalar-valued Nevanlinna-Pick interpolation
In this section, we briefly review the scalar-valued Nevanlinna-Pick interpolation.

Since the results in [3, 33, 114] are developed for the open unit disk D, it is conve-
nient in this and the next sections to map C+ onto D via the bilinear transformation

s 7→ τ(s) := z =
s− 1

s+ 1
.

That is, we consider H∞(D) defined by the set of functions that are bounded and

holomorphic in D, and the H∞-norm is defined by ‖G‖∞ := supz∈D ‖G(z)‖ for G ∈
M(H∞(D)). We denote the closed unit disk by D̄. Note that the f ∈ H∞ if and only

if f ◦ τ ∈ H∞(D) and also that ‖f‖∞ = ‖f ◦ τ‖∞.

The Nevanlinna-Pick interpolation problem is stated as follows:

Problem 2.1.1 ([3, 25, 33, 120]). Let λ1, . . . , λn ∈ D and µ1, . . . , µn ∈ D̄. Suppose

that λ1, . . . , λn are distinct. Find φ ∈ H∞(D) satisfying ‖φ‖∞ ≤ 1 and

φ(λi) = µi, i = 1, . . . , n.
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In what follows, we use the notation of the form (λi, µi)
n
i=1 to denote the interpo-

lation data as above, i.e., associating values µi at λi.

The following theorem gives a necessary and sufficient condition for the solvability

of Problem 2.1.1:

Theorem 2.1.2 ([3, 25, 33, 120]). Consider Problem 2.1.1. Define the Pick matrix

P by

P :=


1−µ1µ̄1

1−λ1λ̄1
. . . 1−µ1µ̄n

1−λ1λ̄n
...

...
1−µnµ̄1

1−λnλ̄1
. . . 1−µnµ̄n

1−λnλ̄n

 . (2.1.1)

Problem 2.1.1 is solvable if and only if P is positive semi-definite.

We obtain solutions to Problem 2.1.1 by the Schur-Nevanlinna algorithm [25].

Moreover, we can parameterize all solutions to Problem 2.1.1 by an analytic function.

Theorem 2.1.3 ([3, 33]). Assume that the Pick matrix P defined in (2.1.1) is positive

definite. If necessary, by using an appropriate one-to-one mapping of D onto D, for
example,

s 7→ s− α

1− ᾱs
, where α ∈ D and α 6= λi (i = 1, . . . , n),

we may assume without loss of generality that λi 6= 0 for i = 1, . . . , n.

Define

B(z) :=
n∏

i=1

λi − z

1− λiz
· λi

|λi|

vi := B(0)/λi, v :=
[
v1 v2 . . . vn

]>
u := P−1v,

[
u1 u2 . . . un

]
:= x>.

Also set

X(z) := B(0)B(z)−
n∑

i=1

B(z)

z − λi

ui, Y (z) := −z

(
n∑

i=1

µi

1− λiz
ui

)
X̃(z) := B(z)X(1/z̄), Ỹ (z) := B(z)Y (1/z̄).

Then all solutions to the Nevanlinna-Pick interpolation problem 2.1.1 are given

by

φ =
X̃f + Ỹ

X + Y f
, (2.1.2)

where f : D → D is an arbitrary analytic function.

Notice that the parameterization (2.1.2) of all solutions has the form of a linear

fractional transformation with free parameter f and with X, Y , X̃, and Ỹ determined

by the interpolation data (λi, µi)
n
i=1.
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2.2 Matrix-valued Nevanlinna-Pick interpolation
Our objective in this section is to show that the matrix-valued Nevanlinna-Pick

interpolation problem with boundary constraints is solvable if and only if the Pick

matrix consisting of the interior constraints is positive definite. We also extend the

Schur-Nevanlinna algorithm [114] for the construction of solutions.

2.2.1 Interpolating interior conditions

Let us first introduce an interpolation problem with interior conditions only.

We state the matrix-valued Nevanlinna-Pick interpolation problem as follows:

Problem 2.2.1 ([3, 22, 114]). Given distinct complex numbers λ1, . . . , λn ∈ D and

complex matrices F1, . . . , Fn satisfying ‖Fi‖ < 1 for every i, find Φ ∈ M(H∞(D))
satisfying ‖Φ‖∞ < 1 and

Φ(λi) = Fi, i = 1, . . . , n.

Problem 2.2.1 is solvable if and only if the associated Pick matrix is positive

definite:

Theorem 2.2.2 ([3, 22, 114]). Consider the matrix-valued Nevanlinna-Pick interpo-

lation problem 2.2.1. Define the block matrix

P :=

P1,1 · · · P1,n

...
...

Pn,1 · · · Pn,n

 , (2.2.1)

where

Pk,l :=
1

1− λ̄kλl

(I − F ∗
kFl), k, l = 1, . . . , n.

Problem 2.2.1 is solvable if and only if P is positive definite.

Let B := {M ∈ Cp×q : ‖M‖ < 1}. We need the following lemma when we develop

an algorithm for the construction of solutions to the interpolation problem and when

we consider the problem with boundary conditions.

Lemma 2.2.3 ([22, 114]). Let E ∈ B. Define

A := (I − EE∗)−1/2, B := −(I − EE∗)−1/2E

C := −(I − E∗E)−1/2E∗, D := (I − E∗E)−1/2,
(2.2.2)

where M−1/2 denotes the inverse of the Hermitian square root of M > 0. Then the

mapping

TE : B → B : X 7→ (AX +B)(CX +D)−1 (2.2.3)

is well-defined and bijective. The inverse of TE is given by

T−1
E (Y ) = (A− Y C)−1(Y D −B).
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We obtain a solution to Problem 2.2.1 by iteratively reducing the number of

interpolation conditions.

Theorem 2.2.4 ([22, 114]). Consider the matrix-valued Nevanlinna-Pick interpola-

tion problem 2.2.1. Define

y(z) :=
|λ1|(z − λ1)

λ1(1− λ̄1z)
(2.2.4)

F̂i :=
1

y(λi)
TF1(Fi), i = 2, . . . , n. (2.2.5)

Then the original problem with n interpolation data (λi, Fi)
n
i=1 is solvable if and only

if the Nevanlinna-Pick interpolation problem with n − 1 data (λi, F̂i)
n
i=2 is solvable.

Furthermore, there exist a solution Φn to the original problem with n interpolation

conditions and a solution Φn−1 to the problem with n−1 interpolation conditions such

that

Φn(z) = T−1
F1

(y(z)Φn−1(z)). (2.2.6)

For computing solutions to Problem 2.2.1, Theorem 2.2.4 suggests an iterative

algorithm called the Schur-Nevanlinna algorithm. Moreover, it follows from Theorem

2.2.4 that there exist solutions whose entries are rational whenever the problem is

solvable.

2.2.2 Interpolating interior and boundary conditions

We study a matrix-valued interpolation problem that has not only interior condi-

tions but also boundary conditions. We first transform it to an interpolation problem

with boundary conditions only, and then show that the boundary interpolation prob-

lem is always solvable.

Let T be the boundary of the unit disc D. The matrix-valued Nevanlinna-Pick

interpolation problem with boundary conditions is stated as follows:

Problem 2.2.5. Given distinct complex numbers λ1, . . . , λn ∈ D, r1, . . . , rm ∈ T
and complex matrices F1, . . . , Fn, G1, . . . , Gm such that ‖Fi‖ < 1, ‖Gk‖ < 1 for all i,

k. Find a rational matrix function Φ ∈ M(H∞(D)) satisfying ‖Φ‖∞ < 1 and

Φ(λi) = Fi, Φ(rk) = Gk, i = 1, . . . , n, k = 1, . . . ,m.

The scalar version of Problem 2.2.5 is studied in [3, Chap. 21], [33, Chap. 2], and

[69]. The approach of [3, Chap. 21] and [33, Chap. 2] is based on the corresponding

Pick matrix. On the other hand, the method in [69] uses the Schur-Nevanlinna

algorithm. Here we extend the method in [69] to the matrix-valued case.

This subsection aims to prove the next theorem. The theorem means that the

boundary conditions (rk, Gk)
m
k=1 do not affect the solvability of Problem 2.2.5.

Theorem 2.2.6. Problem 2.2.5 is solvable if and only if the matrix-valued Nevanlinna-

Pick interpolation problem 2.2.1 with interpolation data (λi, Fi)
n
i=1 is solvable.

To prove Theorem 2.2.6, we need to reduce Problem 2.2.5 to the following problem:
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Problem 2.2.7. Given distinct complex numbers r1, . . . , rm ∈ T and complex ma-

trices G1, . . . , Gm satisfying ‖Gk‖ < 1 for every k. Find a rational matrix function

Ψ ∈ M(H∞(D)) satisfying ‖Ψ‖∞ < 1 and

Ψ(rk) = Gk, k = 1, . . . ,m.

The problem above is called the boundary matrix-valued Nevanlinna-Pick inter-

polation problem. It is obvious that the conditions ‖Gk‖ < 1 are necessary for the

existence of solutions to Problem 2.2.7. The following lemma suggests that the con-

ditions are also sufficient.

Lemma 2.2.8 ([3, 103]). The boundary matrix-valued Nevanlinna-Pick interpolation

problem 2.2.7 is always solvable.

We can prove Lemma 2.2.8 in the same way as in [3, 33, 103] based on the as-

sociated Pick-matrix; see Section 2.4 for details. By contrast, here we extend the

Schur-Nevanlinna algorithm. This gives a proof leading to the more computationally

efficient construction of solutions.

Proof of Lemma 2.2.8. It suffices to show that there is always a boundary Nevanlinna-

Pick interpolation problem 2.2.7 with m − 1 interpolation conditions in such a way

that if the problem with m− 1 conditions is solvable, then the original problem with

m data (rk, Gk)
m
k=1 is also solvable.

Let ε > 0. We define

yε(z) :=
1

r1

z − r1
(1 + ε)− r̄1z

(2.2.7)

Ĝk :=
1

yε(rk)
TG1(Gk), k = 2, . . . ,m. (2.2.8)

Let us first show that the interpolation data (rk, Ĝk)
m
k=2 are well-defined. To see

this, we prove that there exists ε > 0 such that

‖Ĝk‖ < 1, k = 2, . . . ,m. (2.2.9)

By definition, we have

‖Ĝk‖ =

∥∥∥∥ 1

yε(rk)
TG1(Gk)

∥∥∥∥
=

∣∣∣∣1− εr1
rk − r1

∣∣∣∣ · ‖TG1(Gk)‖

≤
(
1 +

ε

|rk − r1|

)
· ‖TG1(Gk)‖. (2.2.10)

Since Gk ∈ B, it follows that ‖TG1(Gk)‖ < 1 by Lemma 2.2.3. Hence there exists ε

such that

0 < ε < min
k=2,...,m

(
|rk − r1| ·

(
1

‖TG1(Gk)‖
− 1

))
. (2.2.11)
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If ε satisfies (2.2.11), then(
1 +

ε

|rk − r1|

)
· ‖TG1(Gk)‖ < 1.

Combining this with (2.2.10), we obtain the desired inequality (2.2.9).

Assume that there exists a solution Ψm−1 ∈ M(H∞(D)) to the boundary inter-

polation problem 2.2.7 with m− 1 interpolation data (rk, Ĝk)
m
k=2. We now show that

Ψm(z) := T−1
G1

(yε(z)Ψm−1(z)) is a solution to the original problem with m interpola-

tion data (rk, Gk)
m
k=1.

Since the domain of T−1
G1

is B, to begin with, we need to show

yε(z)Ψm−1(z) ∈ B, z ∈ D̄. (2.2.12)

By definition, ‖yε‖∞ < 1 and ‖Ψm−1‖∞ < 1, and hence ‖yεΨm−1‖∞ < 1. This is

equivalent to (2.2.12).

Clearly, Ψm is rational and belongs to M(H∞(D)). Also, (2.2.12) and Lemma

2.2.3 lead to ‖Ψm‖∞ < 1.

Now we confirm that Ψm satisfies the interpolation conditions. When k = 1, it

follows from the definition (2.2.7) of yε that

Ψm(r1) = T−1
G1

(yε(r1)Ψm−1(r1)) = T−1
G1

(0) = G1.

For k = 2, . . . ,m, the definition (2.2.8) of Ĝk gives

Ψm(rk) = T−1
G1

(yε(rk)Ψm−1(rk))

= T−1
G1

(yε(rk)Ĝk)

= T−1
G1

(TG1(Gk))

= Gk.

Thus Φm is a solution to the original problem with m interpolation conditions.

We have shown that the boundary interpolation problem 2.2.7 with given inter-

polation data can be reduced to the same problem 2.2.7 with one interpolation data

fewer. Continuing this way, we arrive at Problem 2.2.7 with only one interpolation

condition, which always admits a solution. Thus Problem 2.2.7 is always solvable.

Finally, we prove Theorem 2.2.6 by using Theorem 2.2.4 and Lemma 2.2.8.

Proof of Theorem 2.2.6. The necessity is straightforward.

We show the sufficiency as follows. Suppose that the matrix-valued Nevanlinna-

Pick interpolation problem 2.2.1 with interpolation data (λi, Fi)
n
i=1 is solvable. The-

orem 2.2.4 implies the existence of a function satisfying n− 1 interior and m bound-

ary constraints derived from (2.2.5). Define the new interpolating values Ǧk on the

boundary T by

Ǧk :=
1

y(rk)
TF1(Gk).
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Since y defined by (2.2.4) satisfies |y(rk)| = 1 for every k and since ‖TF1(Gk)‖ < 1

by Lemma 2.2.3, we have ‖Ǧk‖ < 1. Continuing this way, we can finally transform

Problem 2.2.5 to the boundary interpolation problem 2.2.7. Moreover, Lemma 2.2.8

shows that the boundary interpolation problem 2.2.7 has always solutions, and hence

Problem 2.2.5 is solvable.

Combining Theorem 2.2.2 with Theorem 2.2.6, we obtain the following corollary:

Corollary 2.2.9. Consider Problem 2.2.5. Define the Pick matrix P by (2.2.1) with

interior conditions (λi, Fi)
n
i=1. Problem 2.2.5 is solvable if and only if P is positive

definite.

The proofs of Lemma 2.2.8 and Theorem 2.2.6 suggest that we can compute a

solution to Problem 2.2.5 by an iterative algorithm, which is an extension of the

Schur-Nevanlinna algorithm.

Example 2.2.10. We compute Φ ∈ M(H∞(D)) satisfying ‖Φ‖∞ < 1 and the follow-

ing interpolation conditions:

Φ(1) = G1 :=
1

4

[
2 1

1 2

]
, Φ(−1) = G2 :=

1

2

[
1 0

0 1

]
, Φ(1/3) = F :=

1

10

[
1 3

2 4

]
.

(2.2.13)

Since G1, G2, F ∈ B and we have only one interior condition, there exist solutions to

the problem.

We first reduce this problem to the boundary interpolation problem 2.2.7. New

interpolation values on the boundary T are

Ĝ1 ≈
[
0.4701 −0.0094

0.1374 0.1428

]
, Ĝ2 ≈

[
−0.3856 0.3171

0.1863 −0.0836

]
.

We calculate Ψ ∈ M(H∞(D)) satisfying ‖Ψ‖∞ < 1 and boundary conditions

Ψ(1) = Ĝ1, Ψ(−1) = Ĝ2. A solution Ψ is given by

Ψ(z) ≈

[−0.45(z−1.10)(z−0.84)
(z−1.156)(z−1.104)

0.34(z−1.11)(z−1.00)
(z−1.156)(z−1.104)

0.19(z2−2.22z+1.23)
(z−1.156)(z−1.104)

−0.10(z−1.15)(z−0.84)
(z−1.156)(z−1.104)

]
.

Finally we define y by (2.2.4), that is,

y(z) :=
3z − 1

3− z
,

and then a solution to the original interpolation problem is

Φ(z) = T−1
F (y(z)Ψ(z))

≈

[
1.63(z−3.09)(z−1.16)(z2−1.40+0.51)
(z−3.45)(z−3.04)(z−1.16)(z−1.11)

−0.78(z−3.07)(z−1.13)(z−1.05)(z+1)
(z−3.45)(z−3.04)(z−1.16)(z−1.11)

−0.47(z−3.17)(z−1.17)(z−0.16)(z+1)
(z−3.45)(z−3.04)(z−1.16)(z−1.11)

0.77(z−3.11)(z−1.69)(z−1.24)(z−1.17)
(z−3.45)(z−3.04)(z−1.16)(z−1.11)

]
.

We see that Φ satisfies the interpolation conditions (2.2.13) and ‖Φ‖∞ ≈ 0.7506 < 1.
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2.3 Tangential Nevanlinna-Pick interpolation
In this section, we consider the Nevanlinna-Pick interpolation problem with tan-

gential interpolation conditions ξ∗iΦ(αi) = η∗i . As in the previous section, we give a

necessary and sufficient condition for the Nevanlinna-Pick interpolation with bound-

ary conditions. Also, we construct solutions to the problem by extending the Schur-

Nevanlinna algorithm. Note that, in this section, we study matrix-valued functions

on C+, not on D.

2.3.1 Interpolating interior conditions

Let us first introduce an interpolation problem with interior conditions only. The

problem is called the tangential Nevanlinna-Pick interpolation problem. It is formally

formulated as follows:

Problem 2.3.1 ([3, 27, 62, 67]). Given distinct complex numbers α1, . . . αn ∈ C+ and

vector pairs

(ξi, ηi) ∈ Cp × Cq, i = 1, . . . , n

satisfying

‖ξi‖ − ‖ηi‖ > 0, i = 1, . . . , n. (2.3.1)

Find Φ ∈ (H∞)p×q satisfying ‖Φ‖∞ < 1 and

ξ∗iΦ(αi) = η∗i , i = 1, . . . , n. (2.3.2)

We denote the interpolation data of (2.3.2) by (αi, [ξi, ηi])
n
i=1.

There is a solution to Problem 2.3.1 if and only if the associated Pick matrix is

positive definite:

Theorem 2.3.2 ([3, 62, 67]). Consider the tangential Nevanlinna-Pick interpolation

problem 2.3.1. Define the Pick matrix

P :=

P1,1 · · · P1,n

...
...

Pn,1 · · · Pn,n

 , (2.3.3)

where

Pk,l :=
ξ∗kξl − η∗kηl
αk + ᾱl

, k, l = 1, . . . , n.

Problem 2.3.1 is solvable if and only if P is positive definite.

To calculate a solution to Problem 2.3.1 in an iterative way, we use Lemma 2.3.3

below. This lemma gives a transformation that preserves the condition (2.3.1) on the

vector pair (ξi, ηi).

Lemma 2.3.3 ([62]). Let E ∈ B. Set

A := (I − EE∗)−1/2, B := (I − EE∗)−1/2E

C := (I − E∗E)−1/2E∗, D := (I − E∗E)−1/2.
(2.3.4)
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Define TAB and TCD by

TAB : Cp × Cq → Cp : (ξ, η) 7→ Aξ −Bη

TCD : Cp × Cq → Cq : (ξ, η) 7→ −Cξ +Dη. (2.3.5)

Then we have

‖ξ‖2 − ‖η‖2 = ‖TAB(ξ, η)‖2 − ‖TCD(ξ, η)‖2.

Theorem 2.3.4 ([62, 67]). Consider the tangential Nevanlinna-Pick interpolation

problem 2.3.1. Define

E :=
ξ1 · η∗1
‖ξ1‖2

,

and matrices A, B, C, and D by (2.3.4). Define also

ν := TAB(ξ1, η1), κ(s) :=
s− α1

s+ ᾱ1

, (2.3.6)

X := I + (κ− 1)
ν · ν∗

‖ν‖2
. (2.3.7)

Then the original problem with n interpolation data (αi, [ξi, ηi])
n
i=1 is solvable if and

only if the tangential Nevanlinna-Pick interpolation problem with n− 1 data

(αi, [X(αi)
∗TAB(ξi, ηi), TCD(ξi, ηi)])

n
i=2

is solvable. Moreover, there exist a solution Φn to the original problem with n in-

terpolation conditions and a solution Φn−1 to the problem with n − 1 interpolation

conditions such that

Φn(s) = TE (X(s)Φn−1(s)) , (2.3.8)

where TE is defined by (2.2.3).

Similarly to Theorem 2.2.4, an iterative algorithm derived from Theorem 2.3.4

below is called the Schur-Nevanlinna algorithm. Theorem 2.3.4 also shows that if

the problem is solvable, then there exist always solutions whose elements are rational

functions.

Remark 2.3.5. 1. In (2.3.4), we have the same definitions of A and D as in

(2.2.2). However, note that the definitions of B and C in (2.2.2) have a minus

sign, whereas those in (2.3.4) do not. Moreover, we use the inverse of TF1 in the

matrix-valued case (2.2.6) but TE itself in the tangential case (2.3.8) when we

construct Φn from Φn−1.

2. Note that ν in (2.3.6) is nonzero. In fact, since ‖ξ1‖ > ‖η1‖, we have

A−1ν = ξ1 − Eη1 = ξ1 − ξ1 ·
‖η1‖2

‖ξ1‖2
6= 0,

and hence ν 6= 0.
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2.3.2 Interpolating interior and boundary conditions

In this subsection, we study the tangential Nevanlinna-Pick interpolation problem

that has interpolation conditions on the extended imaginary axis jRe := {jω : ω ∈
R ∪ {∞}}. To solve this problem, we reduce it to an interpolation problem with

boundary conditions only, and show that the boundary interpolation problem is al-

ways solvable.

The tangential Nevanlinna-Pick interpolation problem with boundary conditions is

stated as follows:

Problem 2.3.6 ([3, 67]). Suppose α1, . . . αn ∈ C+ and jω1, . . . , jωm ∈ jRe are dis-

tinct. Let vector pairs (ξi, ηi) and (xk, yk) in Cp × Cq satisfy

‖ξi‖ − ‖ηi‖ > 0, ‖xk‖ − ‖yk‖ > 0, i = 1, . . . , n, k = 1, . . . ,m.

Find a rational matrix function Φ ∈ (H∞)p×q such that ‖Φ‖∞ < 1 and

ξ∗iΦ(αi) = η∗i , x∗
kΦ(jωk) = y∗k, i = 1, . . . , n, k = 1, . . . ,m.

Remark 2.3.7. In Problem 2.3.6, we may have an interpolation condition at ∞.

Since we consider only proper rational functions f in this subsection, f(∞) is well-

defined and finite.

We say that a rational function f is strictly proper if f(∞) = 0, that is, the degree

of the numerator polynomial is less than that of the denominator1. In control theory,

we need to deal with interpolation at ∞ if the plant is strictly proper.

Our objective of this subsection is Theorem 2.3.8. The theorem means that the

solvability of Problem 2.3.6 is dependent on only its interpolation data in C+.

Theorem 2.3.8. Problem 2.3.6 is solvable if and only if the tangential Nevanlinna-

Pick interpolation problem 2.3.1 with interpolation data (αi, [ξi, ηi])
n
i=1 is solvable.

To solve Problem 2.3.6, we transform it to the following problem with boundary

conditions only:

Problem 2.3.9 ([3]). Given distinct imaginary numbers jω1, . . . , jωm ∈ jRe and

vector pairs

(xk, yk) ∈ Cp × Cq, k = 1, . . . ,m.

satisfying

‖xk‖ − ‖yk‖ > 0, k = 1, . . . ,m. (2.3.9)

Find a rational matrix function Ψ ∈ (H∞)p×q satisfying ‖Ψ‖∞ < 1 and

x∗
kΨ(jωk) = y∗k, k = 1, . . . ,m.

This problem is called the boundary tangential Nevanlinna-Pick interpolation prob-

lem. Clearly, the condition (2.3.9) is necessary for the solvability for Problem 2.3.9.

The lemma below shows that the condition is also sufficient. We prove it by extending

the Schur-Nevanlinna algorithm.
1See also (4.2.12) for the definition of the strict properness of irrational functions.
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Lemma 2.3.10 ([3]). The boundary tangential Nevanlinna-Pick interpolation prob-

lem 2.3.9 is always solvable.

Proof. It suffices to show that there always exists a boundary Nevanlinna-Pick inter-

polation problem such that the problem has m−1 interpolation conditions and if the

problem has a solution, the original problem withm interpolation data (ωk, [xk, yk])
m
k=1

is solvable.

Let ω1 be finite, i.e., not ∞. We can remove the interpolation condition at jω1 as

follows. As in Theorem 2.3.4, define E by

E :=
x1 · y∗1
‖x1‖2

(2.3.10)

and A, B, C, and D by (2.3.4). Fix ε > 0 and set

ν := TAB(x1, y1), κε(s) :=
s− jω1

s− jω1 + ε
(2.3.11)

Xε := I + (κε − 1)
ν · ν∗

‖ν‖2
. (2.3.12)

First we show that there exists ε > 0 such that

‖(Xε(jωk)
∗TAB(xk, yk)‖ − ‖TCD(xk, yk))‖ > 0, k = 2, . . . ,m, (2.3.13)

which means that the data

(jωk, [Xε(jωk)
∗TAB(xk, yk), TCD(xk, yk)])

m
k=2 (2.3.14)

lead to the well-defined interpolation conditions.

Since

Xεν = κεν

by the definition (2.3.12) of Xε, a routine calculation shows that

I −Xε(jωk)Xε(jωk)
∗ =

ε2

ε2 + (ωk − ω1)2
· ν · ν∗

‖ν‖2
. (2.3.15)

In conjunction with (2.3.3), (2.3.15) shows that(
‖xk‖2 − ‖yk‖2

)
−
(
‖(Xε(jωk)

∗TAB(xk, yk)‖2 − ‖TCD(xk, yk))‖2
)

= TAB(xk, yk)
∗(I −Xε(jωk)Xε(jωk)

∗)TAB(xk, yk)

=
ε2

ε2 + (ωk − ω1)2
· |ν

∗ · TAB(xk, yk)|2

‖ν‖2
. (2.3.16)

If ν∗ · TAB(xk, yk) = 0 or ωk = ∞, (2.3.9) and (2.3.16) lead to the desired inequality

(2.3.13). Hence it suffices to consider the case

ν∗ · TAB(xk, yk) 6= 0 and ωk 6= ∞, k = 2, . . . ,m.
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Note that

ε2

ε2 + (ωk − ω1)2
· |ν

∗ · TAB(xk, yk)|2

‖ν‖2
<

ε2

(ωk − ω1)2
· |ν

∗ · TAB(xk, yk)|2

‖ν‖2
. (2.3.17)

Since ω1 6= ωk for k = 2, . . . ,m and since ν 6= 0 by Remark 2.3.5.2, there exists ε such

that

0 < ε < min
2≤k≤m

(
‖ν‖ · |ωk − ω1|
|ν∗ · TAB(xk, yk)|

·
√

‖xk‖2 − ‖yk‖2
)

(2.3.18)

For every ε in (2.3.18), we have

ε2

(ωk − ω1)2
· |ν

∗ · TAB(xk, yk)|2

‖ν‖2
< ‖xk‖2 − ‖yk‖2.

Thus (2.3.16) and (2.3.17) lead to the desired inequality (2.3.13)

Let Ψm−1 be a solution to a boundary Nevanlinna-Pick interpolation problem with

m− 1 interpolation data (2.3.14). We now prove that

Ψm(s) := TE(Xε(s)Ψm−1(s))

is a solution to the original problem with m interpolation data (ωk, [xk, yk])
m
k=1 .

Let us denote by C̄e the extended right half-plane C̄+∪{∞}. First of all, we have
to prove Xε(s)Ψm−1(s) ∈ B, that is,

‖Xε(s)Ψm−1(s)‖ < 1, s ∈ C̄e, (2.3.19)

because the domain of TE is B. For all s ∈ C̄e, we have |κε(s)| ≤ 1. Hence

I −X∗
ε (s)Xε(s) = (1− |κε(s)|2) ·

ν · ν∗

‖ν‖2
≥ 0, s ∈ C̄e,

which is equivalent to ‖Xε‖∞ ≤ 1. In conjunction with ‖Φm−1‖∞ < 1, this leads to

(2.3.19).

To prove that Ψm is a solution, we should show that Ψm ∈ (H∞)p×q, ‖Ψm‖∞ < 1,

and

x∗
kΨm(jωk) = y∗k, k = 1, . . . ,m. (2.3.20)

Obviously, Ψm is a rational matrix function in (H∞)p×q, and (2.3.19) and Lemma

2.2.3 show ‖Ψm‖∞ < 1.

We can prove (2.3.20) as follows. By the definition (2.2.3) of TE, (2.3.20) is

equivalent to

0 = x∗
k (AXε(jωk)Ψm−1(jωk) +B)− y∗k (CXε(jωk)Ψm−1(jωk) +D)

= (x∗
kA− y∗kC)Xε(jωk)Ψm−1(jωk) + (x∗

kB − y∗kD) (2.3.21)

for k = 1, . . . ,m. Since a solution Ψm−1 ∈ (H∞)p×q does not have an interpolation

condition at jω1, we split the proof of (2.3.21) into two cases: k = 1 and k = 2, . . . ,m.

When k = 1, (2.3.21) follows from

(x∗
1A− y∗1C)Xε(jω1) = 0, x∗

1B − y∗1D = 0.
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In fact, since B = C∗ = ED, we see from the definition (2.3.11) of κε that

(x∗
1A− y∗1C)Xε(jω1) = (Ax1 −By1)

∗Xε(jω1)

= ν∗Xε(jω1)

= κε(jω1)ν
∗

= 0,

and

x∗
1B − y∗1D = (x∗

1E − y∗1)D

=

(
x∗
1 ·

x1 · y∗1
‖x1‖2

− y∗1

)
D

= 0.

Let us consider the case k = 2, . . . ,m. Since Ψm−1 satisfies the interpolation

conditions

(Xε(jωk)
∗TAB(xk, yk))

∗Ψm−1(jωk) = TCD(xk, yk)
∗, k = 2, . . . ,m,

it follows that

(x∗
kA− y∗kC)Xε(jωk)Ψm−1(jωk) + (x∗

kB − y∗kD)

= (Axk −Byk)
∗Xε(jωk)Ψm−1(jωk)− (−Cxk +Dyk)

∗

= (Xε(jωk)
∗TAB(xk, yk))

∗Ψm−1(jωk)− TCD(xk, yk)
∗

= 0.

Thus (2.3.21) holds also for k = 2, . . . , n.

It has been proved that we can reduce every boundary Nevanlinna-Pick problem

to a boundary Nevanlinna-Pick problem that has one interpolation condition fewer.

There always exists a solution to the boundary Nevanlinna-Pick interpolation problem

having only one condition. Indeed, we can easily check that a constant function Ψ0

defined by

Ψ0(s) :=
x0 · y∗0
‖x0‖2

is a solution to the problem with a single boundary condition x∗
0Φ0(jω0) = y∗0. Thus

the boundary Nevanlinna-Pick problem 2.3.9 is always solvable.

Combining Theorem 2.3.4 with Lemma 2.3.10, we obtain a proof of Theorem 2.3.8.

Proof of Theorem 2.3.8. The necessity is straightforward.

We prove the sufficiency as follows. Suppose that the tangential Nevanlinna-Pick

interpolation problem 2.3.1 with data (αi, [ξi, ηi])
n
i=1 is solvable. Using Theorem 2.3.4,

we can show the existence of a function satisfying n− 1 interior conditions

(αi, [X(αi)
∗TAB(ξi, ηi), TCD(ξi, ηi)])

n
i=2
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and m boundary conditions

(jωk, [X(jωk)
∗TAB(xk, yk), TCD(xk, yk)])

m
k=1.

These boundary interpolation values satisfy

‖X(jωk)
∗TAB(xk, yk)‖ − ‖TCD(xk, yk))‖ > 0, k = 1, . . . ,m.

In fact, since X defined by (2.3.7) satisfies

I −X(jω)X(jω)∗ = 0, ω ∈ jRe,

Lemma 2.3.3 shows that

‖X(jωk)
∗TAB(xk, yk)‖2 − ‖TCD(xk, yk))‖2

= TAB(xk, yk)
∗X(jωk)X(jωk)

∗TAB(xk, yk)− ‖TCD(xk, yk))‖2

= ‖TAB(xk, yk))‖2 − ‖TCD(xk, yk))‖2

= ‖xk‖2 − ‖yk‖2 > 0.

Continuing this way, we can finally reduce Problem 2.3.6 to the boundary interpola-

tion problem 2.3.9, which we have shown is always solvable in Lemma 2.3.10. This

completes the proof.

In conjunction with Theorem 2.3.2, Theorem 2.3.8 shows that the solvability of

Problem 2.3.6 is equivalent to the positive definiteness of the Pick matrix in (2.3.3):

Corollary 2.3.11. Consider Problem 2.3.6. Define the Pick matrix P by (2.3.3) with

interior conditions (αi, [ξi, ηi])
n
i=1. Problem 2.3.6 is solvable if and only if P is positive

definite.

As in the previous section, we see from the proofs of Lemma 2.3.10 and Theo-

rem 2.3.8 that solutions to Problem 2.3.6 can be calculated by the extended Schur-

Nevanlinna algorithm.

Example 2.3.12. We compute Φ ∈ M(H∞) satisfying ‖Φ‖∞ < 1 and ξ∗Φ(α) = η∗

and x∗
kΦ(jωk) = y∗k for k = 1, 2, where α := 1, ω1 := 0, ω2 := ∞,

ξ :=

[
2

1

]
, η :=

[
1

2/3

]
, x1 :=

[
1

2

]
, y1 :=

[
1

1

]
, x2 :=

[
2

1

]
, y2 :=

[
2

0

]
.

Since ‖ξ‖ − ‖η‖ > 0 and ‖xk‖ − ‖yk‖ > 0 for k = 1, 2 and since we have only one

interior condition, there exist solutions to the problem.

Let us first convert this problem to the boundary interpolation problem 2.3.9.

New boundary interpolation values are

(x̂1, ŷ10) ≈
([

−1.7068

0.6466

]
,

[
0.2658

0.5105

])
, (x̂2, ŷ2) ≈

([
1.4974

1.7487

]
,

[
0.8343

−0.7771

])
.
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A solution to the boundary interpolation problem 2.3.9 with data (jωk, [x̂k, ŷk])
2
k=1 is

given by

Ψ(s) ≈

[
0.546s−5.97×10−4

s+0.0114
−0.270s−4.14×10−3

s+0.0114
9.60×10−3s+3.10×10−3

s+0.0114
−0.213s−1.95×10−3

s+0.0114

]
.

Finally we obtain a solution Φ to the original interpolation problem,

Φ(s) ≈

[
0.781(s+0.0324)(s+0.0971)

(s+0.0141)(s+0.781)
0.0668(s+0.0138)(s+6.70)

(s+0.0141)(s+0.781)
0.219(s−0.822)(s−0.0238)

(s+0.0141)(s+0.781)
−0.0668(s−3.397)(s+0.0107)

(s+0.0141)(s+0.781)

]
.

The matrix-valued function Φ satisfies the three interpolation conditions and ‖Φ‖∞ ≈
0.8121 < 1.

Tangential interpolation conditions are less stringent than matrix-valued ones.

We see this from Examples 2.2.10 and 2.3.12. The interpolation problems in these

examples have the same number of interpolation conditions, but the degree of the

solution in the tangential case is smaller than that in the matrix-valued case. This

is because tangential interpolation conditions prescribe not matrix values, but some

values in a certain direction only.

2.4 Difference from the results in Ball et al.
In Sections 2.2 and 2.3, we have obtained a necessary and sufficient condition

for the Nevanlinna-Pick interpolation problem by extending the Schur-Nevanlinna

algorithm. The condition has already derived in [3] by the approach rooted in the

Pick matrices. In this section, we summarize the approach in [3] briefly and show the

advantage of the proposed method.

The approach of [3] based on the Pick matrix is the following:

For simplicity, let us study the scalar-valued case. Let r1, . . . , rm ∈ T and

w1, . . . , wm ∈ D, and suppose that r1, . . . , rm are distinct. We then consider the

problem of finding a rational function φ ∈ H∞(D) such that ‖φ‖∞ < 1 and

φ(rk) = wk, k = 1, . . . ,m.

If a positive number a < 1 is sufficiently close to 1, then the Pick matrix Pa defined

by

Pa :=


1−w1w̄1

1−a2r1r̄1
. . . 1−w1w̄m

1−a2r1r̄m
...

...
1−wmw̄1

1−a2rmr̄1
. . . 1−wmw̄m

1−a2rmr̄m

 (2.4.1)

is positive definite. In fact, as a tends to 1, the diagonal entries can be made arbitrarily

large due to |wk| < 1, while the off-diagonal entries remain bounded. Therefore

Theorem 2.1.1 shows that for such a there exists φa ∈ H∞ satisfying ‖φ‖∞ < 1 and

φa(ark) = wk, k = 1, . . . ,m.

If we set φ(z) = φa(az), then φ is the desired function.
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The approach above is more straightforward than that in Sections 2.2 and 2.3,

but we do not know how close a need to be 1 for the positive definiteness of Pa. Such

a bound is necessary for the construction of solutions, in particular, for the design of

controllers achieving nearly optimal performance. In contrast, the counterpart ε in

our approach has bounds in (2.2.11) and (2.3.18), respectively. Thus the extended

Schur-Nevanlinna algorithm constructs solutions efficiently

2.5 Summary
In this chapter, we have studied the Nevanlinna-Pick interpolation problem with

boundary conditions. We have shown that the problem is solvable if and only if the

associated Pick matrix consisting of the interpolation data at the interior points is

positive definite. The necessary and sufficient condition was derived in [3]. While the

approach there is rooted in the positive definiteness of the Pick matrix, the proposed

method is an extension of the Schur-Nevanlinna algorithm. As a result, we can

efficiently compute solutions to the interpolation problem.
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Chapter 3

Strong Stabilization with

Sensitivity Reduction for MIMO

Systems

3.1 Motivation and problem statement
In this chapter, we consider MIMO systems. Let P, C ∈ M(F∞) be a given

plant and a controller, respectively. The sensitivity function S := (I + PC)−1 is

an important performance function that governs a performance of the closed-loop

system. The significance of S can be seen from Figure 3.1, where W1, W2 ∈ M(H∞)

are given weighting functions. Here W1S is the transfer function from the disturbance

d to the weighted measured output ỹ, and W2 can be interpreted as the generator of d.

For example, if ‖W2(jω)‖ is large in the frequency range [0, ωd], then the energy of d

is concentrated on the range. For disturbance rejection, we should reduce ‖W1SW2‖∞
subject to the constraint that C stabilizes P .

Also, W1S is the transfer function from the reference input r to the weighted error

ẽ. Suppose that the energy of r is concentrated on the frequency range [0, ωr]. To

improve the tracking performance, ‖W1(jω)S(jω)‖ should be small for ω ∈ [0, ωr].

We therefore choose the weighting function W2 such that ‖W2(jω)‖ is large in [0, ωr].

For tracking of r, we need to reduce ‖W1SW2‖∞ with a stabilizing controller.

y
P (s)C(s)

er

+ −

W2(s)

z

d

+
+

W1(s)
ỹ

W2(s)

W1(s)
ẽ

t

Figure 3.1: Disturbance rejection and tracking.

Then our problem is the following:
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Problem 3.1.1. Given a plant P ∈ M(F∞), weighting matrices W1, W2 ∈ M(H∞),

determine whether there exists a controller C ∈ M(H∞) ∩ C (P ) such that

‖W1SW2‖∞ < 1, where S := (1 + PC)−1. (3.1.1)

Also, if one exists, find such a controller.

The objective of this chapter is to obtain a sufficient condition and also a necessary

condition for Problem 3.1.1 that can be checked by matrix computation. Moreover,

we propose the design procedure of stable controllers satisfying (3.1.1).

To proceed further, we need to recall the definitions of unimodular functions,

multivariable zeros, and coprime factorizations over H∞.

Definition 3.1.2 ([114]). A matrix U ∈ (H∞)p×p is unimodular if it has an inverse

in (H∞)p×p.

Definition 3.1.3 ([131]). Consider a matrix-valued function N whose elements are

meromorphic in C. We call z0 ∈ C a blocking zero of N if N(z0) = 0. Also, z0 ∈ C is

a transmission zero of N if N(z0) is not of full rank.

Definition 3.1.4 ([101]). D, N ∈ M(H∞) are said to be left coprime if the Bezout

identity

NX +DY = I (3.1.2)

holds for some X, Y ∈ M(H∞). P ∈ M(F∞) admits a left coprime factorization if

there exist D, N ∈ M(H∞) such that P = D−1N and D, N are left coprime.

Similarly, D̃, Ñ ∈ M(H∞) are right coprime if the Bezout identity

X̃Ñ + Ỹ Ñ = I (3.1.3)

holds for some X̃, Ỹ ∈ M(H∞). P ∈ M(F∞) admits a right coprime factorization if

there exist D̃, Ñ ∈ M(H∞) such that P = ÑD̃−1 and D̃, Ñ are right coprime.

If P is a scalar-valued function, we use the expressions coprime and coprime

factorization.

The existences of left and right factorizations are necessary for stabilizablity:

Theorem 3.1.5 ([101]). Suppose that P ∈ M(F∞) is stabilizable. Then P possesses

right and left coprime factorizations over H∞.

3.2 Systems with unstable blocking zeros
In this section, we consider the plant having only blocking zeros in C̄+. First we

transform the problem of strong stabilization to that of interpolation by a unimodular

matrix in M(H∞). Next we show that strong stabilization with sensitivity reduction

is equivalent to an interpolation problem with a unimodular matrix whose H∞-norm

is less than one.
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3.2.1 Reduction to interpolation with a unimodular matrix

of H∞-norm less than one

Let us first study strong stabilization only. The following lemma gives a necessary

and sufficient condition for strong stabilization:

Lemma 3.2.1. Suppose that P ∈ M(F∞) is stabilizable and has a left coprime

factorization P = D−1N with D, N ∈ M(H∞). Then C strongly stabilizes P if and

only if C ∈ M(H∞) and

(D +NC)−1 ∈ M(H∞). (3.2.1)

Proof. Sufficiency. We have

(I + PC)−1 = (I +D−1NC)−1 = (D−1(D +NC))−1 = (D +NC)−1D.

Moreover,

(I + PC)−1P = (D +NC)−1N

C(I + PC)−1 = C(D +NC)−1D

C(I + PC)−1P = C(D +NC)−1N.

Since C, D, N , and (D +NC)−1 belong to M(H∞), we obtain (1.2.1), and hence C

strongly stabilizes P .

Necessity. Since P is stabilizable, Theorem 3.1.5 shows that P admits a right

coprime factorization:

P = ÑD̃−1, Ñ , D̃ ∈ M(H∞).

Moreover, the Bezout identity (3.1.2) is satisfied for some X, Y ∈ M(H∞). It is

known that all stabilizing controllers are of the form (X + D̃Q)(Y − ÑQ)−1 for

Q ∈ M(H∞) [101]. Since P is strongly stabilizable, there exists Q0 ∈ M(H∞) such

that

C = (X + D̃Q0)(Y − ÑQ0)
−1 ∈ M(H∞).

In conjunction with the Bezout identity (3.1.2), this leads to

D +NC = D +N(X + D̃Q0)(Y − ÑQ0)
−1

= (D(Y − ÑQ0) +N(X + D̃Q0))(Y − ÑQ0)
−1

= (Y − ÑQ0)
−1.

Thus we obtain (D +NC)−1 = Y − ÑQ0 ∈ M(H∞).

Lemma 3.2.1 suggests the following problem to find stable stabilizing controllers:

Problem 3.2.2. Given D, N ∈ M(H∞), find a controller C ∈ M(H∞) satisfying

(3.2.1).

We can reduce Problem 3.2.2 to an interpolation problem with unimodular ma-

trices in M(H∞) under the following assumption on D and N :
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Assumption 3.2.3. D, N ∈ M(H∞) are left coprime, and all elements of N, D, X,

and Y in (3.1.2) are meromorphic functions in C. The matrix-valued function N is

square and has the form N = φNo, where φ ∈ H∞ and No, N
−1
o ∈ M(H∞). Moreover

φ is a rational function satisfying φ(∞) 6= 0 and possesses only simple zeros z1, . . . , zn
in C̄+.

We will discuss the above conditions on multivariable zeros in C̄+ in Remark 3.2.14

at the end of this subsection.

Under Assumption 3.2.3, P := D−1N can have only finitely many zeros in C̄+.

Moreover, they are simple and blocking zeros because they arise from the scalar-valued

function φ.

We prove that Problem 3.2.2 is equivalent to the following problem under As-

sumption 3.2.3:

Problem 3.2.4. Given z1, . . . , zn ∈ C̄+ and complex square matrices A1, . . . , An, find

U ∈ M(H∞) satisfying U−1 ∈ M(H∞) and

U(zi) = Ai, i = 1, . . . , n. (3.2.2)

Theorem 3.2.5. Consider Problem 3.2.2 under Assumption 3.2.3. We restrict the

solutions to matrices whose elements are meromorphic functions. Define Ai := D(zi)

for i = 1, . . . , n. Then Problem 3.2.2 is equivalent to Problem 3.2.4 with interpolation

data (zi, Ai)
n
i=1.

A solution C to Problem 3.2.2 and a solution U to Problem 3.2.4 satisfy

C = N−1(U −D), U = D +NC. (3.2.3)

Proof. Let C be a solution of Problem 3.2.2. Define U by (3.2.3). Then U satisfies

U, U−1 ∈ M(H∞) by (3.2.1). In addition, since φ(zi) = 0,

U(zi) = D(zi) + φ(zi)No(zi)C(zi) = D(zi) = Ai.

Hence U is a solution to Problem 3.2.4.

Conversely, suppose that U is a solution to Problem 3.2.4 with interpolation data

(zi, Ai)
n
i=1. Define C by (3.2.3), that is,

C :=
1

φ
N−1

o (U −D).

Then C satisfies (D +NC)−1 = U−1 ∈ M(H∞) and

φC = N−1
o (U −D) ∈ M(H∞). (3.2.4)

Assume, to reach a contradiction, that C 6∈ M(H∞). Since φC ∈ M(H∞) by

(3.2.4), C has some poles in C̄+ that are canceled by zeros of φ. Let zk be one of such

poles. Since φ has only simple zeros in C̄+, we have (φC)(zk) 6= 0. However, (3.2.2)

shows that

(φC)(zk) = N−1
o (zk)(U(zk)−D(zk)) = N−1

o (zk)(Ak − Ak) = 0,

and we have a contradiction.



29

Before proceeding to sensitivity reduction by strongly stabilizing controllers, we

recall the definitions of inner, outer, co-inner, and co-outer matrix functions.

A matrix-valued function L ∈ M(H∞) is said to be inner if L(jω)∗L(jω) = I

almost everywhere. Let (H2)p is the space of all vector-valued functions f that are

holomorphic in C+, take values in Cp, and satisfy

sup
ξ>0

(∫ ∞

−∞
‖f(ξ + jω)‖2dω

)
< ∞.

The norm of f ∈ (H2)p is defined by

‖f‖2 := sup
ξ>0

(
1

2π

∫ ∞

−∞
‖f(ξ + jω)‖2dω

)1/2

.

We say that L ∈ (H∞)p×q is outer if the set {Lf : w ∈ (H2)q} is dense in (H2)p.

For L ∈ M(H∞), define L̀(s) := L(s̄)∗ and then L̀ ∈ M(H∞). L ∈ M(H∞) is

said to be co-inner if L̀ is inner. Similarly, L ∈ M(H∞) is co-outer if L̀ is outer.

By definition, ‖L̀‖∞ = ‖L‖∞ for L ∈ M(H∞), and hence we have the following

lemma:

Lemma 3.2.6. Let L be co-inner. For every K ∈ M(H∞),

‖KL‖∞ = ‖K‖∞.

Proof. Since L̀ is inner, we have ‖L̀K‖∞ = ‖K‖∞ for every K ∈ M(H∞) by the

definition of inner matrices. Hence

‖KL‖∞ = ‖L̀K̀‖∞ = ‖K̀‖∞ = ‖K‖∞,

which is a desired conclusion.

The following result shows that every function in M(H∞) admits a unique co-

inner-outer factorization:

Theorem 3.2.7 ([32, 36]). Let K ∈ (H∞)p×q. K admits a co-inner-outer factor-

ization of the form K = GF , where G ∈ (H∞)p×r is co-outer and F ∈ (H∞)r×q

is co-inner for some r. F and G are unique to within multiplication by a constant

unitary matrix.

Now we consider strong stabilization with sensitivity reduction. We place the

following additional assumption on the weights W1,W2 and the denominator H∞

function D of the plant:

Assumption 3.2.8. All elements of W1 and W2 are meromorphic functions. W1

is unimodular in M(H∞). If we factor DW2 as DW2 = (DW2)co · (DW2)ci, where

(DW2)co is co-outer and (DW2)ci is co-inner, then (DW2)co is also unimodular in

M(H∞).
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Remark 3.2.9. 1. Since D is determined by the plant, Assumption 3.2.8 imposes

constraints on the selection of the weighting functions.

2. Let K ∈ M(H∞) and define R(jω) := K̀(jω)∗K̀(jω). The co-outer function

Kco of K is unimodular if and only if detR(jω) 6= 0 a.e. on jR and all ele-

ments of R−1 are essentially bounded on jR [36]. Furthermore, if R satisfies the

conditions, we can use an explicit formula in [36] to compute a co-inner-outer

factorization. This formula involves inverting the semi-infinite Toeplitz matrix

determined by R. Hence we cannot exactly compute a co-inner-outer factor-

ization by the formula. However, the formula is still useful in approximately

obtaining a co-outer function, which is needed for the construction of stable H∞

controllers in Theorem 3.2.11 below.

We can obtain a solution to Problem 3.1.1 from that to the following interpolation

problem:

Problem 3.2.10. Suppose that z1, . . . , zn ∈ C̄+ are distinct and that B1, . . . , Bn are

complex square matrices. Find a unimodular matrix function F ∈ M(H∞) such that

all elements of F are meromorphic in C, ‖F‖∞ < 1, and

F (zi) = Bi, i = 1, . . . , n.

Theorem 3.2.11. Consider Problem 3.1.1. Assume that there exist D, N ∈ M(H∞)

such that P = D−1N . Let Assumptions 3.2.3 and 3.2.8 hold. Define

Bi := W1(zi)D(zi)
−1(DW2)co(zi), i = 1, . . . , n. (3.2.5)

If there exists a solution F to Problem 3.2.10 with interpolation data (zi, Bi)
n
i=1, then

C = N−1(DW2)coF
−1W1 − P−1 (3.2.6)

gives a solution to Problem 3.1.1.

Conversely, if C is a solution to Problem 3.1.1 and if all entries of C are mero-

morphic in C, then
F = W1(D +NC)−1(DW2)co (3.2.7)

is a solution to Problem 3.2.10 with interpolation data (zi, Bi)
n
i=1.

Proof. In order for (3.2.5) to be well-defined, to begin with, we need to show that

D(zi) is invertible for i = 1, . . . , n. Since φ(zi) = 0, it follows from the Bezout identity

(3.1.2) that D(zi)Y (zi) = I. Hence D(zi)
−1 exists and D(zi)

−1 = Y (zi).

Let F be a solution to Problem 3.2.10 with interpolation data (zi, Bi)
n
i=1. Then C

defined by (3.2.6) satisfies C ∈ M(H∞) ∩ C (P ) by Lemma 3.2.1 and Theorem 3.2.5.

Also, since

W1(I + PC)−1W2 = W1(D +NC)−1DW2

= W1(D +NC)−1(DW2)co · (DW2)ci

= F (DW2)ci,
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Lemma 3.2.6 shows that

‖W1(I + PC)−1W2‖∞ = ‖F (DW2)ci‖∞ = ‖F‖∞. (3.2.8)

Hence (3.1.1) holds and C in (3.2.6) is a solution to Problem 3.1.1.

Conversely, suppose that C is a solution to Problem 3.1.1. Define F by (3.2.7)

and U by U := D +NC. Lemma 3.2.1 and Theorem 3.2.5 show that U is a solution

to Problem 3.2.4 with interpolation data (zi, D(zi))
n
i=1. Combining this with (3.2.8),

we show that F = W1U
−1(DW2)co is a solution to Problem 3.2.10 with interpolation

data (zi, Bi)
n
i=1.

The following corollary gives a necessary condition for the solvability of Problem

3.1.1.

Corollary 3.2.12. Consider Problem 3.1.1 whose solutions are restricted to mero-

morphic matrix functions. Under the same hypotheses of Theorem 3.2.11, suppose

that Problem 3.1.1 is solvable. Then there exists F ∈ M(H∞) such that ‖F‖∞ < 1

and F (zi) = Bi for i = 1, . . . , n.

Proof. Obvious from Theorem 3.2.11.

Remark 3.2.13. The question may occur here: Why can we solve the H∞ control

problem for infinite dimensional systems via the Nevanlinna-Pick interpolation?

If D is co-inner, then we see from the proof of Lemma 3.2.1 that

‖S‖∞ = ‖Y − ÑQ0‖∞ (3.2.9)

with Y, Ñ ,Q0 ∈ M(H∞). In (3.2.9), Y is generally an infinite-dimensional system.

However, the minimization of the norm (3.2.9) is simply a finite-dimensional problem.

In fact, (3.2.9) is the same form of norm constraint as in sensitivity reduction for

an infinite-dimensional weight and a finite-dimensional stable plant. Such an H∞

problem is solvable by the Nevanlinna-Pick interpolation [45, 78]. As in the finite-

dimensional case, we can therefore use the Nevanlinna-Pick interpolation even for

infinite-dimensional systems in Assumption 3.2.3.

Let us finally discuss φ in Assumption 3.2.3.

Remark 3.2.14. 1. For simplicity, we have assumed that the unstable zeros of φ

are simple in Assumption 3.2.3. We can generalize the results in this section by

introducing interpolation conditions on the derivatives of N and D. See also

Remark 3.3.12.2 in the next section.

2. If D is a rational matrix function, then we can allow φ to be strictly proper.

However, if D is not rational and if φ is strictly proper, in the same way as

[48], we should replace φ with φε(s) = φ(s)(1 + εs)m, where ε > 0 and m is

the relative degree1 of φ. This makes sure that we do not have to deal with

interpolation conditions at infinity, but this leads to an improper term like PD

controllers in the H∞ controller.
1Let us denote by deg(p) the degree of a polynomial p. For a proper rational function f = n/d

with polynomials n and d, the difference deg(d)− deg(n) is called the relative degree of f .
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3. We assume that φ is a scalar-valued function, and then we reduce strong sta-

bilization with sensitivity reduction to matrix-valued interpolation. However,

this assumption of φ could be weakened at the cost of going to tangential inter-

polation. In the next section, we shall address the modifications arising from

it.

3.2.2 Design of strongly stabilizing controllers attaining low

sensitivity

In this section, we develop a design method of strongly stabilizing controllers

for sensitivity reduction. Here we extend the technique of [56] to MIMO infinite-

dimensional systems.

The design method uses the following lemma for the construction on a unimodular

matrix:

Lemma 3.2.15. Suppose that G ∈ M(H∞) is square and that ‖G‖∞ < 1. For every

complex number λ 6= 0,

F :=
λ

2
(G+ I) (3.2.10)

satisfies F , F−1 ∈ M(H∞) and ‖F‖∞ < |λ|.

Proof. F ∈ M(H∞) is evident. Since G satisfies ‖G‖∞ < 1, it follows from the small

gain theorem [113, 131] that (G+ I)−1 ∈ M(H∞). Hence we have

F−1 =
2

λ
(G+ I)−1 ∈ M(H∞).

Moreover, from the triangle inequality and ‖G‖∞ < 1,

‖F‖∞ =
|λ|
2

· ‖G+ I‖∞ ≤ |λ|
2

· (‖G‖∞ + ‖I‖∞) <
|λ|
2

· 2 = |λ|

is obtained.

We derive the following result from Lemma 3.2.15.

Theorem 3.2.16. Consider Problem 3.2.10. Let λ be a complex number of absolute

value 1. If G ∈ M(H∞) satisfies ‖G‖∞ < 1 and

G(zi) =
2

λ
Bi − I, i = 1, . . . , n,

then F defined by (3.2.10) is a solution of Problem 3.2.10.

Proof. This follows directly from Theorem 3.2.11 and Lemma 3.2.15.

The problem of finding G in Theorem 3.2.16 and that of finding F in Corol-

lary 3.2.12 are matrix-valued Nevanlinna-Pick interpolation problems 2.2.5. As we

mentioned in Chapter 2, this interpolation problem is solvable if and only if the Pick

matrix consisting of the interior conditions is positive definite. Furthermore, solutions

is derived from the extended Schur-Nevanlinna algorithm.
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The proposed solution to Problem 3.1.1 can be summarized as follows:� �
Design procedure for stable stabilizing controllers providing

low sensitivity for plants with unstable blocking zeros

Step 1: Let λ ∈ C satisfy |λ| = 1. For each unstable blocking zero zi of P ,

define B̄i by

B̄i =
2

λ
W1(zi)D(zi)

−1(DW2)co(zi)− I, i = 1, . . . , n.

Step 2: Solve the matrix-valued Nevanlinna-Pick interpolation problem 2.2.5

with data (zi, B̄i)
n
i=1.

Step 3: Calculate a solution F to Problem 3.2.10 from (3.2.10).

Step 4: Compute a solution C to Problem 3.1.1 from (3.2.6).� �

Remark 3.2.17. From the point of view of controller implementation, it is important

to observe that pole-zero pairs in C̄+ are cancelled in the controller, that is, the

controller has internal unstable pole-zero cancellations. Since the controller is infinite-

dimensional, exact cancellation is not always possible. Thus we should investigate

such cancellations in more detail and study new structures of controllers that can

be implemented in a stable way. However, even if the obtained controller is not

implementable, the bounds on the optimal value help us understand the performance

limitation of stable controllers.

The Proposition 3.2.18 below ensures the set of controllers obtained by the pro-

posed method become smaller as the gains of the weighting functions W1 and W2

decreases.

Proposition 3.2.18. Let λ1, λ2 ∈ C \ {0} satisfy λ1 = aλ2 for some a ∈ (0, 1).

Suppose that z1, . . . , zn are distinct complex numbers in C̄+ and that A1, . . . , An are

complex square matrices. Suppose also that for k = 1, 2, Nk is the set whose members

are the solutions G to the matrix-valued Nevanlinna-Pick interpolation problem 2.2.5

with the following conditions:

G(zi) =
2

λk

Ai − I, i = 1, . . . , n. (3.2.11)

Define

Mk :=

{
λk

2
(Gk + I) : Gk ∈ Nk

}
, k = 1, 2.

Then we have

M1 ⊂ M2. (3.2.12)
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Proof. Assume that F ∈ M1, and let G1 ∈ N1 satisfy

F =
λ1

2
(G1 + I). (3.2.13)

Define G2 by

G2 :=
λ1

λ2

(G1 + I)− I. (3.2.14)

We first show that

G2 ∈ N2. (3.2.15)

we have

G2(zi) =
λ1

λ2

((
2

λ1

Ai − I

)
+ I

)
− I =

2

λ1

Ai − I

by (3.2.11). Also, since ‖G1‖∞ < 1 and λ1 = aλ2, we see that

‖G2‖∞ =

∥∥∥∥λ1

λ2

(G1 + I)− I

∥∥∥∥
∞

≤ |λ1|
|λ2|

· ‖G1‖∞ +
|λ1 − λ2|

|λ2|

<
a|λ2|+ (1− a)|λ2|

|λ2|
= 1. (3.2.16)

Hence we obtain (3.2.15).

On the other hand, (3.2.13) and (3.2.14) show that

F =
λ2

2
(G2 + I).

Thus F ∈ M2 and (3.2.12) is obtained.

In general, the proposed method produces infinite-dimensional controllers due to

the infinite-dimensionality of the plant. To obtain an implementable controller, we

must approximate the derived controller by a finite-dimensional controller.

The propositions below suggest that a stable rational controller also stabilizes

P and achieves low sensitivity of the closed-loop system if the infinite-dimensional

controller is approximated by a rational controller closely in the sense of H∞-norm.

The following results are extensions of Lemmas 3.1 and 3.2 in [37] to MIMO systems.

Proposition 3.2.19. Let P ∈ M(F∞) and suppose that P has a left coprime factor-

ization P = D−1N for some D, N ∈ M(H∞). Define

δ :=
1

‖N‖∞ · ‖(D +NC)−1‖∞
.

For C ∈ M(H∞) ∩ C (P ), if Ca ∈ M(RH∞) satisfies

‖C − Ca‖∞ < δ,

then Ca also stabilizes P .
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Proof. By Lemma 3.2.1 It suffices to prove that Ua := D + NCa satisfies U−1
a ∈

M(H∞).

Defining U := D +NC, we have

‖U − Ua‖∞ ≤ ‖N‖∞ · ‖C − Ca‖∞ < ‖N‖∞ · δ = 1/‖U−1‖∞.

It follows that

‖I − U−1Ua‖∞ ≤ ‖U−1‖ · ‖U − Ua‖∞ < 1.

Moreover, U−1 ∈ M(H∞) from Lemma 3.2.1, and hence I −U−1Ua ∈ M(H∞). If we

define V := I − (I −U−1Ua), Lemma 3.2.15 with λ = 2 and with G = −(I −U−1Ua)

shows that both V = U−1Ua and V −1 belong to M(H∞). Thus

U−1
a = V −1U ∈ M(H∞)

is obtained.

Proposition 3.2.20. Consider Problem 3.1.1. Suppose that P has a left coprime

factorization P = D−1N for some D, N ∈ M(H∞), and that W1 is unimodular in

M(H∞). For C ∈ M(H∞) ∩ C (P ) and Ca ∈ M(RH∞) ∩ C (P ), we define

δ :=
∥∥W1(I + PC)−1P

∥∥
∞ · ‖W−1

1 ‖∞ (3.2.17)

ε := ‖C − Ca‖∞
S := (I + PC)−1

Sa := (I + PCa)
−1.

If δε < 1, then

‖W1SaW2‖∞ ≤ ‖W1SW2‖∞
1− δε

. (3.2.18)

Proof. Since

W1SW2 −W1SaW2 = W1

(
(I + PC)−1 − (I + PCa)

−1
)
W2

= W1(I + PC)−1 ((I + PCa)− (I + PC)) (I + PCa)
−1W2

= W1(I + PC)−1P (Ca − C)W−1
1 (W1SaW2),

we obtain

‖W1SaW2‖∞ − ‖W1SW2‖∞ ≤ ‖W1SW2 −W1SaW2‖∞
= ‖W1(I + PC)−1P (Ca − C)W−1

1 (W1SaW2)‖∞
≤ δε‖W1SaW2‖∞.

If δε < 1, then we have the desired conclusion (3.2.18).

Remark 3.2.21. In Proposition 3.2.20, ‖W−1
1 ‖∞ in (3.2.17) may make the estimate

(3.2.18) conservative. Since W1 is not generally commutative with (I+PC)−1P (Ca−
C), we cannot cancel W1 and W−1

1 in (3.2.17). If W1 is a scalar matrix, i.e., a diagonal

matrix whose diagonal elements contain the same scalar function, then we can replace

(3.2.17) with δ := ‖(I + PC)−1P‖∞.
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Rational approximations can be obtained from the frequency response data with

approximation methods for stable infinite-dimensional systems; see, e.g., [42] and

its references. The reader can refer to [20, 83, 85] and references therein for other

approximation techniques.

3.2.3 Numerical examples

In this subsection, we present numerical examples to show the efficiency of the

results. We apply the proposed method to a repetitive control system [19, 54, 121].

Repetitive control attempts to track or reject arbitrary periodic signals of a fixed

period. Such control objectives appear in many applications, e.g., disk drives [73]

and industrial manipulators [18].

Example 3.2.22. We consider strong stabilization with sensitivity reduction for the

following plant and weighting functions:

P (s) =
(s− z1)(s− z2)

(s+ 1)2

[
1

3+4e−s e−2s

0 6(s+1)2

(6s−1)(s−e−s+2)

]

W1(s) =
s+ 1

10s+ 1

[
1 1/10

0 1

]
, W2(s) = I,

where z1, z2 ∈ C̄+. Using the factorization method of [48] to each elements of P , we

can factor P as P = φD−1No, where

φ(s) :=
(s− z1)(s− z2)

(s+ 1)2

D(s) :=

[
3+4e−s

3e−s+4
0

0 s−1/6
s+1/6

]

No(s) :=

[
1

3e−s+4
3+4e−s

3e−s+4
e−2s

0 (s+1)2

(s+1/6)(s+e−s+2)

]
.

The zeros of φ in C̄+ are z1 and z2. No satisfies N−1
o ∈ M(H∞). We can easily

check whether D and N := φNo are left coprime, In fact, we transform the Bezout

identity (3.1.2) to

X = N−1
o · I −DY

φ
. (3.2.19)

Since X needs to belong to M(H∞), It follows from (3.2.19) that D and N are left

coprime if and only if I − D(zi)Y (zi) = 0 for i = 1, 2, that is, D(z1) and D(z2) are

nonsingular and there exists Y ∈ M(H∞) such that Y (zi) = D(zi)
−1 for i = 1, 2.

Such a matrix-valued function Y ∈ M(H∞) always exists. To see this, we apply the

Lagrange interpolation [24] to each element of Y .

Let us first take z1 ∈ (1/6, 5] and z2 = 8. Define

ρinf := inf
{
‖W1(I + PC)−1W2‖∞ : C ∈ M(H∞) ∩ C (P ),

all entries of C are meromorphic
}
. (3.2.20)
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Figure 3.2: Unstable blocking zero z1 versus minimum sensitivity ρinf .
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+
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Cu(s)

r y

Figure 3.3: Repetitive control system.

Figure 3.2 shows ρinf dependent on z1. In Figure 3.2, the solid line indicates a upper

bound of ρinf , which obtained by the proposed method, and the dashed line shows a

lower bound of ρinf . The lower bound is derived from Corollary 3.2.12. Both lines in

Figure 3.2 diverge as z1 becomes closer to 1/6. The reason for this is that an unstable

pole-zero cancellation occurs when z1 = 1/6.

When z1 = 2j and z2 = −2j, the proposed method gives ρinf ≤ 0.136 and the

stable controller C for ρ = 0.136 is

C =
1

φ
N−1

o F−1W1 − P−1,

where

F (s) ≈

[
0.112 0.0093(s2+3.13×10−7s+4)2

(s2+4.09×10−7s+4)2

0 0.093(s2+2.92×10−7s+4)2

(s2+4.09×10−7s+4)2

]
.

On the other hand, we obtain ρinf ≥ 0.117 by Corollary 3.2.12.

Example 3.2.23. (Application to a repetitive control system)

Consider the repetitive control system [54, 121] given in Figure 3.5. The internal

model principle for the class of psedorational impulse response matrices [121] shows

that exponential decay of the error signal r− y for any reference signal r with a fixed

period L is equivalent to the existence of the internal model e−Ls/(1 − e−Ls) under

the condition of exponential stability of the closed-loop system. This principle is a

precise generalization of the well-known finite-dimensional counterpart [35].

Note that if we use the internal model of the type e−Ls/(1−e−Ls), then the closed-

loop internal stability cannot be achieved for strictly proper plant [121, Theorem 5.12].

Also, such an internal model leads to a potential loss of w-stability [40, Sec. 8] of the
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closed-loop system. So it is practical to construct modified repetitive controllers [19,

54, 121]. However, such controllers do not accurately track nor reject periodic signals

on a high frequency band.

The internal model principle suggests that the controllers we consider can be

separated into two part C = CuCo, where Cu is the part of the internal model and

has an infinite number of poles on the imaginary axis, and Co is the stable part to

be designed. For the design of Co, we can consider the product CuP =: Po to be the

new plant to be controlled.

To guarantee exponential stability, it is desirable that H(P,C) in (1.2.1) has no

poles in the region C−ε := {s ∈ C : Re s > −ε} for some fixed ε > 0 [119].

Consequently, it is enough to solve the problem of strong stabilization with sensitivity

reduction for the following plant and weighting functions:

P̃ (s) := Po(s− ε) = Cu(s− ε)P (s− ε), (3.2.21)

W1(s) :=
s+ 1

10s+ 1

[
1 1/10

0 1

]
, W2(s) := I.

Once we find a solution C̃ to the problem, we determine the stable part Co(s) of

the controller by Co(s) := C̃(s + ε). Since C̃ ∈ M(H∞), it follows that Co does not

have poles in C−ε.

In Figure 3.3, L := 3, a(s) := s/(s+ 1),

P (s) :=

[
s+1
s+2

e−2s

s+1

0 s+2
s−1/15

]
,

Cu(s) :=

(
e−Ls

1− e−Ls
+ a(s)

)
I =

s+ e−3s

(s+ 1)(1− e−3s)
I.

We take ε = 0.01, so P̃ in (3.3.37) has infinitely many unstable poles. However it

has only two zeros in C̄+: α ≈ (0.156 + ε) + 0.607j, β ≈ (0.156 + ε)− 0.607j, which

arise from Cu(s − ε) and are blocking zeros. Using the factorization method of [48],

we can factor P̃ as P̃ (s) = φD−1No, where

φ(s) :=
(s− α)(s− β)

(s− ε+ 1)2
,

D(s) :=
1− e3εe−3s

e−3s − e3ε

[
1 0

0 s−ε−1/15
s+ε+1/15

]
,

No(s) :=
(s− ε+ 1)(s− ε+ e−3(s−ε))

(e−3s − e3ε)(s− α)(s− β)

[
s−ε+1
s−ε+2

e−2(s−ε)

s−ε+1

0 s−ε+2
s+ε+1/15

]
.

No satisfies No, N
−1
o ∈ M(H∞). We can easily check whether D and N := φNo

are left coprime as in Example 3.2.22.

Define ρinf by (3.2.20). An upper bound of ρinf derived from the proposed method

is 0.578 =: ρu, and the stable controller C̃ for ρ = ρu is given as

C̃ =
2

φ
N−1

o (G+ I)−1W1 − P̃−1,
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where

G(s) ≈

[
−0.79(s+0.28)(s−0.073)(s2+0.46s+0.056)

(s2+0.57s+0.081)(s2+0.51s+0.18)
−0.057(s2+0.49s+0.060)(s2−0.33s+0.40)

(s2+0.57s+0.081)(s2+0.51s+0.18)
0.031(s+1.37)(s+0.29)(s2+0.56s+0.37)

(s2+0.57s+0.081)(s2+0.51s+0.18)
−1.00(s−0.27)(s+0.29)

s2+0.57s+0.081

]

On the other hand, by Corollary 3.2.12, we obtain ρinf ≥ 0.272. Combining this

lower bound and the above upper bound on ρinf , we have 0.272 ≤ ρinf ≤ 0.578. This

implies that our proposed method is conservative in this example.

3.3 Systems with unstable transmission zeros
In this section, we place less restrictive constraints on the multivariable zeros of

the plant than those in the previous section. We will discuss the difference of the

constraints and address the nontrivial modifications arising from it.

Here we prove that if the plant has transmission zeros in C̄+, strong stabilization

is equivalent to tangential interpolation by a unimodular matrix in M(H∞). In con-

junction with the tangential Nevanlinna-Pick interpolation, this equivalence enables

us to obtain both lower and upper bounds of the minimum sensitivity achievable by

a stable controller.

3.3.1 Strong stabilization

We first study strong stabilization only.

Let detN denote the determinant of N ∈ (H∞)p×p. Throughout this section, we

assume that the following properties holds:

Assumption 3.3.1. All entries of N, D, X, and Y in (3.1.2) are meromorphic in

C. Moreover, N is square and detN has the form

detN = φNo, where φ ∈ RH∞ and No, 1/No ∈ H∞. (3.3.1)

The rational function φ satisfies φ(∞) 6= 0 and has only simple zeros z1, . . . , zn in

C̄+. For i = 1, . . . , n, a left annihilating nonzero vector vi ∈ Cp satisfying

v∗iN(zi) = 0 (3.3.2)

is unique up to multiplication by a constant complex number.

In Remark 3.3.12 at the end on this subsection, we will discuss the two conditions:

All functions are meromorphic; detN has only simple zeros in C̄+.

In the previous section, we assume that the matrix -valued function N can be fac-

tored as N = φNo, where φ ∈ RH∞ and No, N
−1
o ∈ (H∞)p×p. Note that Assumption

3.3.1 requires the factorization (3.3.1) of the scalar -valued function detN .

We shall show that Problem 3.2.2 is equivalent to the following problem:

Problem 3.3.2. Suppose that s1, . . . , sn ∈ C̄+ are distinct and that ξ1, . . . , ξn and

η1, . . . , ηn belong to Cp. Find a unimodular matrix U ∈ (H∞)p×p such that all elements

of U are meromorphic in C and ξ∗i U(si) = η∗i for i = 1, . . . , n.
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Theorem 3.3.3. Consider Problem 3.2.2 under Assumption 3.3.1. We restrict the

solutions to matrices whose entries are meromorphic in C. Then Problem 3.2.2 is

equivalent to Problem 3.3.2 with interpolation data (zi, [vi, D(zi)
∗vi])

n
i=1.

Furthermore, a solution C to Problem 3.2.2 and a solution U to Problem 3.3.2

satisfy

C = N−1(U −D), U = D +NC. (3.3.3)

Proof. Let C ∈ (H∞)p×p be a meromorphic solution to Problem 3.2.2. Define U by

(3.3.3). Then U and U−1 belong to (H∞)p×p by Lemma 3.2.1 and

v∗iU(zi) = v∗iD(zi) + v∗iN(zi)C(zi) = (D(zi)
∗vi)

∗.

Hence U is a solution to Problem 3.3.2 with interpolation data (zi, [vi, D(zi)
∗vi])

n
i=1.

Conversely, let U ∈ (H∞)p×p be a solution to Problem 3.3.2 with interpolation

data (zi, [vi, D(zi)
∗vi])

n
i=1. Define C by (3.3.3). Then C satisfies (D+NC)−1 = U−1 ∈

(H∞)p×p,

NC = U −D ∈ (H∞)p×p, (3.3.4)

and

v∗i (NC)(zi) = v∗i (U(zi)−D(zi)) = 0. (3.3.5)

We prove C ∈ (H∞)p×p by (3.3.4) and (3.3.5) as follows. Define Υ := NC. Then

Υ ∈ (H∞)p×p by (3.3.4) and v∗iΥ(zi) = 0 by (3.3.5). Let Nc be the transpose of the

cofactor matrix of N ∈ (H∞)p×p. Since we have by Cramer’s rule

NcN = NNc = detN · I, (3.3.6)

it follows from the definition of Υ that

φC = 1/No ·Nc ·Υ ∈ (H∞)p×p. (3.3.7)

Also we obtain the following property

Nc(zi)Υ(zi) = 0, i = 1, . . . , n. (3.3.8)

This is because every row of Nc(zi) is a constant multiple of v∗i . To see this, let

(Nc)m(zi) be the m-th row of Nc(zi). Since

Nc(zi)N(zi) = (φ(zi)No(zi)) · I = 0

by (3.3.6), we have (Nc)m(zi)N(zi) = 0 for m = 1, . . . , p. Thus the uniqueness of vi
in Assumption 3.3.1 implies (Nc)m(zi) = kmv

∗
i for some km ∈ C.

Since the invertible function No has no unstable zero, (3.3.7) and (3.3.8) show

(φC)(zi) = 0, i = 1, . . . , n. (3.3.9)

Thus it suffices to prove C ∈ (H∞)p×p from the following three conditions: The

unstable zeros z1, . . . , zn of φ are simple; φC ∈ (H∞)p×p; and (3.3.9) holds.

Suppose C 6∈ (H∞)p×p. Then, since φC ∈ (H∞)p×p, the unstable poles of C must

be zeros of φ. Let zi be one of such poles. Since φ has only simple zeros in C̄+, it

follows that (φC)(zi) 6= 0. This contradicts (3.3.9), and hence C ∈ (H∞)p×p.
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Remark 3.3.4. 1. In the previous section, we have considered matrix-valued in-

terpolation conditions U(zi) = D(zi). This interpolation leads to the stringent

assumption that all unstable zeros zi of the plant be blocking zeros, enabling

us to handle such multivariable zeros in a way similar to that used for zeros of

SISO systems. In contrast, here we address tangential interpolation conditions

v∗iU(zi) = v∗iD(zi) so that the plant is allowed to have unstable transmission

zeros.

2. Prasanth [91] presents a method to find a unimodular matrix in (RH∞)p×p

satisfying finitely many tangential interpolation conditions. Furthermore, a

result similar to Theorem 3.3.3 is also developed for finite-dimensional systems

in [91].

However, the argument in [91] makes use of the results of [3] and a state-

space realization of the plant. Hence it is not applicable to the present situa-

tion. The main contribution here is to give a new, straightforward proof in a

transfer-function approach with Cramer’s rule. Moreover, in contrast with [91],

we explicitly show the equivalence between strong stabilization and tangential

interpolation with a unimodular matrix. From this equivalence, we will de-

rive a necessary and sufficient condition for strong stabilization with sensitivity

reduction in the next subsection.

3.3.2 Strong stabilization with sensitivity reduction

We now proceed to the problem of strong stabilization with sensitivity reduction.

We further place the same assumption on W1,W2, and D as in the case of unstable

blocking zeros.

Assumption 3.3.5. All elements of W1 and W2 are meromorphic functions in C.
Both W1 and W−1

1 belong to M(H∞). Let DW2 have a factorization DW2 = (DW2)co ·
(DW2)ci, where (DW2)co is co-outer and (DW2)ci is co-inner. (DW2)co and (DW2)

−1
co

also belong to M(H∞).

See Remark 3.2.9 for the condition on the co-outer function (DW2)co.

By extending the results of the previous subsection, we will prove that Problem

3.1.1 is equivalent to the following Problem 3.3.6 under Assumptions 3.3.1 and 3.3.5.

The only difference between Problems 3.3.2 and 3.3.6 is that the latter problem re-

quires that the H∞-norm of a solution be less than one.

Problem 3.3.6. Suppose s1, . . . , sn ∈ C̄+ are distinct. Let ξ1, . . . , ξn, η1, . . . , ηn ∈ Cp.

Find a unimodular matrix F ∈ (H∞)p×p such that all elements of F are meromorphic

in C, ‖F‖∞ < 1, and

ξ∗i F (si) = η∗i , i = 1, . . . , n. (3.3.10)

Theorem 3.3.7. Consider Problem 3.1.1. Suppose there exist D,N ∈ M(H∞) such

that P = D−1N , and let Assumptions 3.3.1 and 3.3.5 hold. Define the vector pairs

(ξi, ηi) by

ξi := (D(zi)W
−1
1 (zi))

∗vi, ηi := ((DW2)co(zi))
∗vi, i = 1, . . . , n. (3.3.11)
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If there is a solution F to Problem 3.3.6 with interpolation data (zi, [ξi, ηi])
n
i=1, then

a solution to Problem 3.1.1 is given by

C = N−1(DW2)coF
−1W1 − P−1. (3.3.12)

Conversely, if there exists a solution C to Problem 3.1.1 and if all entries of C are

meromorphic in C, then

F = W1(D +NC)−1(DW2)co (3.3.13)

is a solution to Problem 3.3.6 with interpolation data (zi, [ξi, ηi])
n
i=1.

Proof. Let a unimodular matrix F ∈ (H∞)p×p be a solution to Problem 3.3.6 with

interpolation data (zi, [ξi, ηi])
n
i=1. Define C by (3.3.12).

To prove C ∈ (H∞)p×p ∩ C (P ), it suffices to show, by Theorem 3.3.3, that U

defined by

U := D +NC = (DW2)coF
−1W1 (3.3.14)

satisfies U , U−1 ∈ (H∞)p×p and v∗iU(zi) = v∗iD(zi) for i = 1, . . . , n.

Since (DW2)co, F , and W1 are unimodular, it follows from (3.3.14) that both U

and U−1 belong to (H∞)p×p. Additionally, since ξ∗i = η∗i F (zi)
−1, we have

v∗iU(zi) = η∗i F
−1(zi)W1(zi) = ξ∗iW1(zi) = v∗iD(zi).

Hence we obtain C ∈ (H∞)p×p ∩ C (P ).

Moreover, it follows from Lemma 3.2.6 that

‖W1(1 + PC)−1W2‖∞ = ‖W1(D +NC)−1(DW2)co · (DW2)ci‖∞ = ‖F‖∞. (3.3.15)

Thus C is a solution to Problem 3.1.1.

Conversely, suppose C is a solution to Problem 3.1.1 and all the entries are mero-

morphic. Define F by (3.3.13). Then, since U in (3.3.14) satisfies U , U−1 ∈ (H∞)p×p

by Theorem 3.3.3, it follows that F , F−1 ∈ (H∞)p×p. Also F satisfies ‖F‖∞ < 1 by

(3.3.15). Since

ξ∗i F (zi) = v∗iD(zi)(D +NC)−1(zi)(DW2)co(zi)

= v∗i (D +NC)(zi) · (D +NC)−1(zi)(DW2)co(zi)

= v∗i (DW2)co(zi)

= η∗i

by (3.3.11), (3.3.14), and (3.3.2), we obtain (3.3.10). Thus F is a solution to Problem

3.3.6 with interpolation data (zi, [ξi, ηi])
n
i=1.

See Remark 3.2.13 for the reason why we can reduce the H∞ control problem

for infinite-dimensional systems to the same interpolation problem as in the finite-

dimensional case.
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Theorem 3.3.7 suggests that the problem of strong stabilization with sensitivity

reduction is equivalent to Problem 3.3.6. A natural question then arises: Is this inter-

polation problem solvable? Since the solution to Problem 3.3.6 must be unimodular,

it is difficult to give a necessary and sufficient condition. Here we separately derive

a sufficient condition and a necessary condition for Problem 3.3.6 via the tangential

Nevanlinna-Pick interpolation.

First we derive a necessary condition. From Theorem 3.3.7, we deduce the next

result that provides a lower bound of the minimum sensitivity ρinf achievable by a

stable controller.

Corollary 3.3.8. Consider Problem 3.1.1 under the same hypotheses of Theorem

3.3.7. For a given ρ > 0, if there exists no G ∈ (H∞)p×p such that ‖G‖∞ < 1 and

ξ∗iG(zi) = η∗i /ρ for i = 1, . . . , n, then ρinf in (3.2.20) satisfies ρinf ≥ ρ.

Let us next develop a sufficient condition and a design method of stable stabilizing

controllers that achieve low sensitivity. The following lemma gives the solution to

Problem 3.3.6 via the tangential Nevanlinna-Pick interpolation.

Lemma 3.3.9. Consider Problem 3.3.6. Let λ ∈ C and define

ζi :=
2

λ̄
ηi − ξi, i = 1, . . . , n. (3.3.16)

If G ∈ (H∞)p×p satisfies ‖G‖∞ < 1 and

ξ∗iG(zi) = ζ∗i , i = 1, . . . , n, (3.3.17)

then F defined by

F :=
λ

2
(G+ I) (3.3.18)

is unimodular and satisfies ‖F‖∞ < |λ| and the interpolation constraints (3.3.10).

Proof. Lemma 3.2.15 shows that F, F−1 ∈ (H∞)p×p and ‖F‖∞ < |λ|. By (3.3.16),

(3.3.17), and (3.3.18), F also satisfies (3.3.10).

Combining Theorem 3.3.7 with Lemma 3.3.9, we obtain an upper bound of ρinf
and a stable controller achieving the bound.

Theorem 3.3.10. Consider Problem 3.1.1 under the same assumptions and defini-

tions as in Theorem 3.3.7 and Lemma 3.3.9. If there exists G ∈ (H∞)p×p such that

‖G‖∞ < 1 and (3.3.17) holds, then ρinf in (3.2.20) satisfies ρinf < |λ| and a solution

to Problem 3.1.1 is given by

C =
2

λ
N−1(DW2)co(G+ I)−1W1 − P−1.

Theorem 3.3.10 and Corollary 3.3.8 give upper and lower bounds of the minimum

sensitivity ρinf by iterative computation of the associated Pick matrices.

We now summarize the design procedure of stable controllers achieving low sen-

sitivity.
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� �
Design procedure for stable stabilizing controllers providing

low sensitivity for plants with unstable transmission zeros

Step 1: Let λ ∈ C satisfy |λ| = 1. For each unstable transmission zero zi of P ,

define

ξi := (D(zi)W
−1
1 (zi))

∗vi, ζi :=
2

λ̄
((DW2)co(zi))

∗vi − ξi, i = 1, . . . , n.

Step 2: Find the solution G to the tangential Nevanlinna-Pick interpolation

problem 2.3.6 with data (zi, [ξi, ζi])
n
i=1.

Step 3: Compute a solution of Problem 3.3.6 from (3.3.18).

Step 4: Calculate a stable controller (3.3.12) achieving a desired sensitivity

level.� �
As in the case of unstable blocking zeros, the controller derived above has unstable

pole-zero cancellations. See also Remark 3.2.17.

Let us next investigate the relationship between the gains of W1,W2 and the set

of controllers derived from the above procedure. The following result is analogous to

Proposition 3.2.18:

Proposition 3.3.11. Let λ1, λ2 ∈ C \ {0} satisfy λ1 = aλ2 for some a ∈ (0, 1).

Suppose that z1, . . . , zn ∈ C̄+ are distinct and that ξ1, . . . , ξn and η1, . . . , ηn are in

Cp. Suppose also that for k = 1, 2, Nk is the set of all solutions G to the tangential

Nevanlinna-Pick interpolation problem 2.3.6 with the following conditions:

ξ∗iG(zi) =
2

λk

η∗i − ξ∗i , i = 1, . . . , n. (3.3.19)

Define

Mk :=

{
λk

2
(Gk + I) : Gk ∈ Nk

}
, k = 1, 2.

Then we have

M1 ⊂ M2. (3.3.20)

Proof. Assume that F ∈ M1. Then there exists G1 ∈ N1 such that

F =
λ1

2
(G1 + I). (3.3.21)

If we define G2 by

G2 :=
λ1

λ2

(G1 + I)− I, (3.3.22)
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then we have G2 ∈ N2. In fact, by (3.3.19),

ξ∗iG2(zi) = ξ∗i

(
λ1

λ2

(G1(zi) + I)− I

)
=

λ1

λ2

(
2

λ1

η∗i − ξ∗i

)
+

λ1 − λ2

λ2

ξ∗i

=
2

λ2

η∗i − ξ∗i .

Moreover, since ‖G1‖∞ < 1, it follows from (3.2.16) that ‖G2‖∞ < 1. Thus G2 ∈ N2.

By (3.3.21) and (3.3.22), we also have

F =
λ2

2
(G2 + I).

Since G2 ∈ N2, this leads to F ∈ M2. Hence (3.3.20) is obtained.

We conclude this subsection with two remarks on Assumption 3.3.1.

Remark 3.3.12. 1. In this section, we have assumed that all functions are mero-

morphic in C because H∞ functions do not necessarily have a finite value on

the imaginary axis. If the unstable zeros of detN are not on the imaginary axis,

then we remove the assumption that all elements of the transfer matrices are

meromorphic.

2. We have assumed that detN has only simple zeros in C̄+, but the results in

this section can be generalized to the case in which detN has unstable zeros

of higher order. In this case, we need to introduce interpolation conditions

involving derivatives of N and D.

For example, let zi be an unstable zero of order 2 of detN , and suppose that

vi and v̄i are the unique vectors such that

v∗iN(zi) = 0, v∗iN
′(zi) + v̄∗iN(zi) = 0, (3.3.23)

where N ′ denotes the derivative of N . Then the interpolation conditions of U

in Theorem 3.3.3 are given by

v∗iU(zi) = v∗iD(zi) =: w∗
i , (3.3.24)

v∗iU
′(zi) + v̄∗iU(zi) = v̄∗iD(zi) + v∗iD

′(zi) =: w̄∗
i . (3.3.25)

Also, if we assume (DW2)co = I for simplicity, F in Theorem 3.3.7 must satisfy

ξ∗i F (zi) = v∗i , (3.3.26)

ξ̄∗i F (zi) + ξ∗i F
′(zi) = v̄∗i , (3.3.27)

where

ξi := W−1
1 (zi)

∗wi, (3.3.28)

ξ̄i := W−1
1 (zi)

∗w̄i + (W−1
1 )′(zi)

∗wi. (3.3.29)

Here we give a sketch of a proof for the generalization.



46

Interpolation Conditions of U

First we obtain the interpolation conditions (3.3.24) and (3.3.25) of U in

Theorem 3.3.3.

Suppose C ∈ M(H∞) and define U := D+NC. Then (3.3.23) shows that U

satisfies (3.3.24). Also,

v∗iU
′(zi) = v∗iD

′(zi) + v∗iN(zi)C
′(zi) + v∗iN

′(zi)C(zi)

= v∗iD
′(zi)− v̄∗iN(zi)C(zi)

= v∗iD
′(zi) + (v̄∗iD(zi)− v̄∗iU(zi)),

and hence we obtain (3.3.25).

Conversely, let U ∈ M(H∞) satisfy (3.3.24) and (3.3.25). Define Υ := NC =

U −D. Then we obtain

v∗iΥ(zi) = v∗i (U(zi)−D(zi)) = 0

and

viΥ
′(zi) + v̄∗iΥ(zi) = v∗i (U

′(zi)−D′(zi)) + v̄∗i (U(zi)−D(zi))

= (v∗iU
′(zi) + v̄∗iU(zi)))− (v∗iD

′(zi) + v̄∗iD(zi)))

= 0.

Combining

NcN = detN, NcN
′ + (Nc)

′Nc = (detN)′

with the uniqueness of vi and v̄i, we obtain

Nc(zi)Υ(zi) = 0 (3.3.30)

and

(NcΥ)′(zi) = Nc(zi)Υ
′(zi) + (Nc)

′(zi)Υ(zi) = 0. (3.3.31)

Since detN · C = Nc ·Υ, (3.3.30) and (3.3.31) show that

(detN · C)(zi) = 0, (detN · C)′(zi) = 0.

These conditions lead to C ∈ M(H∞) because the order of zi is 2.

Interpolation Conditions of F

We now study the interpolation conditions (3.3.26) and (3.3.27) of F in The-

orem 3.3.7.

Assume, for simplicity, that (DW2)co = I, and let U satisfy

v∗iU(zi) = w∗
i , viU

′(zi) + v̄∗iU(zi) = w̄∗
i .

Define F := W1U
−1 and L := U−1. Then

v∗iU(zi) = w∗
i ⇐⇒ w∗

iL(zi) = v∗i . (3.3.32)
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Also, since (U−1)′ = −U−1U ′U−1, it follows that

v∗iU
′(zi) + v̄∗iU(zi) = w̄∗

i ⇐⇒ −v∗iU(zi)L
′(zi)L

−1(zi) + v̄∗iL
−1(zi) = w̄∗

i

⇐⇒ −w∗
iL

′(zi) + v̄∗i = w̄∗
iL(zi)

⇐⇒ w∗
iL

′(zi) + w̄∗
iL(zi) = v̄∗i . (3.3.33)

Finally, define ξi and ξ̄i by (3.3.28) and (3.3.29), respectively. Since L =

W−1
1 F , (3.3.32) and (3.3.33) show that

v∗iU(zi) = w∗
i ⇐⇒ ξ∗i F (zi) = v∗i

and

v∗iU
′(zi) + v̄∗iU(zi) = w̄∗

i

⇐⇒ w∗
i

(
(W−1

1 )′(zi)F (zi) +W−1
1 (zi)F

′(zi)
)
+ w̄∗

iW
−1
1 (zi)F (zi) = v̄∗i

⇐⇒ ξ∗i F
′(zi) + ξ̄∗i F (zi) = v̄i,

which are the desired interpolation conditions.

3.3.3 Numerical examples

Here we present a numerical example and also apply the proposed method to a

repetitive control system [54, 121]. Furthermore, a coprime factorization technique is

developed for MIMO systems with scalar infinite-dimensional part.

Example 3.3.13. We consider strong stabilization with sensitivity reduction for the

following infinite-dimensional system and weighting functions:

P (s) =

[
(s−z1)(s−z2)

(s+1)2(1+3e−2s)
e−s

s+2

0 (s+1)2

(s−1)(s−e−s+2)

]
,

W1(s) =
s+ 1

10s+ 1
I, W2(s) =

[
s+2

50s+1
0

0 s+1
200s+1

]
,

where z1, z2 ∈ C+ are distinct.

Let us begin by finding left coprime D,N ∈ (H∞)2×2 such that D−1N = P . First,

applying the factorization method of [43] to each element of P , we can factor P as

P = D−1N , where

D(s) :=

[
1+3e−2s

e−2s+3
0

0 s−1
s+1

]
, N(s) :=

[
(s−z1)(s−z2)

(s+1)2(e−2s+3)
1+3e−2s

e−2s+3
· e−s

s+2

0 s+1
s−e−s+2

]
.

The unstable zeros of detN are z1 and z2. The vectors vi given by

vi =
[
− e−2zi+3

1+3e−2zi
· zi+2
e−zi

zi−e−zi+2
zi+1

]∗
, i = 1, 2,

satisfy v∗iN(zi) = 0 and they are unique up to multiplication by a constant complex

number.
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Figure 3.4: Unstable transmission zero z1 versus minimum sensitivity ρinf .

P (s)Co(s)
+
−

e−LsI
+
+

Cu(s)

Figure 3.5: Repetitive control system with a(s) = 1 in Figure 3.3.

Next, from the same argument leading to C ∈ (H∞)p×p in Theorem 3.3.3, we see

that D and N are left coprime if and only if there exists Y ∈ (H∞)2×2 satisfying the

interpolation conditions v∗iD(zi)Y (zi) = v∗i for i = 1, 2. This problem is called the

tangential Lagrange interpolation [3, Chap. 16]. We can check the existence of such Y

by the tangential Nevanlinna-Pick interpolation with the scaling of the interpolation

data.

Let us take 0 < z1 ≤ 4 and z2 = 5. Figure 3.4 shows the relationship between

the unstable transmission zero z1 and the minimum sensitivity ρinf in (3.2.20). In

Figure 3.4, the solid line indicates an upper bound of ρinf derived from Theorem

3.3.10. The dashed line shows a lower bound of ρinf obtained by Corollary 3.3.8. In

contrast to Figure 3.2, we see from Figure 3.4 that an unstable pole-zero cancellation

at s = 1 in detP does not affect strong stabilization with sensitivity reduction. This

is because z1 is not a blocking zero but a simple transmission zero. Furthermore, z1
is not in the same input nor output channel as the pole at s = 1.

Example 3.3.14. (Application to a repetitive control system)

Consider the repetitive control system in Figure 3.5, where P is a finite-dimensional

plant and Cu(s) = 1/(1− e−Ls) · I is the internal model of any periodic signals with

period L. The internal model Cu in Figure 3.5 is the case a(s) = 1 in Figure 3.3.

For a given P and Cu, we design Co to meet performance requirements. Let us

here find Co ∈ M(H∞) yielding exponential stability and low sensitivity of the closed-

loop system. By the same argument as in the previous section, in order to do this,

we study Problem 3.1.1 with P̃ (s) := Cu(s− ε)P (s− ε) for some ε > 0. If we find a

solution C̃ to the problem, then we design Co by Co(s) = C̃(s+ε). Since C̃ ∈ M(H∞),

it follows that Co is holomorphic and bounded in the region {s ∈ C : Re s > −ε}.
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When we apply the proposed method to infinite-dimensional systems, we first

raise the following question: How do we obtain a left coprime factorization of general

MIMO infinite-dimensional systems? If the infinite-dimensional part of the systems

is scalar, we can answer this question affirmatively by using a factorization of the

finite-dimensional part.

Theorem 3.3.15. Let Assumption 3.3.1 hold for D, N ∈ (RH∞)p×p. Suppose f ∈
H∞ is meromorphic in C and satisfies f(zi) 6= 0 for every i. Then fD and N are

left coprime.

Proof. By the Bezout identity (3.1.2) and the Cramer’s rule (3.3.6), we have

Nc(I −DY ) = detN ·X.

The proof of Theorem 3.3.3 shows that m-th row of Nc(zi) is kmv
∗
i with some km ∈ C

for every m. Hence

v∗i (I −D(zi)Y (zi)) = 0 (3.3.34)

or k1 = · · · = km = 0, i.e., Nc(zi) = 0.

Let us first prove (3.3.34). Suppose that Nc(zi) = 0. Then there exists N̂c ∈
(RH∞)p×p such that

Nc(s) = (s− zi)N̂c(s).

By Assumption 3.3.1, there is also d̂etN ∈ RH∞ such that

detN(s) = (s− zi)d̂etN(s)

and d̂etN(zi) 6= 0. Therefore, since NN̂c = d̂etN · I by Cramer’s rule (3.3.6), we

have

d̂etN(zi) · v∗i = v∗iN(zi)N̂c(zi) = 0.

This contradicts d̂etN(zi) 6= 0 and vi 6= 0; hence (3.3.34) always holds.

Next we observe a sufficient condition for the left coprimeness of fD and N . Let

Yo ∈ (H∞)p×p satisfy

v∗i (I − f(zi)D(zi)Yo(zi)) = 0, i = 1, . . . , n. (3.3.35)

Define

Xo := N−1(I − fDYo).

Then Xo satisfies the Bezout identity

NXo + fDYo = I.

Moreover, we have Xo ∈ (H∞)p×p. This proof follows the same line as that of C ∈
(H∞)p×p in Theorem 3.3.3, so it is omitted. Thus if there exists Yo satisfying (3.3.35),

then fD and N are left coprime.

The argument given above suggests that, to show the left coprimeness of fD

and N , it suffices to prove the following: If there exists Y ∈ (RH∞)p×p such that

ξ∗i Y (zi) = η∗i for i = 1, . . . , n, then there also exists Yo ∈ (H∞)p×p such that

ξ∗i (aiYo(zi)) = η∗i , i = 1, . . . , n, (3.3.36)
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where ξi := D∗(zi)vi, ηi := vi, and ai := f(zi).

Since ai = f(zi) 6= 0, we construct by the Lagrange interpolation [24] a rational

function g ∈ H∞ such that g(zi) = 1/ai for i = 1, . . . , n. Now define Yo := gY ∈
(H∞)p×p. Then, since

Yo(zi) =
1

ai
Y (zi), i = 1, . . . , n,

it follows that Yo satisfies (3.3.36). Therefore fD and N are left coprime.

Theorem 3.3.15 asserts that if there is no unstable pole-zero cancellation in the

product P̃ (s) = Cu(s−ε)P (s−ε), then P̃ has the following left coprime factorization:

P̃ (s) = (Cu(s− ε)D(s))−1 ·N(s), (3.3.37)

where D, N ∈ (RH∞)p×p are left coprime and satisfy P (s− ε) = D−1(s)N(s).

Finally, taking ε = 0.1, L = 1, and

P (s) =

[
s−1
s−2

1
s−5

1
s+8

s
s−5

]
, W1(s) =

s+ 1

10s+ 1
I, W2 = I, (3.3.38)

we solve Problem 3.1.1 for P̃ in (3.3.37), W1, and W2. Note that this example is

different from Example 3.2.23 in the previous section, where all unstable zeros of P

must be blocking zeros. The plant P in (3.3.38) has two unstable transmission zeros:

0.846 and 0.291.

By Theorem 3.3.10 and Corollary 3.3.8, we compute both upper and lower bounds

of ρinf in (3.2.20) with P̃ ; 0.6998 ≤ ρinf ≤ 0.7176. A solution C̃ ∈ (H∞)2×2 achieving

the upper bound ρ = 0.7176 is given by C̃ = N−1DcoF
−1W1 − P̃ , where Dco is a

co-outer matrix of D and F is a solution to Problem 3.3.6. Dco, F , and F−1 are given

by

Dco(s) ≈

[
0.7071(s+7.862)(s+3.814)(s+1.992)

(s+3.612)(s+1.698)(s+7.956)
−0.0709(s+9.094)(s+7.398)
(s+3.612)(s+1.698)(s+7.956)

−0.0709(s−33.59)(s+1.58)
(s+3.612)(s+1.698)(s+7.956)

0.7071(s+7.995)(s+4.984)(s+1.72)
(s+3.612)(s+1.698)(s+7.956)

]
,

F (s) ≈

[
0.6180(s+0.06924)

s+0.9034
0.2463(s+0.0555)

s+0.9034
−0.09049(s−0.9017)

s+0.9034
0.4234(s+1.536)

s+0.9034

]
,

F−1(s) ≈

[
1.488(s+1.536)

s+1.078
−0.8869(s+0.0555)

s+1.078
0.3256(s−0.9017)

s+1.078
2.225(s+0.6924)

s+1.078

]
.

From this example and Example 3.2.23, we observe that our proposed method

is less conservative for plants with unstable transmission zeros than for those with

unstable blocking zeros. This is because transmission zeros lead to tangential inter-

polation conditions, which are less restrictive than matrix-valued ones arising from

blocking zeros. We have already seen similar numerical results in Examples 2.2.10

and 2.3.12 in the Nevanlinna-Pick interpolation problem.
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3.4 Summary
We have studied the problem of strong stabilization with sensitivity reduction for

MIMO infinite-dimensional systems. The systems possess only finitely many zeros in

C̄+ but they are allowed to have infinitely many poles in C+. Since we have derived

only a sufficient condition and a necessary condition, the problem has not yet been

fully solved. However the proposed method gives both upper and lower bounds of the

minimum sensitivity via the Nevanlinna-Pick interpolation with boundary conditions.

Hence we can obtain these bounds by iterative computation of the associated Pick

matrices. We have also proposed the design procedure of stable H∞ controllers. A

repetitive control system have been discussed as a practical application.
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Chapter 4

Robust Stabilization of SISO

Systems by Stable Controllers

4.1 Motivation and problem statement
The first step in constructing a controller for a given plant is to obtain a mathe-

matical model for the plant. Since this process always involves some modeling errors,

the actual plant is generally different from the model used for controller design. Even

if we can obtain an exact model, the model often turns out to be too complex for

analysis and control of the plant. In such a case, we have to use a simple nominal

model whose behavior approximately represents the actual plant.

Here we use the class of multiplicative perturbations as a model of such plant

uncertainties. Let us consider SISO systems in this chapter. Suppose that P0 ∈ F∞

is a given nominal model and that W ∈ H∞ is a given function and represents a

frequency-dependent upper bound on the multiplicative perturbations. We cannot

measure perturbations accurately, but most of the time, it is possible to find such an

upper bound on the perturbations.

Fix ρ > 0. In this section, we consider the following set M(P0,W ) of perturbed

plants:

M(P0,W ) := {P : P = (1 + ∆W )P0, ∆ ∈ H∞, ‖∆‖∞ < 1/ρ}. (4.1.1)

Figure 4.1 shows the block diagram of a plant P in M(P0,W ).

Consider the closed-loop system in Figure 4.2, where the plant P ∈ M(P0,W )

and the controller C ∈ F∞. In Figure 4.2, R is the transfer function from δout to δin.

A simple computation shows that R = −WT with

T :=
P0C

1 + P0C
.

If C stabilizes the nominal model P0 and satisfies ‖R‖∞ ≤ ρ, then C stabilizes

P ∈ M(P0,W ). In fact, since ‖∆‖∞ < 1/ρ and ‖R‖∞ ≤ ρ, it follows that

1

1 + ∆R
∈ H∞,
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P0(s)

W (s)

+

+

P (s)
∆(s)

Figure 4.1: Class of multiplicative perturbations.

and hence the sensitivity function S satisfies

S =
1

1 + P0(1 + ∆W )C
=

1

1 + P0C
· 1

1 + ∆R
∈ H∞.

Similarly, CS, PS, and T = 1 − S also belong to H∞. Thus C stabilizes every

P ∈ M(P0,W ).

P0(s)

W (s)

+

+

∆(s)

−
+ yr

R(s)

C(s)

δout

δin

Figure 4.2: Closed-loop system with perturbed plant P0(1 +W∆).

There is a simple way to see the relevance of the condition ‖R‖∞ ≤ ρ. A routine

calculation shows that the closed-loop system in Figure 4.2 is equivalent to that in

Figure 4.3. The maximum loop gain in Figure 4.3 equals ‖∆R‖∞, which is less than

1 for all allowable ∆ if ‖R‖∞ ≤ ρ.

P0(s) W (s)
+

+

∆(s)

−
+

r R(s)

C(s)

y

δinδout

Figure 4.3: Closed-loop system equivalent to that of Figure. 4.2.

Conversely, it is known that the condition ‖R‖∞ ≤ ρ is necessary for C to stabilize

every P ∈ M(P0,W ). See, e.g., [131] for details.
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For finite-dimensional systems, it is shown that in [26] that the condition of P

in (4.1.1) can be relaxed to the weaker one: The perturbed plant P has the same

number of poles in C+ as the nominal plant P0 and satisfy

‖P (jω)− P0(jω)‖ <
W (jω)

ρ
.

This result can be generalized to several classes of infinite-dimensional systems [11,

33].

We make the following assumption on the plant throughout this chapter:

Assumption 4.1.1. P ∈ F∞ can be factored as

P =
Mn

Md

No, (4.1.2)

where Md ∈ H∞, Mn ∈ RH∞ are inner functions and No, 1/No ∈ H∞. We assume

that Mn possesses simple zeros z1, . . . , zk only and that Md, Mn are coprime.

Under Assumption 4.1.1, P has only finitely many unstable zeros arising from Mn,

but P is allowed to possess infinitely many unstable poles arising from Md. In [43], it

is shown how to factor retarded or neutral time-delay systems into the form (4.1.2)

under some mild conditions.

We impose the following assumption on the weighting function:

Assumption 4.1.2. Both W and 1/W belong to H∞.

Our robust stabilization problem by a stable controller can be formulated as fol-

lows:

Problem 4.1.3. Let Assumptions 4.1.1 and 4.1.2 hold. Suppose ρ > 0. Determine

whether there exists a controller C ∈ H∞ ∩ C (P ) such that

‖WT‖∞ ≤ ρ, where T :=
PC

1 + PC
. (4.1.3)

Also, if one exists, find such a controller C.

We call Problem 4.1.3 strong and robust stabilization. The main objective in this

chapter is to develop both a sufficient condition and a necessary condition for strong

and robust stabilization. These conditions give lower and upper bounds on the largest

multiplicative perturbation permissible by a stable controller.

Before proceeding, we recall the definition of a unit element.

Definition 4.1.4 ([114]). A function U ∈ H∞ is called unit if 1/U ∈ H∞.
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4.2 Strong and robust stabilization
In this section, we find an interpolation-minimization problem equivalent to Prob-

lem 4.1.3. We obtain a sufficient condition as well as a necessary condition for the

interpolation-minimization problem via the modified Nevanlinna-Pick interpolation.

The modified problem is solvable by computing finitely many Pick matrices as the

Nevanlinna-Pick interpolation problem.

The following result shows that Problem 4.1.3 can be reduced to an interpolation-

minimization problem by a unit element.

Theorem 4.2.1. Consider the strong and robust stabilization problem 4.1.3 under

Assumptions 4.1.1 and 4.1.2. Problem 4.1.3 is solvable if and only if there exists a

function F such that

F, 1/F ∈ H∞ (4.2.1)

‖W −MdF‖∞ ≤ ρ (4.2.2)

F (zi) =
W (zi)

Md(zi)
, i = 1, . . . , k. (4.2.3)

Furthermore, once such a function F is constructed, the solution of Problem 4.1.3 is

given by

C =
W −MdF

MnNoF
. (4.2.4)

Proof. Necessity. Let C be a solution to Problem 4.1.3. Define

F :=
W

Md +MnNoC
.

Since Lemma 3.2.1 shows that

1

Md +MnNoC
∈ H∞,

it follows that F satisfies (4.2.1). Also, we have

WT = W

(
1− MdF

W

)
= W −MdF, (4.2.5)

so F achieves the norm constraint (4.2.2). Moreover, sinceMn(zi) = 0 for i = 1, . . . , k,

F (zi) =
W (zi)

Md(zi) +Mn(zi)No(zi)C(zi)
=

W (zi)

Md(zi)
, i = 1, . . . , k.

Thus F satisfies (4.2.1), (4.2.2), and (4.2.3).

Sufficiency. Suppose F satisfies (4.2.1), (4.2.2), and (4.2.3), and define C by

(4.2.4).

We show C ∈ H∞ as follows. Since 1/No, 1/F ∈ H∞, it follows from (4.2.4) that

MnC =
W −MdF

NoF
∈ H∞. (4.2.6)
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Suppose C 6∈ H∞. Then the unstable poles of C must be the zeros of Mn by (4.2.6).

Let zi be such a pole. Since the zeros of Mn are simple, it follows that (MnC)(zi) 6= 0.

In addition, since the units No and F do not have unstable zeros, No(zi) 6= 0 and

F (zi) 6= 0. Hence

W (zi)−Md(zi)F (zi) = (MnC)(zi) ·No(zi)F (zi) 6= 0,

which contradicts (4.2.3). Thus C belongs to H∞.

Moreover, since
1

Md +MnNoC
=

W

F
∈ H∞,

it follows that C strongly stabilizes P by Lemma 3.2.1. Also, C achieves the norm

constraint (4.1.3) by (4.2.2) and (4.2.5). Thus C is a solution of Problem 4.1.3.

To obtain a sufficient condition as well as a necessary condition for robust stabi-

lizability by a stable controller, we use the following problem:

Problem 4.2.2 ([4, 106]). Suppose s1, . . . , sk ∈ C+ are distinct, and let β1, . . . , βk ∈
C \ {0}. Determine whether there exists a function G such that G, 1/G ∈ H∞,

‖G‖∞ ≤ 1, and G(si) = βi for i = 1, . . . , k. Also, if one exists, find such a function

G.

Problem 4.2.2 is called the modified Nevanlinna-Pick interpolation problem [106].

The difference between the Nevanlinna-Pick interpolation problem 2.1.1 and the

modified problem 4.2.2 is that the latter has the additional condition 1/G ∈ H∞. De-

spite this difference, the solvability of Problem 4.2.2 is also equivalent to the positive

semi-definiteness of an associated Pick matrix. To see this, we use the transformation

G = e−M proposed in [4]. It follows that G, 1/G ∈ H∞ and ‖G‖∞ ≤ 1 if and only

if M maps C+ into C̄+ and sups∈C+
ReM(s) is finite. Also, G satisfies G(si) = βi if

and only if M achieves the followng interpolation condition:

M(si) = −(Log βi + j2πli) for some integer li.

Combining this with Theorem 2.1.2, we obtain the following result:

Theorem 4.2.3 ([4, 106]). Consider the modified Nevanlinna-Pick interpolation prob-

lem 4.2.2. Define αi := φ(si) for every i = 1, . . . , k, where the conformal map φ is

φ : C+ → D : s 7→ s− 1

s+ 1
.

Problem 4.2.2 is solvable if and only if there exists an integer set {l1, . . . , lk} such that

the Pick matrix P({l1, . . . , lk}),

P({l1, . . . , lk}) :=
[
−Log βp − Log βq + j2π(lq − lp)

1− αpαq

]k
p,q=1

(4.2.7)

is positive semi-definite.
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The next result shows that we can construct a solution to Problem 4.2.2 by the

Nevanlinna-Pick interpolation.

Theorem 4.2.4 ([48, 77]). Consider the modified Nevanlinna-Pick interpolation prob-

lem 4.2.2. Fix σ > 0. Define αi in the same way as in Theorem 4.2.3 and

ζi := Ψσ(−Log βi − j2πlk)

for i = 1, . . . , k, where {l1, . . . , lk} is an integer set and the conformal map Ψσ is

Ψσ : {s ∈ C+ : 0 < Re s < σ} → D : s 7→ je−jπs/σ − 1

je−jπs/σ + 1
.

If there exists an analytic function g : D → D such that g(αi) = ζi for i = 1, . . . , k,

then

G(s) := exp

(
−σ

2
− jσ

π
Log

(
1 + g(φ(s))

1− g(φ(s))

))
(4.2.8)

is a solution to Problem 4.2.2.

Remark 4.2.5. 1. We have an infinite number of Pick matrices P({l1, . . . , lk})
in Theorem 4.2.3. Note, however, that in order that P({l1, . . . , lk}) be positive

semi-definite it is necessary that Lpq := lp−lq be bounded. It turns out that only

finitely many distinct P({l1, . . . , lk}) could possibly be positive semi-definite. In

fact, for the positive semi-definiteness of P({l1, . . . , lk}), Lpq must satisfy the

following quadratic inequality:

det

[ −Log βp−Log βp

1−αpαp

−Log βp−Log βq−j2πLpq

1−αpαq

−Log βq−Log βp+j2πLpq

1−αqαp

−Log βq−Log βq

1−αqαq

]
= aL2

pq + bLpq + c ≥ 0,

where a := −4π2, b := 4πRe [j(−Log βp − Log βq)], and

c :=

(
Log βp + Log βp

1− αpαp

· Log βq + Log βq

1− αqαq

−
∣∣∣∣Log βp + Log βq

1− αpαq

∣∣∣∣2
)

· |1− αpαq|2.

Hence D := b2 − 4ac ≥ 0 and

b+
√
D

2a
≤ Lpq ≤

b−
√
D

2a
.

Thus we can check the solvability of Problem 4.2.2 in a finite number of steps.

See [4, 37] for the details.

2. To obtain a rational solution to Problem 4.2.2, we can use the parameterization

(2.1.2) of all solutions to the Nevanlinna-Pick interpolation problem. In [48], a

free function f of (2.1.2) is fixed in the form

f(z) =
az + b

z + c
.
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The norm constraint ‖f‖∞ ≤ 1 is satisfied if and only if the parameter pair

(a, b, c) belongs to

S := {(a, b, c) ∈ R3 : |c| ≤ 1, |a+ b| ≤ |c+ 1|, |a− b| ≤ |c− 1|}.

On the other hand, the solution to the Nevanlinna-Pick interpolation problem

is invertible in H∞(D) if there exists (a, b, c) ∈ R3 such that

(az + b)X̃ + (z + c)Ỹ

has no zeros in D̄ for X̃, Ỹ defined in Theorem 2.1.3. This is equivalent to

stabilization of discrete-time systems by first-order controllers. Thus we can

construct a rational solution by taking the intersection of S and the stabilization

set.

3. A function f is said to be real if f(s) = f(s). A simple calculation shows that

G(s) in (4.2.8) is real if g(z) = j · g0(z), where g0(z) is real.

The problem of strong stabilization with sensitivity reduction is equivalent to the

modified Nevanlinna-Pick interpolation problem 4.2.2. By contrast, the difficulty of

strong and robust stabilization is the H∞-norm condition (4.2.2) in Theorem 4.2.1.

We now develop both a sufficient and a necessary conditions for (4.2.2). From these

conditions, we obtain lower and upper bounds on the perturbation by solving Problem

4.2.2. Theorem 4.2.3 and Remark 4.2.5.1 show that calculations of the finitely many

Pick matrices lead to these bounds. Furthermore, we find stable controllers for robust

stabilization by Theorem 4.2.4.

Define

ρinf := inf
C∈H∞∩C (P )

‖WT‖∞.

Then Ksup := 1/ρinf can be regarded as the largest allowable multiplicative uncer-

tainty bound for robust stabilizability by a stable controller. Theorem 4.2.6 below

gives a lower bound of Ksup and stable and robust controllers.

Theorem 4.2.6. Consider the strong and robust stabilization problem 4.1.3 under

Assumptions 4.1.1 and 4.1.2. Suppose ‖W‖∞ < ρ. Choose Ws satisfying Ws, 1/Ws ∈
RH∞ and

|Ws(jω)| ≤ ρ− |W (jω)| (4.2.9)

for almost all ω ∈ R. Define

βi :=
W (zi)

Md(zi)Ws(zi)

for i = 1, . . . , k. If G is a solution to the modified Nevanlinna-Pick interpolation

problem 4.2.2 with interpolation data (zi, βi)
n
i=1, then Ksup ≥ 1/ρ and

C :=
W −MdWsG

MnNoWsG
(4.2.10)

is a solution to Problem 4.1.3.
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Proof. Note that βi 6= 0 for each i because the unit W does not have unstable zeros.

By Theorem 4.2.1, it suffices to show that there exists F satisfying (4.2.1), (4.2.2),

and (4.2.3).

Let us first obtain a sufficient condition for (4.2.2). Since Md is inner, it follows

from (4.2.9) that

|W (jω)−Md(jω)F (jω)| ≤ |Md(jω)| · |F (jω)|+ |W (jω)|
= |F (jω)|+ ρ− (ρ− |W (jω)|)
≤ |F (jω)|+ ρ− |Ws(jω)|

for almost all ω ∈ R. Moreover,

|F (jω)|+ ρ− |Ws(jω)| ≤ ρ

if and only if

|(F/Ws)(jω)| ≤ 1.

This shows that if ‖F/Ws‖∞ ≤ 1, then we have (4.2.2).

Suppose that G is a solution to Problem 4.2.2 with interpolation data (zi, βi)
n
i=1.

Define F := WsG. By the argument given above, F achieves (4.2.2) because

‖F/Ws‖∞ = ‖G‖∞ ≤ 1.

Since G and Ws are unit elements, F satisfies (4.2.1). Moreover, the interpolation

conditions (4.2.3) can be obtained directly from those of G. Thus F satisfies (4.2.1),

(4.2.2), and (4.2.3). Substituting F = WsG into (4.2.4), we can also derive (4.2.10).

In the same way, an upper bound of Ksup can be obtained by the next result:

Theorem 4.2.7. Consider the strong and robust stabilization problem 4.1.3 under

Assumptions 4.1.1 and 4.1.2. Choose Wn satisfying Wn, 1/Wn ∈ RH∞ and

|Wn(jω)| ≥ ρ+ |W (jω)|

for almost all ω ∈ R. Define

γi :=
W (zi)

(Md(zi)Wn(si)

for i = 1, . . . , k. If Problem 4.2.2 with interpolation data (zi, γi)
n
i=1 is not solvable,

then Ksup ≤ 1/ρ.

Proof. As in the proof of Theorem 4.2.6, we can derive a necessary condition for

(4.2.2) from

|W (jω)−Md(jω)F (jω)| ≥ |m(jω)| · |F (jω)| − |W (jω)|
= |F (jω)|+ ρ− (ρ+ |W (jω)|)
≥ |F (jω)|+ ρ− |Wn(jω)|

for almost all ω ∈ R. The rest of the proof follows the same lines as that of Theorem

4.2.6, so it is omitted.
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Remark 4.2.8. 1. Strong stabilization with sensitivity reduction can be trans-

formed to the modified Nevanlinna-Pick interpolation [38, 48, 53, 77]. In con-

trast, strong and robust stabilization cannot. The reason is that F in Theorem

4.2.1 needs to be invertible in H∞. We cannot alter the norm constraint (4.2.2)

to a simpler one ‖F‖∞ < ρ. We therefore need Theorems 4.2.6 and 4.2.7 as

additional procedures. This is different from robust stabilization without restric-

tion on the stability of controllers, which can be reduced the Nevanlinna-Pick

interpolation as sensitivity minimization [61].

2. Let P ∈ F∞ has a coprime factorization N/D with N,D ∈ H∞. We say that

P is proper if

lim
R→∞

sup
|s|>R

|N(s)| < ∞. (4.2.11)

Also P is strictly proper if

lim
R→∞

sup
|s|>R

|N(s)| = 0. (4.2.12)

The plant P is said to be biproper if it is proper but not strictly proper.

In Assumption 4.1.1, we have taken a biproper plant having infinitely many

unstable poles as the nominal model. Therefore the condition ‖W‖∞ < ρ in

Theorem 4.2.6 implies that the controllers obtained by our proposed method

may not robustly stabilize strictly proper plants. In the first place, however,

we should pose the question: Are strictly proper plants with infinitely many

unstable poles stabilizable? The answer is negative; see the next section.

3. By the MATLAB command fitmagfrd, we can compute Ws, Wn in Theorems

4.2.6 and 4.2.7.

4. As in the design procedure of stable controllers in Chapter 2, the controller in

(4.2.10) has internal unstable pole-zero cancellations. In general, such cancella-

tions are not exactly achieved due to the infinite-dimensionality of the controller.

This may lead to the unstable behavior of the controller in implementation. See

also Remark 3.2.17.

Theorem 4.2.6 generally gives an infinite-dimensional controller. A natural ques-

tion at this stage is the following: Does a finite-dimensional controller that approx-

imates the derived controller stabilize the plant and satisfy the H∞-norm condition

(4.1.3)? The reader can refer to [20, 42, 83, 85] for approximation techniques for

stable infinite-dimensional systems.

To ensure that the approximation Ca ∈ RH∞ still stabilizes the plant, we can

obtain an error bound on the difference ‖C − Ca‖∞ by Proposition 3.2.19.

Define

Ta :=
PCa

1 + PCa

. (4.2.13)

The following is an analogous result to Proposition 3.2.20 for sensitivity reduction

and illustrates that we can also obtain an upper bound of ‖WTa‖∞ by ‖C − Ca‖∞.
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Proposition 4.2.9. Let P ∈ F∞ and W ∈ H∞. Suppose there exists C ∈ H∞∩C (P )

and Ca ∈ RH∞ ∩ C (P ). Define

δ :=

∥∥∥∥ P

1 + PC

∥∥∥∥
∞
, ε := ‖C − Ca‖∞.

If δε < 1, then

‖WTa‖∞ ≤ δε · ‖W‖∞ + ‖WT‖∞
1− δε

, (4.2.14)

where T and Ta are defined by (4.1.3) and (4.2.13) respectively.

Proof. A routine calculation shows that

T − Ta =
P

1 + PC
(1− Ta)(C − Ca).

Hence we have

‖WT −WTa‖∞ ≤ δε · ‖W (1− Ta)‖∞ ≤ δε · (‖W‖∞ + ‖WTa‖∞). (4.2.15)

Since ‖WTa‖∞ − ‖WT‖∞ ≤ ‖WT −WTa‖∞, it follows from (4.2.15) that

(1− δε) · ‖WTa‖∞ ≤ δε · ‖W‖∞ + ‖WT‖∞.

Thus we obtain (4.2.14) if δε < 1.

4.3 Stabilizability of strictly proper plants having

infinitely many unstable poles
Here we answer the question: Can a linear time-invariant controller stabilize a

strictly proper plant with an infinite number of unstable poles?

The previous works [45, 60] on H∞ control of plants with infinitely many unstable

modes assume that the plants are biproper. Moreover, a strictly proper neutral delay

system is not stabilizable by a finite-dimensional controller [84]. However the above

question is not fully answered. Based on the Bezout identity, the next result shows

that more general strictly proper plants with infinitely many unstable poles are not

stabilizable in the sense of [101].

Proposition 4.3.1. Let nonzero N, D ∈ H∞ be weakly coprime in the sense of

[101], i.e., every greatest common divisor of N and D is a unit element. Suppose

that D has infinitely many zeros in C+, and that the set of these unstable zeros has

no limit points on the imaginary axis. If N satisfies (4.2.12), then P := N/D is not

stabilizable.

Proof. Assume, to reach a contradiction, that P is stabilizable. Then we have

N(s)X(s) +D(s)Y (s) = 1 for all s ∈ C+ (4.3.1)

for some X, Y ∈ H∞ [101], By (4.2.12), for every ε > 0, there exists R > 0 such that

|N(s)| · ‖X‖∞ < ε for all s ∈ C+ satisfying |s| > R. In addition, there exists z0 ∈ C+
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such that D(z0) = 0 and |z0| > R. Otherwise the set of the unstable zeros of D has

at least one limit point in {s ∈ C+ : |s| ≤ R}, which implies that D(s) = 0 for all

s ∈ C+ by Theorem 10.18 in [93]. Let ε < 1. Then

|N(z0)X(z0) +D(z0)Y (z0)| ≤ |N(z0)| · ‖X‖∞ < ε < 1.

This contradicts (4.3.1). Thus P is not stabilizable.

4.4 Numerical examples
In this section, we first compare the proposed method with the previous work

for the design of stable H∞ controllers. We also present a numerical example for

an infinite-dimensional plant, and apply the proposed method to a repetitive control

system [54, 121].

Example 4.4.1. We consider strong and robust stabilization for the following finite-

dimensional plant P , weighting function W , and positive function ρ:

P (s) =
(s+ 2)(s− 3)(s− 4)

(s− 2)(s+ 3)(s+ 4)

W (s) = K · s+ 1

s+ 10
, ρ = 1

where K > 0. The purpose of this example is to compare the proposed method with

the MATLAB software HIFOO 3.0 [44]. HIFOO 3.0 computes stable H∞ controllers,

using a hybrid numerical algorithm for nonsmooth and nonconvex optimization based

on quasi-Newton updating and gradient sampling.

Table 4.1: Comparison on Example 4.4.1

Ksup Methods Stability of Controller

0.1441 HIFOO 3.0 [44] stable

0.2082 Sufficient condition in Theorem 4.2.6 stable

0.2310 Necessary condition in Theorem 4.2.7 unstable

0.2665 H∞ optimal controller unstable

Results for this example are given in Table 4.1, whereKsup indicates the maximum

of K achieved by each method. We see that our sufficient condition in Theorem 4.2.6

less conservative than HIFOO 3.0 in this example. Also, an upper bound derived from

Theorem 4.2.7 is smaller than Ksup achievable by the unstable H∞ optimal controller.

Example 4.4.2. Consider Problem 4.1.3 with the following infinite-dimensional sys-

tem P , weighting function W , and positive constant ρ:

P (s) =
(s− α)(s− 4e−s + 1)

(s− 10)(s− 15)(2e−s + 1)
(4.4.1)

W (s) = K · s+ 1

s+ 10
, ρ = 1, (4.4.2)



63

𝜶 
6 10 

𝑲𝐬𝐮𝐩 

2 

0.47 

0.77 

0 

0.4 

Upper bound of  

Lower bound of 

𝑲𝐬𝐮𝐩 
𝑲𝐬𝐮𝐩 

Figure 4.4: Unstable zero α versus supremum gain Ksup.

where 2 ≤ α < 10 and K > 0. Let p be the only root of s − 4e−s + 1 = 0 in C+

(note that p ≈ 0.7990). Using the factorization method of [43], P can be factored as

P = MnNo/Md, where

Mn(s) :=
(s− α)(s− p)

(s+ α)(s+ p)

Md(s) :=
(s− 10)(s− 15)(2e−s + 1)

(s+ 10)(s+ 15)(e−s + 2)

No(s) :=
(s+ α)(s+ p)(s− 4e−s + 1)

(s− p)(s+ 10)(s+ 15)(e−s + 2)
.

Let Ksup be the supremum of K such that there exists C ∈ H∞ ∩C (P ) satisfying

(4.1.3). Figure 4.4 shows the relationship between α and Ksup. In Figure 4.4, the

solid line shows a lower bound of Ksup obtained by Theorem 4.2.6, and the dashed

line indicates an upper bound of Ksup derived from Theorem 4.2.7. We compute Ws

and Wn in Theorems 4.2.6, 4.2.7 by the MATLAB function fitmagfrd. Both lines in

Figure 4.4 decrease to 0 as α becomes closer to 10. The reason for this drop is that

an unstable pole-zero cancellation occurs in P when α = 10.

Let α = 2. Then we obtain the lower bound 0.471 and the upper bound 0.771.

We also find a stable controller to achieve robust stability for K = 0.468 by Theorem

4.2.4 with σ = 100. See Fig. 3 of [48] for a discussion on the selection of σ based on

a specific numerical example.

When K = 0.468, Ws in Theorem 4.2.6 and g in Theorem 4.2.4 are given by

Ws(s) ≈
0.53(s+ 10.20)

(s+ 5.86)

g(z) = j · g0(z), where g0(z) ≈
1.049z + 1

z + 1.050
.

The above Ws is obtained by fitmagfrd. The stable controller that provides robust

stability is obtained by (4.2.10), where G(s) is defined in (4.2.8) with g(z).

Note that G(s) in (4.2.8) is real by Remark 4.2.5.2. The further investigation of

G is conducted through an example in [48].
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Example 4.4.3. (Application to a repetitive control system)

Consider the repetitive control system given in Figure 3.5, where L = 1 and P

belongs to the following model set:

P =

{
Pα(s) =

(s− 6)(s− 9)

(αs+ 8)(s− 5)
: 0.8 ≤ a ≤ 1.2

}
.

Note that the plant must be biproper for the exponential stability of the closed-

loop system [121, Theorem 5.12]; see also Proposition 4.3.1. When the plant is strictly

proper, we need a modified repetitive controller [54, 121]. The reader can refer to

[122] for the details of robust stabilization of modified repetitive control systems.

The repetitive controller C consists of two parts: Cu and Co. Cu = 1/(1 − e−Ls)

is the internal model of any periodic signals with period L. On the other hand, Co is

designed for the desired performance, in this example, for robust stabilization. Our

goal is to determine whether there exists Co ∈ H∞ such that C = CuCo stabilizes all

Pa ∈ P and the error e(t) tends exponentially to zero for every Pα ∈ P.

For ε > 0, let C−ε denote {s ∈ C : Re s > −ε} and let H∞(C−ε) denote the

set of functions that are bounded and analytic in C−ε. For exponential stability, it is

necessary and sufficient that S, CS, and PS belong to H∞(C−ε) for some ε > 0 [119,

Theorem 3.1]. Moreover, if ε is sufficiently small, then

P ⊂
{
P∆ = (1 +W∆)P1 : ∆ ∈ H∞(C−ε), sup

s∈C−ε

|∆(s)| < 1

}
, (4.4.3)

where

P1(s) :=
(s− 6)(s− 9)

(s+ 8)(s− 5)

W (s) :=
0.25038(s+ 0.02384)

s+ 10
.

Now let us consider the closed-loop system in Figure 4.5. By the preceding dis-

cussion, to determine whether there exists Co ∈ H∞ yielding exponential stability of

the closed-loop system for every Pa ∈ P, we study Problem 4.1.3 with

P̃ (s) := P (s− ε) = Cu(s− ε)P1(s− ε) (4.4.4)

W̃ (s) := W (s− ε), ρ := 1.

Once we find a solution C̃ to this problem, Co(s) := C̃(s+ ε) ∈ H∞(C−ε) makes the

closed-loop system exponentially stable for every ∆ ∈ H∞(C−ε) satisfying

sup
s∈C−ε

|∆(s)| < 1

in Figure 4.5.

Let ε = 0.001, which satisfies (4.4.3). P̃ in (4.4.4) can be factored as P̃ =
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Figure 4.5: Robust stabilization for repetitive control system.

MnNo/Md, where

Mn(s) :=
(s− ε− 6)(s− ε− 9)

(s+ ε+ 6)(s+ ε+ 9)

Md(s) :=
(1− eεe−s)(s− ε− 5)

(e−s − eε)(s+ ε+ 5)

No(s) :=
(s+ ε+ 6)(s+ ε+ 9)

(e−s − eε)(s+ ε+ 5)(s− ε+ 8)
.

Define T̃ := P̃ C̃/(1 + P̃ C̃). It follows from Theorems 4.2.6 and 4.2.7 that

0.71 < inf
C̃∈H∞∩C (P̃ )

‖W̃ T̃‖∞ < 0.97.

The MATLAB function fitmagfrd is used for Ws and Wn in Theorems 4.2.6, 4.2.7.

Since infC̃∈H∞∩C (P̃ ) ‖W̃ T̃‖∞ ≤ ρ = 1, there exists Co ∈ H∞ such that the repetitive

controller C = CuCo stabilizes all Pa ∈ P and achieves the exponential decay of e(t)

for any Pa ∈ P.

4.5 Summary
In this chapter, we have studied the strong and robust stabilization problem for

SISO infinite-dimensional systems. The plants we consider have only finitely many

simple unstable zeros but may possess infinitely many unstable poles. Using the mod-

ified Nevanlinna-Pick interpolation, we have obtained both lower and upper bounds

on the largest multiplicative perturbation under which a stable controller can stabilize

the plant. Hence such bounds can be calculated by checking the positive definiteness

of finitely many associated Pick matrices. Moreover, we have found stable controllers

to achieve robust stability. A repetitive control system has been discussed as an

application of the proposed method.
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Chapter 5

Strong Stabilization with Mixed

Sensitivity Reduction for SISO

Systems

5.1 Motivation and problem statement
In this chapter, we consider SISO systems. We have studied sensitivity reduction

in Chapter 3 and robust stabilization in Chapter 4. However, controllers attaining

low sensitivity may not be robust against modeling errors, and also robust controllers

may not achieve good tracking performance of the closed-loop system. For desired

performance and robustness, we therefore need reduction of both the sensitivity func-

tion S = 1/(1 + PC) and the complimentary sensitivity function T = PC/(1 + PC),

that is, mixed sensitivity reduction.

Since S+T = 1, the following question arises naturally: Is it well-posed to reduce

S and T simultaneously? The answer is affirmative in the engineering sense, because

in a wide variety of cases of interest in control theory, we can separate the frequency

bands where each function should be small. We elaborate on this further from the

viewpoints of performance and robustness.

Performance: For good disturbance attenuation and tracking performance, S

should be small over a suitable low frequency band. On the other hand, to reduce

the effect of measurement noise, we should make T small in a high frequency band.

Robustness: A small value of S in a low frequency band implies good robustness

with respect to low frequency plant perturbations caused by parameter uncertainty.

In contrast, if T is small in a high frequency band, the closed-loop system is ro-

bust against high frequency plant perturbations due to modeling errors and parasitic

effects.

The reader can refer to [25, 33, 63, 64] for further theoretical discussions. Mixed

sensitivity reduction is one of the basic and practical control objectives. Its successful

applications can be found in many engineering fields, such as hot-strip mills [55],

flexible structures [57], power flow in transmission systems [115], and vehicle dynamic
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control systems [10].

We make the following assumptions throughout this chapter:

Assumption 5.1.1. We consider the following class of plants:

P =
Mn

Md

N1N2, (5.1.1)

where

• Mn ∈ H∞ and Md ∈ RH∞ are inner,

• N1, 1/N1 ∈ H∞,

• N2 ∈ RH∞ is outer.

We also assume that Mn has finitely many essential singularities on jRe, and that

N := MdN1N2 and D := Md are coprime.

Assumption 5.1.2. We assume W1, W2N2, 1/(W2N2) ∈ RH∞.

Note that the plants considered here are different from those in Chapters 3 and

4. The plant in (5.1.1) can have only finitely many unstable modes arising from Md,

but it may possess pure delays and infinitely many unstable zeros arising from Mn.

Assumption 5.1.1 requires the coprime-inner/outer factorization of P . A calcu-

lation method of this factorization for general SISO time-delay systems has been

developed in [43].

We aim to find a stable controller that provides both lower sensitivity and robust

stability. Then our problem is stated as follows:

Problem 5.1.3. Let Assumptions 5.1.1 and 5.1.2 hold. Determine whether there

exists a controller C ∈ H∞ ∩ C (P ) such that

‖W1S‖∞ < 1, where S :=
1

1 + PC
, (5.1.2)

‖W2T‖∞ < 1, where T :=
PC

1 + PC
= 1− S. (5.1.3)

Also, if one exists, find such a controller.

Problem 5.1.3 is called strong stabilization with mixed sensitivity reduction. Our

objective of this chapter is to introduce a new two-block problem for the sufficiency

of Problem 5.1.3. The two-block problem can be converted to a one-block problem

that is solvable by matrix computation only. We also present a design method of such

stable H∞ controllers.
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5.2 H∞ control by stable controllers

5.2.1 Strong stabilization with sensitivity reduction

Let us first study the problem of finding a stable controller that stabilizes the

plant and achieves low sensitivity (5.1.2) only. Here we obtain a sufficient condition

for this problem by extending the results for finite-dimensional systems in [56].

The following result gives two necessary and sufficient conditions for a controller

to strongly stabilize the plant:

Lemma 5.2.1. Suppose N, D ∈ H∞ are coprime. For P := N/D, each of the

following three conditions implies the other two:

(i) C ∈ C (P ) ∩H∞.

(ii) C ∈ H∞ and 1/(D +NC) ∈ H∞.

(iii) C ∈ C (P ) and D +NC ∈ H∞.

Proof. From a simple calculation, we immediately see that (ii) ⇒ (i) and (i) ⇒ (iii).

We prove (iii) ⇒ (ii) as follows.

Since C ∈ C (P ), there exists Q ∈ H∞ such that Y −NQ 6= 0 and

C =
X +DQ

Y −NQ
. (5.2.1)

Substituting (5.2.1) into D +NC, we have

D +NC =
1

Y −NQ
. (5.2.2)

Since D+NC ∈ H∞, (5.2.1) and (5.2.2) implies C ∈ H∞. In addition, 1/(D+NC) =

Y −NQ ∈ H∞ by (5.2.2). Thus (iii) implies (ii).

The equivalence between (i) and (iii) in Lemma 5.2.1 leads to the following neces-

sary and sufficient condition for a controller to strongly stabilize the plant and attain

low sensitivity (5.1.2).

Lemma 5.2.2. Suppose that N, D ∈ H∞ are coprime, and that X, Y ∈ H∞ satisfy

the Bezout equation (4.3.1). Define P := N/D and let W1 ∈ RH∞. Then the

following two conditions are equivalent:

(i) The controller C ∈ H∞ ∩ C (P ) achieves low sensitivity (5.1.2).

(ii) The parameter Q ∈ H∞ in (5.2.1) satisfies

‖W1D(Y −NQ)‖∞ < 1 (5.2.3)

1

Y −NQ
∈ H∞. (5.2.4)

Proof. In conjunction with (5.2.2), the equivalence between (i) and (iii) in Lemma

5.2.1 shows that there exists C ∈ H∞ ∩ C (P ) if and only if (5.2.4) holds for some

Q ∈ H∞. Moreover, since S = D(Y −NQ), it follows that C achieves (5.1.2) if and

only if Q satisfies (5.2.3).
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We are now in a position to set a one-block problem for the sufficiency of sensitivity

reduction by a stable controller.

Theorem 5.2.3. Let Assumption 5.1.1 hold. Suppose that W1 ∈ RH∞ and that

nonzero λ ∈ C satisfies |λ| ≤ 1. If there exists Q ∈ H∞ such that∥∥∥∥(2

λ
W1 −D

)
− 2

λ
W1N(X +DQ)

∥∥∥∥
∞

< 1, (5.2.5)

then C in (5.2.1) satisfies C ∈ H∞ ∩ C (P ) and low sensitivity (5.1.2).

Proof. By Lemma 5.2.2, it suffices to establish (5.2.3) and (5.2.4) for Q ∈ H∞ satis-

fying (5.2.5).

Define

V :=
2

λ
W1(Y −NQ)− 1. (5.2.6)

it is clear that V ∈ H∞. Before using Lemma 3.2.15, let us check ‖V ‖∞ < 1.

Since D = Md is inner and since DY = 1 −NX by the Bezout equation (4.3.1),

it follows that

‖V ‖∞ = ‖DV ‖∞

=

∥∥∥∥2λW1(1−N(X +DQ))−D

∥∥∥∥
∞

=

∥∥∥∥(2

λ
W1 −D

)
− 2

λ
W1N(X +DQ)

∥∥∥∥
∞
. (5.2.7)

Thus ‖V ‖∞ < 1 can be obtained by (5.2.5).

Lemma 3.2.15 shows that U defined by

U :=
λ

2
(V + 1) (5.2.8)

satisfies U, 1/U ∈ H∞ and ‖U‖∞ < 1. We therefore have (5.2.4) because

1

Y −NQ
=

2

λ

W1

V + 1
=

W1

U
∈ H∞.

Moreover,

‖W1D(Y −NQ)‖∞ = ‖W1(Y −NQ)‖∞ = ‖U‖∞ < 1,

and hence (5.2.3) is achieved. Thus the controller C in (5.2.1) satisfies C ∈ H∞∩C (P )

and low sensitivity (5.1.2) by Lemma 5.2.2.

The following corollary is for stable plants in Theorem 5.2.3. The restricted result

is still interesting because we can directly apply the skew Toeplitz approach [33] to

the one-block problem (5.2.9) below.
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Corollary 5.2.4. Let Assumption 5.1.1 with Md = N2 = 1 hold. Suppose that

W1, 1/W1 ∈ RH∞ and that nonzero λ ∈ C satisfies |λ| ≤ 1. If there exists Qs ∈ H∞

such that ∥∥∥∥(2

λ
W1 − 1

)
−MnQs

∥∥∥∥
∞

< 1 (5.2.9)

then the controller C defined by

C :=
λQs

2W1N1 − λPQs

(5.2.10)

satisfies C ∈ H∞ ∩ C (P ) and (5.1.2).

Proof. We obtain (5.2.9) and (5.2.10) by substituting N = P = MnN1, X = 0,

D = Y = 1, and Qs =
2
λ
W1N1Q into (5.2.5) and (5.2.1).

In Theorem 5.2.3 and Corollary 5.2.4, we encounter the following question: As

the gain of the weight W1 is larger, does the set of all controllers given there become

smaller? The next result provides a positive answer. Proposition 5.2.5 shows that

the set of all parameters satisfying (5.2.5) become smaller.

Proposition 5.2.5. Let Assumption 5.1.1 hold, and let W1 ∈ RH∞. Suppose that

nonzero λ1, λ2 ∈ C satisfy λ1 = aλ2 for some a ∈ (0, 1). Define

Qi :=

{
Qi ∈ H∞ :

∥∥∥∥( 2

λi

W1 −D

)
− 2

λi

W1N(X +DQi)

∥∥∥∥
∞

< 1

}
for i = 1, 2. Then Q2 ⊃ Q1.

Proof. First of all, note that∥∥∥∥( 2

λi

W1 −D

)
− 2

λi

W1N(X +DQi)

∥∥∥∥
∞

=

∥∥∥∥ 2

λi

W1(Y −NQi)− 1

∥∥∥∥
∞

(5.2.11)

by (5.2.6) and (5.2.7). Let Q1 ∈ H∞ satisfy∥∥∥∥ 2

λ1

W1(Y −NQ1)− 1

∥∥∥∥
∞

< 1. (5.2.12)

Define G1 and G2 by

G1 :=
2

λ1

W1(Y −NQ1)− 1, G2 :=
λ1

λ2

(G1 + 1)− 1.

Then by definition

G2 =
2

λ2

W1(Y −NQ1)− 1. (5.2.13)

Since |λ2| > |λ1|, we see from (5.2.12) that

‖G2‖∞ ≤
∥∥∥∥λ1

λ2

(G1 + 1)− 1

∥∥∥∥
∞

≤
∣∣∣∣λ1

λ2

∣∣∣∣ · ‖G1‖∞ +
|λ2| − |λ1|

|λ2|
< 1. (5.2.14)

By (5.2.13) and (5.2.14), we obtain (5.2.12) with λ2 in place of λ1, Hence we deduce

from (5.2.11) that every Q2 ∈ Q2 belongs to Q1. This gives the desired conclusion.
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Remark 5.2.6. 1. A naive approach for sensitivity reduction by a stable con-

troller leads to two H∞-norm constraints: one is for sensitivity reduction (5.1.2)

and the other is for the stabilization of the stabilizing controller through the

small gain theorem [131]. However, note that we have derived one H∞-norm

condition (5.2.5) in Theorem 5.2.3.

2. The results in Chapter 3 and the earlier studies [38, 48, 56, 77] are based on

the equivalence between (i) and (ii) in Lemma 5.2.1. The key point is that a

controller strongly stabilizes the plant if and only if a unit in H∞ satisfies only

finitely many interpolation conditions. Hence the Nevanlinna-Pick interpolation

can be applied to the H∞ control problem; see also Remark 3.2.13. However,

this approach does not work for the plant in Assumption 5.1.1. In fact, its

extension requires that the unit cancel essential singularities and infinitely many

poles arising from Mn. One can prove (we shall omit this) that if N2 = 1 in

(5.1.1), then the necessary and sufficient condition for strong stabilizability is

the existence of a unit U ∈ H∞ achieving the generalized interpolation [97],

U(T) = Md(T), (5.2.15)

where T is the compressed shift operator on the orthogonal complement of

{Mnf : f ∈ H2} ⊂ H2; see [33, 120] for details. To avoid technical issues,

however, we do not proceed further along this line.

In this chapter, we have used the equivalence between (i) and (iii) in Lemma

5.2.1. By this equivalence, we can study Problem 5.1.3 with the aid of the

parameterization (5.2.1) of all stabilizing controllers. We will see in the next

subsection that this parameterization plays an important role in strong sta-

bilization with mixed sensitivity reduction. Moreover, to address the infinite

dimensionality of Mn or equivalently (5.2.15), we employ the results of the

operator-theoretic approach in [33].

5.2.2 Strong stabilization with mixed sensitivity reduction

We now consider the problem of strong stabilization with mixed sensitivity reduc-

tion. We begin by introducing a two-block problem for this problem.

Theorem 5.2.3 gives the H∞-norm constraint (5.2.5) as a sufficient condition for

strong stabilization with sensitivity reduction. On the other hand, substituting (5.2.1)

into the definition of T , we have T = N(X +DQ). Hence, if there exists a solution

Q ∈ H∞ to the two-block problem∥∥∥∥∥∥∥

(
2

λ
W1 −D

)
−

2

λ
W1N(X +DQ)

W2N(X +DQ)


∥∥∥∥∥∥∥
∞

< 1 (5.2.16)

for some nonzero λ ∈ C with |λ| ≤ 1, then C in (5.2.1) is a solution to Problem 5.1.3.

Since D, W1 ∈ RH∞, it follows that Wd and Wλ defined by

Wd :=
2

λ
W1 −D, Wλ :=

2

λ
W1, (5.2.17)
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belong to RH∞ for λ ∈ R. Therefore we make the next assumption instead of

Assumption 5.1.2.

Assumption 5.1.2′. We assume Wd, Wλ, W2N2, 1/(W2N2) ∈ RH∞.

The preceding discussion suggests that solutions to Problem 5.1.3 can be con-

structed by solving the following problem:

Problem 5.2.7. Let Assumptions 5.1.1 and 5.1.2 ′ hold. Find Q ∈ H∞ such that∥∥∥∥[Wd −WλN(X +DQ)

W2N(X +DQ)

]∥∥∥∥
∞

< 1. (5.2.18)

On the other hand, the two-block problem for the mixed sensitivity minimization

without consideration of the stability of controllers is given by∥∥∥∥[W1 −W1N(X +DQ)

W2N(X +DQ)

]∥∥∥∥
∞

< 1. (5.2.19)

The only difference between (5.2.18) and (5.2.19) is whether Wd and Wλ are

equal to W1. Recall that (5.2.19) can be reduced to a one-block problem solvable by

matrix computation [33]. Then a question naturally arises: Can we also transform

the two-block problem (5.2.18) to such a one-block problem? This question is answered

affirmatively as follows.

For G ∈ H∞, let G˜(s) := G(−s̄)∗ be its para-Hermitian conjugate. We convert

(5.2.18) to the two-block problem (5.2.22) below, which has the parameter Q̄ in the

first block only.

Theorem 5.2.8. Consider Problem 5.2.7. Compute G such that G, 1/G ∈ RH∞

and

N2̃ Wλ̃ WλN2 +N2̃ W2̃ W2N2 = G˜G. (5.2.20)

Let E ∈ RH∞ satisfy

G1 =
E −XN1

Md

∈ H∞, (5.2.21)

and let Mw ∈ RH∞ be a finite Blaschke product of minimal degree such that

W := Mw
WdWλ̃ N2̃

G˜
∈ RH∞.

Then Problem 5.2.7 is solvable if and only if there exists Q̄ ∈ H∞ such that∥∥∥∥∥
[
W −MŴ −MMdQ̄

G0

]∥∥∥∥∥
∞

< 1, (5.2.22)

where

G0 :=
WdW2N2

G
∈ RH∞, Ŵ := GE ∈ RH∞,

M := MnMw ∈ H∞.

Furthermore, the solution Q to Problem 5.2.7 is given by

Q =
1

N1

(
Q̄

G
−G1

)
. (5.2.23)
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Proof. We can prove this result in a way similar to the transformation of (5.2.19) in

[33, Chap. 5].

Define Q1 := N1Q − G1. Since N1, 1/N1, G1 ∈ H∞, it follows that Q ∈ H∞ if

and only if Q1 ∈ H∞. By (5.2.21),[
WdWλN(X +DQ)

W2N(X +DQ)

]
=

[
Wd

0

]
−
[
WλN2

−W2N2

]
Mn(E +MdQ1).

Define the matrices Θ1 and Θ2 by

Θ1 :=

[
WλN2/G N2̃ W2̃ /G˜

−W2N2/G N2̃ Wλ̃ /G˜

]
, Θ2 :=

[
Mw 0

0 1

]
.

Since Θ1̃ is unitary by (5.2.20) and Θ2 is inner,∥∥∥∥[Wd

0

]
−
[
WλN2

−W2N2

]
Mn(E +MdQ1)

∥∥∥∥
∞

=

∥∥∥∥Θ2Θ1̃ ·
([

Wd

0

]
−
[
WλN2

−W2N2

]
Mn(E +MdQ1)

)∥∥∥∥
∞

=

∥∥∥∥∥Θ2 ·

([
WdWλ̃ N2̃

G˜
G0

]
−
[
GMn

0

]
(E +MdQ1)

)∥∥∥∥∥
∞

=

∥∥∥∥∥
[
W −M1Ŵ −M1MdQ̄

G0

]∥∥∥∥∥
∞

,

where Q̄ := GQ1. This means that Problem 5.2.7 is solvable if and only if (5.2.22)

holds for some Q̄ ∈ H∞. Furthermore, since Q̄ = GQ1 = G(N1Q − G1), we obtain

(5.2.23).

Remark 5.2.9. As in (5.2.20), a factorization F = G˜G with G, 1/G ∈ RH∞ is

called a spectral factorization of F and G is a spectral factor. If F has the properties:

F and 1/F are proper real-rational functions without poles on the imaginary axis;

F (∞) > 0; F = F˜, then F has a spectral factorization [34].

We transform (5.2.22) to a one-block problem. The following technique has been

used in the literature on H∞ control; see, e.g., [33, Chap. 5] and [34, Chap. 8].

Define

σ := max

{
‖G0‖∞,

∥∥∥∥[W (jωk)

G0(jωk)

]∥∥∥∥} , (5.2.24)

where jωk ∈ jRe runs over the essential singularities of Mn. Note that since Mn has

finitely many essential singularities by Assumption 5.1.1, it is trivial to compute σ in

(5.2.24). We see from [82, Proposition 1] that if σ ≥ 1, Problem 5.2.7 does not have

any solutions. Therefore we assume σ < 1.

Fix γ = 1− ε, where ε > 0 is so small that σ < γ. Compute a spectral factor Fγ

such that Fγ, 1/Fγ ∈ RH∞ and

Fγ̃ Fγ = γ2 −G0̃G0.
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Define the H∞ functions Lγ and L̂γ by

Lγ :=
W

Fγ

, L̂γ :=
Ŵ

Fγ

.

Then it follows from Theorem 5.2.8 that Problem 5.2.7 amounts to finding Q̄1 ∈ H∞

such that

‖Lγ −ML̂γ −MMdQ̄1‖∞ ≤ 1. (5.2.25)

This one-block problem can be solved by computing the smallest singular value of a

certain matrix; see Appendix A and [33] for details.

Finally, let Q̄1 be a solution to the one-block problem (5.2.25). From (5.2.23) and

Q̄ = FγQ̄1, the solution Q to Problem 5.2.7 is given by

Q =
1

N1

(
FγQ̄1

G
−G1

)
. (5.2.26)

The results of this section can be summarized as follows:� �
Design procedure for stable stabilizing controllers achieving

low sensitivity (5.1.2) and robust stability (5.1.3)

Step 1: Define Wd and Wλ by (5.2.17).

Step 2: Formulate the two-block problem (5.2.18).

Step 3: Transform the above two-block problem to the one-block problem

(5.2.25).

Step 4: Compute a solution Q̄1 to the one-block problem (5.2.25) by the skew

Toeplitz approach in Appendix A and [33].

Step 5: Calculate a stable controller from (5.2.1) and (5.2.26).� �

Remark 5.2.10. Combining the proposed method with the results in [58], we can

also construct stable H∞ controllers for pseudorational systems [118].

5.3 Numerical examples
To illustrate the results above, we present the following examples in this section:

1. Strong stabilization with sensitivity reduction for a stable input-delay system.

2. Strong stabilization with mixed sensitivity reduction for an unstable input-delay

system.
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Figure 5.1: Input-delay h versus minimum sensitivity ρsinf

Example 5.3.1. We consider the following stable input-delay system and weighting

function:

P (s) = e−hs · s− 5

s+ 5
, W (s) =

s+ 1

10s+ 1
, 0 < h ≤ 2.

Define ρsinf by

ρsinf := inf
C∈H∞∩C (P )

‖WS‖∞.

Figure 5.1 shows the relationship between the input-delay h and the sensitivity ρsinf.

The solid line indicates an upper bound of ρsinf obtained by Corollary 5.2.4. On the

other hand, the dashed line denotes

ρinf := inf
C∈C (P )

‖WS‖∞,

which can be regarded as a lower bound of ρsinf. We computed ρinf by the skew Toeplitz

approach [33].

The H∞ optimal controller in this example has poles close to

log(10ρinf)± j(2πn+ 1)

h
(5.3.1)

for sufficiently large n [33]. This means that the controller achieving ρinf has infinitely

many unstable poles for every h ∈ (0, 2].

In Figure 5.1, the gap between the lower and upper bounds increases as the input-

delay h becomes longer. One reason is that the H∞ optimal controller for the plant

with longer input-delay has its infinitely many unstable poles more densely. We see

this from (5.3.1).

Example 5.3.2. Consider the unstable input-delay system P , weighting functions

W1, W2 given by

P (s) =
e−hs

s− 1
, W1(s) =

s+ 1

ρ(10s+ 1)
, W2(s) =

s+ 1

8
, (5.3.2)

where h ≥ 0.

As in Example 5.3.1, let ρsinf be the infimum of ρ such that there exists C ∈
H∞ ∩ C (P ) satisfying (5.1.2) and (5.1.3). Also, let ρ̄ s

inf and ρinf be the infimum of
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ρ such that the two block problems (5.2.16) and (5.2.19) are solvable, respectively.

Note that ρ̄ s
inf is an upper bound of ρsinf and that ρinf may not be achieved by a stable

controller. Here we draw a comparison between ρ̄ s
inf and ρinf .

The plant P in (5.3.2) can be factored as MnN1N2/Md, where Mn(s) := e−hs,

N1(s) := 1,

Md(s) :=
s− 1

s+ 1
, N2(s) :=

1

s+ 1
.

First we take h = 0.3. Matrix computation shows that Problem 5.2.7 with ρ =

0.196 and λ = 1 is solvable, which leads to ρ̄ s
inf ≤ 0.196. On the other hand, by using

the results in [33, 108], we obtain ρsinf = 0.203. These results suggest a question:

Why is the performance by the H∞ optimal controller worse than that by a stable

controller?

Of course, this is simply because we use different performance measures. Here,

however, we can closely examine the question above by transforming (5.2.18) to the

form of (5.2.19). This transformation cannot be always done, but if possible, it leads

to a detailed comparison of the performance indices.

Let us convert (5.2.18) to the form of (5.2.19). Set ρ = 0.196 and λ = 1. Since

Wd in (5.2.17) is given by

Wd(s) ≈
0.204(s+ 143.7)(s+ 0.382)

(s+ 1)(10s+ 1)
,

it follows that Wd, 1/Wd ∈ H∞. This invertibility of Wd leads to the reduction of

(5.2.18) to the form of (5.2.19).

Define

N1 :=
Wλ

Wd

N1, N :=
N1

N1

N, W 2 :=
Wd

Wλ

W2.

Then a simple calculation shows that (5.2.18) is equivalent to∥∥∥∥[Wd −WdN(X +DQ)

W 2N(X +DQ)

]∥∥∥∥
∞

< 1. (5.3.3)

Its difference from (5.2.19) are only Wd, W 2, and N . Here the H∞ performance is not

affected by the difference between N and N , because N1 as well as N1 are invertible

in H∞. Thus (5.2.18) holds if and only if Q satisfies (5.2.19) with Wd and W 2 in

place of W1 and W2. This implies that the weights W1, W2, Wd, and W 2 determine

which of the two-block problems is conservative.

Figure 5.2 shows the Bode plots of W1 and W2 with ρ = 0.203 and those of Wd

and W 2 with ρ = 0.196 and λ = 1. We see from Figure 5.2 that Wd is much smaller

than W1 in the high frequency band. Furthermore, W2 starts to increase at 100 Hz,

whereas W 2 does at 102 Hz. These properties of the weighting functions verify the

numerical results above.

Figure 5.3 shows the sensitivity ρ̄ s
inf and ρinf dependent on the input-delay h that

is varied between 0 and 0.3.

From this figure, we see that as h become longer, ρ̄ s
inf increases at the almost same

rate as ρinf.
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Figure 5.2: Bode plots of W1, W2 in (5.2.19) and Wd, W 2 in (5.3.3)
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Figure 5.3: Input-delay h versus sensitivities ρ̄ s
inf and ρinf

5.4 Summary
In this chapter, we have constructed a stable controller that simultaneously achieves

low sensitivity and robust stability for SISO time-delay systems. The plants we con-

sidered have finitely many unstable poles but they are allowed to possess pure delays

and infinitely many unstable zeros. Strong stabilization of the plants in Chapters 3

and 4 is equivalent to the interpolation at finitely many points in C+, whereas that in

this chapter requires the operator-theoretic approach to the interpolation. For a suf-

ficient condition for the stable H∞ controller design, we have derived the one-block

problem. This problem is solvable by the techniques in [33]. Compared with the

parameterization-based approach in [48, 110], the proposed method has the compu-

tational advantage that the desired controller is constructed by matrix calculation

only.
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Chapter 6

Conclusion

In this thesis, we have studied the problems of finding stable H∞ controllers for

infinite-dimensional systems. The results are based on the fact that the interpolation

with an invertible H∞ function is a necessary and sufficient condition for strong

stabilization. The earlier works rooted in the parameterization of all H∞ sub-optimal

controllers can be computationally expensive, because such controllers for infinite-

dimensional plants are infinite-dimensional. In contrast, the proposed methods lead

to the design procedures with matrix computation only.

In Chapter 2, we have shown that the extended Schur-Nevanlinna algorithm gives

a necessary and sufficient condition for the Nevanlinna-Pick interpolation problem

with boundary conditions. We have reduced the interpolation problem with both in-

terior and boundary conditions to that with boundary conditions only, and then have

shown that the reduced boundary interpolation problem is always solvable. Compared

with the approach of [3] based on the Pick matrix, the proposed method efficiently

constructs solutions to this interpolation problem.

In Chapter 3, we have addressed the problem of finding stable stabilizing con-

trollers that provide low sensitivity for MIMO infinite-dimensional systems. The

systems considered in Chapter 3 has finitely many zeros in C̄+, but are allowed to

possess infinitely many poles in C+. We have derived a sufficient condition and a

necessary condition for the H∞ control problem. Both of them are in the form of the

Nevanlinna-Pick interpolation with boundary conditions. Hence, these conditions give

upper and lower bounds of the minimum sensitivity achievable by stable controllers

through the computation of the associated Pick matrix. Also, we have constructed

stable controllers attaining the upper bound via the extended Schur-Nevanlinna al-

gorithm.

In Chapter 4, we have studied the strong and robust stabilization problem for

SISO infinite-dimensional systems. As in Chapter 3, the plants have only finitely

many simple unstable zeros but they can possess infinitely many unstable poles. If

we do not consider the stability of controllers, then we can transform the problem of

robust stabilization to the same one-block problem as that of sensitivity reduction.

However we cannot treat the strong and robust stabilization problem in this way. The

reason is that the solution to its equivalent one-block problem needs to be invertible in
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H∞. Through additional procedures for the weighting function, however, the modified

Nevanlinna-Pick interpolation leads to both lower and upper bounds on the largest

admissible perturbation for which the plant is stabilizable by a stable controller. This

means that we can obtain such bounds by computing finitely many Pick matrices.

In Chapter 5, we have proposed a design method of stable controllers attain-

ing both low sensitivity and robust stability for SISO time-delay systems. Unlike

in Chapters 3 and 4, the plants have finitely many unstable poles but may possess

pure delays and infinitely many unstable zeros. This infinite dimensionality needs

the operator-theoretic approach to the interpolation for strong stabilization. How-

ever, as in Chapters 3 and 4, the sufficient condition we obtained can be checked by

matrix computation only. Consequently, the proposed design procedure requires less

computational efforts than previous methods based on the parameterization of H∞

sub-optimal controllers.

We conclude this thesis by indicating some open problems.

A necessary and sufficient condition for the stable H∞ control problems: In

Chapters 3 and 5, we have used the small gain theorem to construct units in H∞.

However, this leads to only a sufficient condition. A necessary and sufficient condition

may be derived if we use complex exponential/logarithm functions as in the modified

Nevanlinna-Pick interpolation. Using such functions, we may avoid the construction

of an invertible H∞ function. However, this leads to infinitely many steps, because

complex logarithm functions are multi-valued functions.

An extension of the Toker-Özbay formula to strong stabilization with

mixed sensitivity reuduction: In [108], a necessary and sufficient condition called

the Toker-Özbay formula is derived for the two-block problem (5.2.19). This formula

not only offers an efficient method to construct the solutions but also provides a com-

prehensible structure of an H∞ sub-optimal controller. Such a structure enables us to

construct controllers with additional properties such as controllers of low degree. The

two-block problem (5.3.3) introduced in Chapter 5 is a natural generalization of the

two-block problem (5.2.19) considered in the Toker-Özbay formula. It is interesting

to extend the Toker-Özbay formula to the stable H∞ control problem.

The standard H∞ control problem with stable controllers for infinite-

dimensional plants: In this thesis, we have studied the design of stable controllers

for basic H∞ control problems. To fulfill various control requirements, we need to

construct stable controllers for the standard H∞ control problem. However, only

systems with multiple input/output delays has been investigated; see [110, 111] for

the details. The standard problem with stable controllers still remains open for gen-

eral infinite-dimensional systems. A parameterization of all solutions to the standard

H∞ control problem is provided for general infinite-dimensional systems in [59, 60].

Combining this with the parameterization-based approach for stable H∞ controllers,

we may find a solution to the standard problem with stable controllers.

Stable H∞ controller design for fractional-order systems: Fractional-order



80

models and fractional control have received increased attention over the last decade;

see, e.g., [12, 17]. Various amount of literature of fractional-order systems is devoted

to systems of commensurate order, G(s) = R(sr) with R ∈ RH∞ and 0 < r < 1.

This is due to the following stability property: Let R = q/p stand for a rational

function with p and q coprime polynomials. A transfer function G(s) = R(sr) is

bounded-input bounded-output (BIBO) stable if and only if | arg σ| > rπ/2 for every

σ with p(σ) = 0 [71]. Applications of such fractional-order systems include lead acid

batteries with the Warburg impedance [94] and bridge structures having elastomeric

bearings [28]. Most controller designs for systems of commensurate order are tuning of

classical and fractional-order proportional-integral-derivative (PID) controllers. Such

controllers are simple but conservative. From both theoretical and practical points

of view, it is important to construct stable (possibly fractional-order) H∞ controllers

for fractional-order systems.
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Appendix A

Skew Toeplitz Approach for Mixed

Sensitivity Reduction

Here we review the skew Toeplitz approach for mixed sensitivity reduction. The

following result is based on the method of [41]. In what follows, we use the notation

in Chapter 5.

In Chapter 5, we have transformed the problem of strong stabilization with mixed

sensitivity reduction to the following problem:

Problem A. For γ < 1, define Lγ, L̂γ ∈ RH∞ as in Chapter 5. Suppose that

Md ∈ RH∞ and M ∈ H∞ are inner functions. Determine whether there exists γ < 1

such that

‖Lγ −ML̂γ −MMdQ‖ ≤ 1. (A-1)

for some Q ∈ H∞. Also, if one exists, find all Q ∈ H∞ achieving (A-1) for a fixed

γ < 1.

Remark A. Define σ by (5.2.24) and γinf by

γinf := inf
Q̄∈H∞

∥∥∥∥∥
[
W −MŴ −MMdQ̄

G0

]∥∥∥∥∥
∞

.

Then γinf satisfies γinf ≥ σ by Proposition 1 in [82], and we can avoid the nongeneric

case γopt = σ by choosing the weighting functions W1 and W2 properly [41]. Hence,

we shall assume that γinf > σ in the appendix.

Let Lγ = bγ/kγ and Md = m˜/m, where bγ, kγ, and m are polynomials with real

coefficients and bγ, kγ are coprime. Let n and l be the degrees of kγ andm, respectively.

Suppose that Md = CMd
(sI − AMd

)−1BMd
+ dMd

and Lγ = CL(sI − AL)
−1BL + dL

are minimal realizations. Define π := bγbγ̃ − kγkγ̃ and

Aγ :=
1

1− d2L

[
AL(1− d2L) + dLBLCL BLB

∗
L

−C∗
LCL −(AL(1− d2L) + dLBLCL)

∗

]
Bγ := − 1

1− d2L

[
BL

−dLC
∗
L

]
, Cγ :=

1

1− d2L

[
dLCL

B∗
L

]
, dγ :=

1

d2L − 1
.
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Using functions of matrices (see, e.g., [39]), we set

φ11(γ) := M(Aγ)bγ(−Aγ)

φ12(γ) := kγ(Aγ)

φ21(γ) := π(AMd
)− kγ(−AMd

)L̂γ(−AMd
)M(−AMd

)bγ(AMd
)

φ22(γ) := −kγ(−AMd
)L̂γ(−AMd

)kγ(−AMd
)

φ31(γ) := φ22(γ)

φ32(γ) := φ21(γ)

Φ11(γ) := φ11(γ)R(Aγ, Bγ, N), Φ̂11(γ) := φ11(γ)R(Aγ, Bγ, N + 1)

Φ12(γ) := φ12(γ)R(Aγ, Bγ, N), Φ̂12(γ) := φ12(γ)R(Aγ, Bγ, N + 1)

Φ21(γ) := φ12(γ)R(−AMd
, BMd

, N), Φ̂21(γ) := φ12(γ)R(−AMd
, BMd

, N + 1)

Φ22(γ) := φ22(γ)R(−AMd
, BMd

, N), Φ̂22(γ) := φ22(γ)R(−AMd
, BMd

, N + 1)

Φ31(γ) := φ31(γ)R(AMd
, BMd

, N), Φ̂31(γ) := φ31(γ)R(AMd
, BMd

, N + 1)

Φ32(γ) := φ32(γ)R(AMd
, BMd

, N), Φ̂32(γ) := φ32(γ)R(AMd
, BMd

, N + 1),

where N := n+ l and R(A,B, r) is the controllability matrix of the pair (A,B) with

degree r, that is,

R(A,B, r) =
[
B AB . . . Ar−1B

]
.

The following theorem gives a necessary and sufficient condition for Problem A

and a parameterization of all solutions:

Theorem A ([41]). Assume that M and m are nonzero at the zeros of π. Define σ

by (5.2.24) and let γo be the largest γ > σ such thatΦ11(γ) Φ12(γ)

Φ21(γ) Φ22(γ)

Φ31(γ) Φ32(γ)


is singular. Then γo = γinf and there exists γ < 1 such that (A-1) holds for some

Q ∈ H∞ if and only if γo < 1.

Furthermore, assume that γo < γ < 1. Then there always exist vp and vq such

that Φ̂11(γ) Φ̂12(γ)

Φ̂21(γ) Φ̂22(γ)

Φ̂31(γ) Φ̂32(γ)

[vp
vq

]
= 0.

Define

p(s) :=
[
1 s . . . sn+l

]
vp

q(s) :=
[
1 s . . . sn+l

]
vq

x0 := −
kγq +MLγ̃ kγ̃ p

πm

y0 := −
(
kγ̃ q +M˜Lγkγ̃ q

πm˜

)
˜
.
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All solutions Q ∈ H∞ satisfying (A-1) are given by

Q = (MMd)˜Lγ −Md̃ L̂γ −
x0̃ − y0̃ θ

x0θ − y0
,

where θ is an arbitrary H∞ function with ‖θ‖∞ ≤ 1.
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• M. Wakaiki, Y. Yamamoto, and H. Özbay. Robust stabilization for distributed

parameter systems by stable controllers. In Proc. MTNS 2012, 2012.
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