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Hypersphere Sampling for Accelerating High-Dimension and
Low-Failure Probability Circuit-Yield Analysis
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SUMMARY This paper proposes a novel and an efficient method
termed hypersphere sampling to estimate the circuit yield of low-failure
probability with a large number of variable sources. Importance sampling
using a mean-shift Gaussian mixture distribution as an alternative distribu-
tion is used for yield estimation. Further, the proposed method is used to
determine the shift locations of the Gaussian distributions. This method
involves the bisection of cones whose bases are part of the hyperspheres,
in order to locate probabilistically important regions of failure; the deter-
mination of these regions accelerates the convergence speed of importance
sampling. Clustering of the failure samples determines the required num-
ber of Gaussian distributions. Successful static random access memory
(SRAM) yield estimations of 6- to 24-dimensional problems are presented.
The number of Monte Carlo trials has been reduced by 2–5 orders of mag-
nitude as compared to conventional Monte Carlo simulation methods.
key words: design for manufacturing, Monte Carlo method, importance
sampling, SRAM, process variation, yield, norm minimization, Gaussian
mixture models, clustering, hypersphere sampling

1. Introduction

Technology scaling has brought dramatic improvements in
the performance of large scale integrated circuits. Scaling,
on the other hand, has introduced process-parameter varia-
tions of transistors and interconnections. The influence of
process-parameter variations has become one of the most
serious concerns in modern circuit designs [1], and it is ex-
pected to become even more serious. Random dopant fluc-
tuation is a representative variability [2], which leads to a
large random variation in the threshold voltages of transis-
tors. Variation in the threshold voltage is unavoidable in
scaled technologies because it is almost impossible to con-
trol both the location and the number of dopants. Yield as
well as performance optimization under parameter variabil-
ity are always the principal design objectives.

It is widely known that the yield of a static random ac-
cess memory (SRAM) is particularly sensitive to the vari-
ation in the threshold voltage, because transistors in the
SRAM cells are designed using minimum feature sizes [3].
In order to maximize the memory density while maintain-
ing high yield, it is critical to optimize the SRAM cells to
achieve very low failure probability. Simulation tool support
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that facilitates efficient failure rate estimation is necessary.
The Monte Carlo (MC) method [4] is widely adopted

for failure probability estimations. An advantage of the MC
method is that its accuracy can be improved by increas-
ing the number of MC trials. However, a drawback of this
method is that when it is applied to SRAM cells, it becomes
time consuming to obtain a reliable estimation. Because
SRAM cells have very low failure probability, only a very
small fraction of the MC samples falls in the failure region.
A new method, which is efficient, accurate, and suitable for
analyzing such low failure probability circuits, is required.

There are several methods that attempt to accelerate the
SRAM yield analysis [5]–[9]. The authors in [5] proposed
to apply the extreme value theory [10]. This theory is effec-
tive in dealing with rare probabilities of a continuous value,
such as the ones in write-time analysis of an SRAM cell.
In [6]–[9], methods based on importance sampling (IS) are
used. IS is one of the methods that overcomes the trade-off
between the simulation time and accuracy. In the case of IS,
samples following an alternative distribution instead of the
original distribution are generated. This method increases
the number of failure samples, thereby accelerating conver-
gence of the estimation. An appropriate weight is multiplied
to each sample to compensate for the estimation bias asso-
ciated with altering the distributions. More recently, appli-
cation of sophisticated MC methods is proposed. Examples
of such methods include sequential IS [11] and the Markov
chain MC method [12].

Among other methods, IS is a simple yet effective
method to calculate the expectation of an indicator func-
tion. The indicator function indicates whether the given in-
put sample is a pass sample or a failure sample. In partic-
ular, the indicator function returns 0 for pass samples and
1 for failure samples. The failure rate of the SRAM cells
can be estimated by counting the number of 1’s returned by
the indicator function. In [9], a method termed norm mini-
mization is proposed, which is based on the large deviations
theory [13]. This method reduces the estimation variance
by mean-shift IS, in which the mean of the original sample
distribution is shifted to the point of a failure sample that
has a minimum norm. However, it is difficult to find the
minimum norm sample. Prior knowledge of a circuit struc-
ture has been used to limit the search space. In addition, the
quality of the minimum norm sample may be insufficient,
particularly when a small number of samples are used to
reduce the search time, which may lead to unstable estima-
tion. A more general, but still an efficient, method that can
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be applied to a variety of problems is required.
In this paper, we propose a novel method termed hy-

persphere sampling to resolve the above mentioned issues.
The proposed method serves as a preprocess for the mean-
shift IS that uses Gaussian mixture models as an alternative
probability distribution. The appropriate shift vectors are
searched efficiently without any special knowledge of the
circuit under analysis. The proposed method concentrates
samples in the most critical regions, wherein the effect of
the parameter that dominates the estimation is observed.

The proposed method involves three steps. In the first
step, we extensively search for the failure regions by incre-
mental hypersphere sampling (IHS). In the IHS, MC sam-
ples are generated on a hypersphere surface. The radius of
the hypersphere is incrementally increased to locate the fail-
ure regions that are relatively close to the origin. Next, we
limit the search area by defining cones that are formed by
the failure samples. Cones are defined as structures whose
apexes are considered to be the coordinate origin and whose
bases are considered to be parts of the spherical surfaces that
include the failure samples found in the previous step. Fi-
nally, the failure regions are refined by repeatedly bisecting
the cone heights. The failure samples at the centers of the
bases of the respective cones are used as the shift vectors for
the mean-shift IS.

By determining the alternative distribution through the
proposed method, we found that the subsequent yield esti-
mation by IS became both stable and efficient. IS achieves
multiple orders of reduction of the MC samples as compared
with the conventional MC simulation. At a failure rate of
10−10, which is equivalent to a 0.1% yield loss for a 10 Mb
SRAM without redundancy, the number of MC samples re-
quired can be reduced by more than 106 times, which in turn
will cause a speed-up of 106x.

The rest of this paper is organized as follows. In Sect. 2,
we provide a background of this study, as well as present
drawbacks of the existing methods. In Sect. 3, we propose a
new method for determining the shift vector. In Sect. 4, we
evaluate the effectiveness of the proposed method by esti-
mating the failure rate of an SRAM cell. Finally, in Sect. 5,
we present the conclusions of this study.

2. Monte Carlo Methods for Circuit Yield Analyses

In this section, the conventional MC method and the IS
method are briefly reviewed.

2.1 Conventional Monte Carlo Method

The MC method is one of the most well-known statistical
methods for estimating an expectation under a known dis-
tribution [4]. One advantage of this method is that it can be
used to solve both nonlinear and linear problems, given the
fact that it approximates the solution through a large number
of simulations using randomly generated samples. Another
advantage of this method is that it is flexible, and hence,
can be applied to various problems for which no analytical

solutions are available.
The principle of the MC method is explained below.

Suppose we wish to calculate probability P that the value of
a function f becomes less than a critical value f0, i.e.,

f (x) ≤ f0. (1)

Here, f (x) is a function of an M-dimensional variable vector
x = (x1, ..., xM), where x is a random variable that follows a
probability distribution p(x). The indicator function I(x) is
defined as

I(x) =

{
0, pass ( f (x) > f0)
1, failure ( f (x) ≤ f0)

. (2)

We here assumed that the critical value gives an upper bound
but more general bounds, such as to specify a range, can be
considered in Eq. (2). Throughout the paper, sample x is
referred to as the pass sample when I(x) = 0. Otherwise, it
is referred to as the failure sample, because in the context of
failure rate estimation, the failure probability is evaluated.
Further, the failure region and the pass region are defined
as regions to which the failure samples and pass samples
belong, respectively.

Probability PMC, which is estimated using P by the
conventional MC method, is calculated by

PMC =
1
N

N∑
i=1

I(xi), xi ∼ p(x). (3)

Here, N is the number of MC trials. The MC sample xi

is generated to follow a probability density function p(x).
Convergence of the estimation of PMC can be evaluated us-
ing its variance Var(PMC) at the end of N-runs, which is
given by the following equation,

Var(PMC) =
1
N

( N∑
i=1

I(xi)
2 − PMC

2
)
. (4)

For the estimation to be reliable, it is essential for variance
Var(PMC) to be small. The figure of merit for convergence,
ρ(PMC), is defined as follows [9]:

ρ(PMC) =

√
Var(PMC)

PMC
. (5)

The figure of merit can be used to determine when the MC
runs should be terminated. Assuming that estimation PMC

follows a Gaussian distribution, we find that the figure of
merit at an accuracy of 100 · (1 − ε) %, with a confidence of
100·, (1 − δ) % is expressed as

ρ0 = − δ

Φ−1(ε/2)
. (6)

Here, Φ−1(p) is the inverse cumulative distribution function
of the standard Gaussian distribution. Constants ε and δ are
both close to zero. Equation (4) gives the required number
of samples as
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NMC =
1 − PMC

ρ2PMC
� 1
ρ2PMC

. (7)

We know that the required number of samples is inversely
proportional to the failure probability. Hence, when the
circuit yield is high, as in the case of SRAM cells, an in-
tractably large number of samples and thus a long simula-
tion time are required.

2.2 Importance Sampling

Importance sampling is a variance reduction technique used
for MC simulations. The advantage of IS is that it reduces
the number of MC trials [14]. In other words, it improves
the reliability of estimation with a smaller number of MC
samples.

P can be obtained by using an alternative probability
distribution function q(x) instead of the original distribution
p(x), but with some bias. Probability PIS, which is estimated
by the IS, is hence calculated by correcting the bias of using
the alternative distribution as

PIS =
1
N

N∑
i=1

I(xi) · w(xi), xi ∼ q(x). (8)

Here, w(x) = p(x)/q(x) is the weight function that is used
to adjust the bias. From Eqs. (4) and (8), the variance of PIS

is expressed as

Var(PIS) =
1

N2

( N∑
i=1

w(xi)
2I(xi) − NPIS

2
)
. (9)

In this paper, p(x) is assumed to be an M-dimensional joint
Gaussian distribution with zero mean and standard devia-
tions σ j, such that

p(x) =
M∏
j=1

1√
2πσ j

exp

⎛⎜⎜⎜⎜⎜⎝− x2
j

2σ2
j

⎞⎟⎟⎟⎟⎟⎠ . (10)

We use the following Gaussian mixture distribution as the
alternative probability distribution function for IS.

q(x) =
NC∑
i=1

mi · p(x − rISi) (11)

Here, mi and rISi are the mixing coefficients and the mean of
the i-th Gaussian distribution, respectively. The mixing co-
efficients satisfy

∑NC

i=1 mi = 1. NC is the number of Gaussian
distributions that formulate q(x).

2.3 Drawbacks of Mean-Shift IS

IS is an effective method that is used to accelerate rare event
simulations. It is critical to determine a suitable alternative
probability function q(x) to make IS efficient, which is, in
general, a very difficult task. It should be noted that when
q(x) is inappropriate, the efficiency and accuracy of IS will

Fig. 1 Principle of importance sampling.

be deteriorated. In particular, mean-shift IS requires an ap-
propriate choice of the mean-shift vector s [15]. As illus-
trated in the one-dimensional example shown in Fig. 1, it is
desirable that s is located close to the pass/failure boundary
that is nearest to the origin. This point is called as the min-
imum norm point. The samples around the minimum norm
point have the most significant effect on the yield estima-
tion, because these samples are more often observed among
all other failure samples. It is found that with an increase
in the sample dimension, the concentration of probability to
the minimum norm point becomes more notable.

Methods to determine an appropriate mean-shift vector
have been proposed in some literatures [8], [9]; however, the
proposed methods have two major drawbacks. One draw-
back is that the minimum norm sample is determined by
MC-runs using an M-dimensional uniform distribution. In
this case, the search space becomes a hypercube, which is
too large to determine an appropriate shift vector, particu-
larly when the problem dimension is high. Hence, these
methods tend to yield an ineffective shift vector [14]. The
other drawback is that no approach has been provided to re-
duce the norm of the previously obtained minimum norm
sample. This sample has the smallest norm within a set of
generated failure samples. If we assume that the exploration
space is large, the norm can be easily reduced by an addi-
tional effort. The coordinates around the small norm sam-
ple may also belong to the failure region and may have an
even smaller norm. This hypothesis suggests that by car-
rying out additional searches around the samples that have
small norm, it is possible to improve the quality of the can-
didate sample in terms of its norm. Hereafter, we refer to
this process as refinement of minimum norm sample.

Without this refinement, it is uncertain whether or not
an appropriate shift vector will be obtained, particularly
when the problem dimension is high. Increasing the num-
ber of samples may help improve the quality of a suitable
shift vector; however, this improvement comes at the cost
of a longer runtime before the actual IS is begun. In light
of these drawbacks, it is necessary to develop a structural
method to improve the quality of the shift vector.

3. Hypersphere Sampling

This section describes the proposed hypersphere sampling
that determines a suitable alternative probability function
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Fig. 2 Incremental hypersphere sampling.

q(x). Hereafter, without loss of generality, we assume that
variable x is normalized, i.e., p(x) follows a standard joint
Gaussian distribution with dimension M.

The proposed hypersphere sampling involves the fol-
lowing three steps:

1. Incremental hypersphere sampling
2. Failure sample clustering
3. Failure sample refinement.

Each step will be described in detail in the rest of this sec-
tion.

3.1 Incremental Hypersphere Sampling

In order to locate the failure regions that are close to the co-
ordinate origin, owing to which they significantly contribute
to the failure probability, we first carry out incremental hy-
persphere sampling (IHS). The concept of IHS is illustrated
in Fig. 2.

First, we randomly generate ns samples on the surface
of a hypersphere S(r0) whose radius is r0. Then, we carry
out MC simulations using these ns samples to check whether
each sample falls in the failure region or not. If the num-
ber of failure samples found is less than a predetermined
constant nf , we increase the radius of the hypersphere to
r1, which is greater than r0. For example, we uniformly
increase the radius by one sigma, for each dimension, i.e.,
r1 = r0 + 1.

We generate ns random samples on the surface of the
new hypersphere S(r1) and run simulations to obtain failure
samples. The radius of the hypersphere, r j, is increased until
at least nf failure samples are found on the surface of S(r j).

The number of failure samples, nf , with which we ter-
minate the expansion of the hypersphere, are empirically
determined. The average area-resolution to find a failure
region is S(r0)/ns. We should find all failure regions that af-
fect the yield calculation. By setting nf = 10, it is expected
that a failure region that is larger than one tenth of the largest
failure region shall be found.

Fig. 3 Definition of cone Ck for failure sample cluster k.

3.2 Failure Sample Clustering

Let S(r j) be the last hypersphere in the previous step, where
a total of nF (≥ nf ) failure samples are found. In this step,
we divide the nF-failure samples into clusters. This divi-
sion is made to distinguish between failure regions so that
the search range can be limited in the following refinement
step. The furthest neighbor method [16], for example, can
be used for this clustering where the cosine distance is the
distance used for clustering. The cosine distance between
two samples s1 and s2 is defined as follows:

CosineDistance(s1, s2) = 1 − s1 · s2

|s1||s2| . (12)

A cluster is formed such that the largest distance between
two samples in the cluster is less than 1.

We denote the center of gravity of a cluster k as gk. The
pass sample closest to the center of gravity is denoted as ck.
The angle formed by the two vectors gk and ck, where both
these vectors are considered to emanate from the origin, is
given as

θk = arccos

(
gk · ck

|gk ||ck |
)
. (13)

A cone Ck for cluster k is obtained by rotating the half-line
along ck around vector gk, which is considered to be the
axis of the cone. A two-dimensional example of the cone is
illustrated in Fig. 3. The base of the cone is Bk(r), which is
located on the surface of the sphere with radius r.

3.3 Failure Sample Refinement

We now intensively search the minimum norm sample of
cluster k by bisection. The first bisection is illustrated in
Fig. 4. Two bases of the cone are considered at radii rmin and
rmax. The third base Bk(r) is considered in the middle of the
two bases, so that the samples are generated on it, and simu-
lations are carried out to distinguish whether the samples are
failure samples or not. Depending on whether at least one
failure sample is found or not, the base of either rmax or rmin

is replaced by that with the new radius (rmax + rmin)/2 at the
middle of the two bases. The following procedure will be
used to efficiently search the minimum norm point for each
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Fig. 4 Searching the minimum norm sample by bisection.

cluster.
1: rmax = r1

2: rmin = 0
3: repeat
4: r = (rmax + rmin)/2
5: S fail := a set of failure samples found in Bk(r)
6: if the number of S fail > 0 then
7: rmax := r
8: Fk := S fail

9: else
10: rmin := r
11: end if
12: until rmax − rmin < rth

13: g′k := the center of gravity of Fk

14: rISk := (rmax/|g′k|) · g′k
Here, the number of samples in line 5 is ns · (θk/π). Bisec-
tion is terminated when the difference between rmax and rmin

becomes smaller than a threshold rth (line 12). We calcu-
late the center of gravity on Bk(rmax) of the failure samples
found in Bk(rmax) and define it as rISk, which is the mean-
shift vector of cluster k (lines 13, 14).

3.4 Failure Probability Estimation by Importance Sam-
pling

Finally, we carry out IS using the Gaussian mixture distri-
bution q(x) defined by Eq. (11). The minimum norm sample
rISk associated with cluster k is used as the mean-shift vec-
tor for the k-th Gaussian distribution in Eq. (11). The mix-
ing coefficient mk of the Gaussian distribution for cluster k
is determined by the ratio of probabilities

mk =
p(rISk)∑Nc

k=1 p(rISk)
. (14)

Fig. 5 Schematic of a 6-transistor SRAM cell.

IS terminates when the figure of merit of convergence, ρ(Pi),
for the estimation becomes less than ρ0.

4. Numerical Experiments

In this section, we evaluate the accuracy and runtime of IS
using the proposed method.

The circuit used to estimate the failure probability is
a six-transistor SRAM cell shown in Fig. 5. The threshold
voltage (Vth), gate length (Lg), carrier mobility (μ), and gate
oxide thickness (Tox) of all the transistors are considered as
variables. The 65-nm predictive technology model (PTM)
[17] is used as a transistor model. The parameters of each
transistor are assumed to follow joint Gaussian distributions
whose means and standard deviations are summarized in Ta-
ble 1.

Pass or failure of an SRAM cell is determined using a
signal noise margin (SNM). A sample is considered to be a
failure sample when the SNM of the SRAM cell is 0 or less.
The failure probabilities of

• a 6-dimensional (6-D) problem that considers Vth vari-
ations of all transistors;
• a 12-dimensional (12-D) problem that considers Vth

and Lg variations of all transistors;
• an 18-dimensional (18-D) problem that considers Vth,

Lg, and μ variations of all transistors; and
• a 24-dimensional (24-D) problem that considers Vth,

Lg, μ, and Tox variations of all transistors

are estimated using the proposed technique and the conven-
tional MC method.

Estimations obtained with the proposed method, PIS,
should match with those obtained with the conventional MC
method, PMC, although PMC may include some error. The
termination criterion ρ0 is set to 0.1, for both the proposed IS
and the conventional MC method. This implies that the both
estimations have errors less than ±20%, with 95% confi-
dence. A comparison between the runtimes of the proposed
IS and the conventional MC method is made on the basis
of the number of circuit simulations required to achieve a
termination criterion, because the runtime is dominated by
a non-linear DC analysis [18] that is used to calculate the
SNM. In the case of the proposed method, IHS starts with an
initial radius of 3-sigma (r0 = 3) and the number of samples,
ns, for the 6-D, 12-D, 18-D, and 24-D problems are 5× 103,
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Table 1 Variability parameters of transistors.

Transistors Access Driver Load
mean SD mean mean SD

Threshold voltage (mV) - 18.0 - 22.0 - 30.0
Gate length (nm) 65. 1. 65. 1. 65. 1.
Mobility (mm2/Vs) 4.91 0.50 4.91 0.50 0.574 0.054
Gate oxide thickness (nm) 1.85 0.04 1.85 0.04 1.950 0.042
Gate width (nm) 110 - 120 - 80 -

Table 2 Comparison of estimated failure rate and the number of required samples between the con-
ventional MC method and the proposed IS. The proposed method shows the ranges for 20 runs with
different random seeds.

MC method Proposed method
PMC # of samples PIS # of samples (×103)

dim. (×103) Min Max Median IHS Bisection IS Total
6 - (1.8e+07) 4.3e-09 6.5e-09 5.6e-09 25.0 11.8–13.1 0.8–2.0 38.0–39.9

12 – (3.1e+05) 2.8e-07 3.9e-07 3.3e-07 50.0 29.0–33.2 0.6–2.9 80.1–84.2
18 1.2e-06 8.7e+04 7.9e-07 1.5e-06 1.2e-06 75.0 31.2–52.2 1.4–20.6 122.1–140.5
24 1.5e-06 6.6e+04 1.2e-06 1.7e-06 1.5e-06 120.0 75.1–114.2 1.3–56.7 197.9–251.8

1×104, 1.5×104, and 2×104, respectively. ns is determined
such that it is directly proportional to the number of dimen-
sions, M. Ideally, ns should be increased in proportion to
2M , but it is unfeasible when M becomes large. Hence ns is
determined empirically. In our experiments, failure region
becomes large as we enlarge the radius of the hypersphere,
and thus linear increase of ns would find failure regions suc-
cessfully. Determination of appropriate number of samples
for more general examples is one of our future work.

4.1 Accuracy Evaluation

Table 2 summarizes the results of the comparison of the
failure-rate estimations and the numbers of samples used for
the estimations between the conventional MC method and
the proposed IS. The proposed IS is repeated 20 times to
confirm the stability of the estimation. The maximum and
the minimum number of samples required in each run are
listed in this table. In low-failure probability problems, the
MC method requires a very long runtime. The numbers of
samples required for the 6-D and 12-D problems using the
conventional MC method are the estimates obtained using
Eq. (7); thus, they are listed in parenthesis. It takes 9 days
to obtain 3.1×108 samples, under the assumption that the
simulation takes 2.5 ms for each sample.

Considering the estimations obtained by the conven-
tional MC method as reference estimations, we find that the
estimation errors of the proposed method are within 20% for
more than 95% trials. For the 6-D and 12-D problems, the
respective averages obtained using the proposed method are
used as the accuracy references. We compared the proposed
method and the conventional MC method by their transistor
parameters in the failure regions for the 24-D problem. Only
a few failure samples could be obtained by the conventional
MC method, but obtained transistor parameters are nearly
identical in both methods.

The number of Gaussian distributions, Nc in Eq. (11),
is determined by the result of clustering. The number of

clusters should be closely related to the number of failure
regions. In most problems, two clusters were formed, which
we think is reasonable considering that the 6-transistor
SRAM cell is symmetric. Only in two trials in the 24-D
problem, three clusters were formed. More than one cluster
may be required to represent a failure region, particularly
when the problem dimension is high. This is the reason why
three clusters were formed only in the 24-D problems. Un-
like the case in which one or more failure regions are not
covered with any cluster, in the case in which a failure re-
gion is covered by two or more clusters, the estimation ac-
curacy is unaffected. As long as clusters are formed in all
the failure regions, samples will be generated in all failure
regions, later in the IS step.

On the other hand, if a small number of clusters is
found in the repetitive runs of the proposed method on the
same problem, it may indicate that a few failure regions are
missing, which will lead to underestimation of the failure
rate. For example, the estimation becomes approximately
half if one out of the two failure regions is not considered.
Therefore, to avoid this issue, it is essential to not set the
value of nf too small. Throughout the experiments, nf = 10
is used.

The furthest neighbor method [16] has been chosen as
the clustering algorithm in our implementation, because it
is more suitable than the nearest neighbor method that is
more widely used. The nearest neighbor method tends to
choose the newly constructed cluster as the candidate clus-
ter for merging [16], leading to the formation of large clus-
ters between the two failure regions. It would be necessary
to optimize the standard deviation of the alternative distri-
bution if we adopt the nearest neighbor method; otherwise,
IS would become inefficient.

4.2 Effect of Standard Deviations

The mean-shift method was used in the previous evalua-
tions. During the evaluations, standard deviations of the
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Fig. 6 Number of samples required in importance sampling as functions
of the standard deviations of Gaussian distributions in the alternative distri-
bution.

joint Gaussian distributions are set equal to the original stan-
dard deviations. In this subsection, the standard deviation is
also changed.

Figure 6 shows the number of samples required in IS
as functions of the standard deviation of the alternative dis-
tribution. The points shown in this figure indicate the av-
erages of the 20 trials. For all dimensions, the number of
samples becomes the smallest when the standard deviation
is around 1.0–1.2. In the 6-D problem, the number of sam-
ples is relatively insensitive to the standard deviation. With
an increase in the problem dimension, the range over which
a suitable standard deviation can be chosen becomes nar-
rower. Although the original standard deviation of 1.0 seems
appropriate for all dimensions between 6- and 24-D prob-
lems in this example, it may be problem- as well as cluster-
size-dependent. In future, we intend to automate the deter-
mination of the appropriate standard deviation for a high-
dimensional problem.

4.3 Effect of Problem Dimensions

According to Table 2, the proposed method reduces the re-
quired number of samples by 2–5 orders of magnitude as
compared with the conventional MC method. Because the
runtime is directly proportional to the number of samples,
the proposed method is significantly faster than the conven-
tional MC method. Further, the proposed method becomes
even faster when the failure probabilities become low.

Figure 7 shows the breakdown of the samples in each
step. The numbers shown in this figure denote the medi-
ans of the 20 trials. The required sample numbers increase
with an increase in the dimension of the problem. Given
the fact that the search space increases with the problem
dimension, it becomes increasingly difficult to determine
the failure samples. The number of samples should be in-
creased exponentially such as in the order of 2M to search
for the minimum norm samples with equal density; however,
it is not feasible to do so when M becomes large. Thus, in
this evaluation, we increased the number of samples linearly
with the problem dimension.

It should be noted that only a few samples are required
for IS as compared with those required for the preparation

Fig. 7 Breakdown of the number of samples.

steps to obtain the shift vectors. IS converges very quickly
as long as a suitable alternative distribution is determined.
This result validates the importance of the choice of shift
vectors. The proposed method found appropriate shift vec-
tors for each problem dimension.

The number of samples required by the proposed IS
increases with an increase in the problem dimension. The
speed-up ratio of the proposed method over the conventional
MC decreases accordingly. This result does not necessar-
ily indicate that IS is ineffective for high-dimensional prob-
lems; rather, the effectiveness of IS becomes less prominent
as compared with the conventional MC method as the failure
probability becomes high. In these experiments, the failure
probability increases with an increase in the number of vari-
ation sources. This is completely understandable because
variation sources are incrementally added with an increase
in the problem dimension. In this case, according to Eq. (7),
the number of samples required by the conventional MC
method decreases with an increase in the problem dimen-
sion, because the required sample is inversely proportional
to the failure probability. On the other hand, thorough search
for the minimum norm sample requires exponentially longer
time as the problem dimension increases. These results en-
abled the runtimes of the conventional MC and the proposed
method to be approximately equal. However, according to
Table 2, IS is still more than 10x more efficient than the con-
ventional MC method. The problems of even higher failure
probability than the ones listed in Table 2 can be and should
be analyzed with the conventional MC method. If the fail-
ure probability is maintained to be sufficiently low in high-
dimensional problems, such as those in the order of 10−9,
the proposed method is more efficient than the conventional
MC method.

The difficulty of analyzing high-dimensional problems
should be carefully studied to maximize efficiency. Ideally,
according to Eq. (8), weight w(x) should be constant for any
x. However, this constant weight can only be achieved when
ratio p(x)/q(x) is constant. For this ratio to be constant, it
is essential for the shape of the alternative distribution to be
in proportion to the failure distribution; however, it is diffi-
cult to meet this requirement with an increase in the problem
dimension. In order to confirm this, we calculated the stan-
dard deviation of ratio p(x f )/q(x f ) and normalized it by its
average. The results of this calculation are 2.7–3.2, 2.8–4.6,
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Table 3 Runtime comparison with other importance sampling litera-
tures.

# of samples
Estimation p Preprocess IS Total

Proposed 5.6e-9 37.5k 1150 38.6k
[19] 5.6e-9 75.3k 780 76.1k

Sequential-IS [11] 3.2e-9 0 11k.0 11.0k
Variance expansion [20] 5.7e-9 0 296k 296k
Norm minimization [9] 5.0e-9 10.0k 220k 230k

Gibbs sampling [12] 3.3e-9 21.8k 930 22.7k
Gaussian approximation 4.1e-9 4k - 4k

2.9–11.3, and 4.1–34.5 for 6-D, 12-D, 18-D, and 24-D prob-
lems, respectively. It is found that the variation in the ratio
increases with the problem dimension. Accordingly, an in-
crease in the calculation time with the problem dimension is
unavoidable. When the calculation time becomes too large,
it is preferred to reduce the problem dimension by eliminat-
ing low-sensitivity variables.

From Fig. 7, it is observed that the number of samples
required for the M-dimensional analysis is approximated as
(3.2 × 104) · 1.08M in this example. This implies that 90-
dimensional problems with a similar probability problem
can be estimated within a day.

4.4 Comparison with Other Work

The proposed method is compared with other techniques
that also use mean-shift IS. The failure probability of an
SRAM cell is estimated using the techniques described in
[9], [19], [20]. In this evaluation, the 6-D problem is con-
sidered. In Table 3, the estimation results and the required
number of samples are compared. The medians of 20 tri-
als are listed for the proposed method, [19] and [11]. For
the other techniques, the medians of 3 trials are listed. The
reason why we compare medians rather than means is that
means are easily influenced by outliers.

In Table 3, the column “preprocess” lists the number of
samples used for shift-vector determination process(es) be-
fore starting IS. Further, the column “IS” lists the required
number of samples in IS until the equal convergence cri-
terion is achieved. The four methods, i.e., the proposed
method, the method in [19], sequential-IS [11], the vari-
ance expansion method [20], the norm minimization method
[9], and Gibbs sampling method [12], estimated similar fail-
ure probabilities; however, the total number of samples for
these methods differed by an order of magnitude except for
the sequential-IS and Gibbs sampling methods. However,
in our experiment, these methods underestimated the failure
probability. Also as a comparison, we estimate a failure
probability assuming that SNM follows a Gaussian distribu-
tion. To determine the mean and variance of the Gaussian
distribution, 4000 random samples are used. Although the
median of the estimates looks relatively good, the estimates
vary widely from 2.3e-9 to 8.1e-9 in 20 trials. Furthermore,
we can not control this variation using ρ0 unlike IS.

A method in [19] is a previous version of the proposed
method. The differences between the proposed method and

the one in [19] are 1) [19] uses the region between con-
centric hyperspheres in IHS and 2) [19] uses decremental
sampling instead of the bisection method. The proposed
method showed an improvement in these two points, achiev-
ing about twice the efficiency as that of [19] in the step of
shift-vector determination.

Sequential-IS [11] conducts IS while determining fail-
ure distribution using particle filter. This method does not
require preprocess, and hence its calculation time is the
shortest among the six methods. However, the particle filter
misses to cover one of the existing failure regions. This is
why the particle filter estimates the failure probability about
half of those obtained by other methods because there are
two failure regions of equal size in this example.

The variance expansion method [20] uses alternative
distribution with three times larger standard deviation than
the original standard deviation. Further, this method does
not require to search the shift vector; however, the conver-
gence of IS is slower than that of the proposed method.

Norm minimization [9] searches the nearest failure
sample to the coordinate origin using uniform distribution.
The range of [−10σ, 10σ] is used for the range of 6-D joint
uniform distribution. For the sake of fair comparison, two
Gaussian distributions whose mean-shift vectors are the two
nearest failure samples to the coordinate origin are used for
IS.

Gibbs sampling method [12] firstly generates Gibbs
samples whose distribution is equal to p(x). And then, it
calculates mean and covariance of these samples to define a
multivariate normal distribution as an alternative probability
distribution function for IS. This method uses only one nor-
mal distribution, which caused the underestimation of the
failure probability, by the same reason as the case of the
particle filter.

5. Conclusion

This paper proposes a method termed hypersphere sam-
pling. The proposed method efficiently determines appro-
priate shift vectors that are critically important in mean-shift
importance sampling. With the proposed method, the yield
estimations of high-dimensional and low-failure probabil-
ity circuits are significantly accelerated. The results of the
experiment performed on an SRAM circuit verified the ef-
fectiveness of the proposed method, reducing the number
of required Monte Carlo simulation runs by 2–5 orders of
magnitude as compared to a conventional MC method.
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