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Ataxia-telangiectasia-like disorder (ATLD) is a rare autosomal

recessive disorder, and has symptoms similar to ataxia-telangi-

ectasia (AT). ATLD is caused by mutations in the MRE11 gene,

involved inDNAdouble-strandbreak repair (DSBR). In contrast

to AT, ATLD patients lack key clinical features, such as telangi-

ectasia or immunodeficiency, and are therefore difficult to be

diagnosed. We report a female ATLD patient presenting with

hypergonadotropic hypogonadism and hypersegmented neutro-

phils, previously undescribed features in this disorder, and

potential diagnostic clues to differentiate ATLD from other

conditions. The patient showed slowly progressive cerebellar

ataxia from 2 years of age, and MRI revealed atrophy of the

cerebellum, oculomotor apraxia, mild cognitive impairment,

writing dystonia, hypergonadotropic hypogonadism with pri-

mary amenorrhea, and hypersegmented neutrophils. Western

blot assay demonstrated total loss of MRE11 and reduction of

ATM-dependent phosphorylation; thus, we diagnosed ATLD.

Genetically, a novelmissensemutation (c.140C>T)was detected

in the MRE11 gene, but no other mutation was found in the

patient. Our presenting patient suggests that impaired DSBR

may be associated with hypergonadotropic hypogonadism and

neutrophil hypersegmentation. In conclusion, when assessing

patients with ataxia of unknown cause, ATLD should be consid-

ered, and the gonadal state and peripheral blood smear samples

evaluated. � 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Ataxia-telangiectasia-like disorder (ATLD) is a very rare disease

with autosomal recessive inheritance, first reported as amilder form

of ataxia-telangiectasia (AT) [Hernandez et al., 1993]. Advances in

genetics have revealed that ATLD is caused by mutations in the
2014 Wiley Periodicals, Inc.
MRE11 gene, which is involved in DNA double-strand break

repair (DSBR) together with ATM, the causative gene in AT

[Savitsky et al., 1995; Stewart et al., 1999]. Patients with ATLD

show progressive cerebellar ataxia, abnormal eye movement, and

increased cellular radiosensitivity, all of which are also observed

in AT. However, in contrast to AT, ATLD patients exhibit no

extraneurological features, such as telangiectasia, reduced immu-

noglobulin levels, or raised alpha fetoprotein. The lack of such key

clinical featuresmakes it difficult to distinguish this condition from

other cerebellar ataxias; hence correct diagnosis is delayed in the

majority of cases.

Here, we report an ATLD patient presenting with previously

undescribed features; hypergonadotropic hypogonadism and

hypersegmented neutrophils. Both of these symptoms have poten-

tial as diagnostic clues in differentiating ATLD from other cerebel-

lar ataxias of unknown causes.
1830



YOSHIDA ET AL. 1831
CLINICAL REPORT

The patient was born to non-consanguineous, healthy, Japanese

parents after an uneventful gestation and delivery, and had no

history of perinatal or postnatal infections. Her elder brother was

healthy and there was no family history of neurological disease or

malignancy.

The patient’s development was normal during infancy; she was

able to sit without support at age 8 months and walked alone at

14 months. Mild unstable gait was noticed at 2 years of age, but

cranial computed tomography demonstrated no apparent abnor-

mality. She was then diagnosed with ataxic cerebral palsy and

observed periodically. Thereafter, her ataxic symptoms progressed

slowly and cranial magnetic resonance imaging (MRI) at 9 years of

age revealed mild cerebellar atrophy. As progression of cerebellar

atrophy was noted on MRI at 12 years, she was referred to our

hospital for further investigation.

The patient weighed 31 kg (�2.5 standard deviation [SD]

scores), measured 150.4 cm (�1.2 SD) in height, and had a head

circumference of 53 cm (�1.0 SD) at the first visit to our hospital.

She had neither dysmorphic features nor skin lesions, including

telangiectasia. Neurological examination demonstrated cerebellar

ataxia: slurred speech, dysdiadokokinesis, and unsteady gait with a

tendency to fall. Finger-to-nose test revealed dysmetria and inten-

tion tremor on both sides. She also showed oculomotor apraxia.

Her IQ score was assessed with the Wechsler Intelligence Scale for

Children III: full scale, 60; verbal, 76; performance, 50. CranialMRI

revealed remarkable cerebellar atrophy (Fig. 1). Serum alpha

fetoprotein (AFP) and immunoglobulin (Ig) levels were within

the reference range: AFP, 2.0 ng/mL; Ig A, 181.5mg/dL; Ig G,

983.0mg/dL; and Ig M, 152.8mg/dL. Peripheral blood smears

showed neutrophils with hypersegmented and dysmorphic nuclei,

accounting for 1–3% of total white blood cells (Fig. 2). Her bone

marrow smear revealed hypocellular marrow without any signs of

malignancy (nucleated cell count, 11,500/ml;megakaryocytes, 3/ml;
M/E ratio, 2.5). Abnormal nuclear segmentation was only observed

in mature neutrophils. Fundoscopy, nerve conduction study, elec-

tromyography, and auditory brainstem response were all normal.
FIG. 1. Cranial MRI at age 15 years showing remarkable

cerebellar atrophy: (A) axial T1 weighted image; (B) sagittal T1

weighted image.
Endocrinologically, the patient had almost no secondary sexual

characteristics at 12 years of age. According to Tanner’s stages, her

breasts were stage 2 and her pubic hair stage 1. Laboratory tests

showed hypergonadotropic hypogonadism: follicle-stimulating

hormone, 114.9 IU/L (normal range for females at 11–14 years,

<0.1–12.0); luteinizing hormone, 36.4 IU/L (normal <0.1–13.4);

estradiol, 8.5 pg/ml (normal <20–87) [Soldin et al., 2005]. Her

ovaries were undetectable by abdominal MRI.

Subsequently, her ataxic symptoms progressed further and at

14 years of age she required a wheelchair. She also developed

difficulty in writing due to dystonic involuntary movements of

the right hand. She is presently 21-years-old and has been receiving

hormone replacement therapy for primary amenorrhea. There has

been no evidence of malignancies to date.
GENETIC ANALYSIS

Direct sequencing of all exons of theMRE11 gene revealed a novel

missensemutation (c.140C>T, p.Ala47Val) in exon 3 in the patient

and her father (Fig. 3A). No other mutations were found in either

the patient or her parents. However, sequencing analysis of mRNA

of MRE11 revealed a single peak for T, indicating that MRE11

mRNAwas expressedonly from themutant alleleT in thepatient, as

opposed to the double peaks for alleles C and T observed in the

father’s sample (Fig. 3B).Thismutationwasnot found in anypublic

variant database such as dbSNP (https://www.ncbi.nlm.nih.gov/

SNP/) and JSNP (http://snp.ims.u-tokyo.ac.jp/). We also per-

formed comparative genomic hybridization (CGH) to examine

small deletions or duplication. The CGHþ SNP 180K array (Agi-

lentTechnologies, SantaClara, CA)data indicated that therewasno

significant signal change detected within and proximal to the

MRE11 gene.
FIG. 2. Peripheral blood smears showing neutrophils with hyper-

segmented and dysmorphic nuclei.

https://www.ncbi.nlm.nih.gov/SNP/
https://www.ncbi.nlm.nih.gov/SNP/
http://snp.ims.u-tokyo.ac.jp/


FIG. 3. Genetic analysis of the patient and her parents. A: A novel missense mutation (c.140C>T) in exon 3 of the MRE11 gene was detected

in the patient and the father. B: The mRNA (cDNA) analysis showing the presence of only the mutated allele-T at c.140, reflecting the absence

of mRNA from the other allele in the patient, but the presence of both alleles in the father. C: Western blot assay of skin fibroblasts from the

patient and a healthy control donor with or without irradiation (5 Gy gamma ray) demonstrating complete absence of MRE11 protein in the

patient. There were reduced levels of NBS1 and RAD50. Phosphorylation of ATM (pATM), SMC1 (pSMC1), and p53 (p53-pS15) were remarkably

low in the patient, and did not increase sufficiently after irradiation. D: ATM phosphorylation pathway was rescued by introducing wild-type

MRE11 gene. In the SV40-transformed patient fibroblasts, MRE11 protein expression was remarkably reduced and the deficit of ATM

phosphorylation after irradiation was also prominent. The introduction of wild-type MRE11 gene restored the MRE11 protein levels and the

phosphorylation of both ATM (pATM) and SMC (pSMC), indicating that the other members of MRN complex functioned normally.
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Western Blot ASSAY

Skin fibroblasts were obtained from the patient and from a healthy

donor control. The cells were irradiated with 5 Gy of gamma rays,

and then whole cell extracts were analyzed by western blot assay to

determine MRE11, RAD50, and NBS1 levels. In addition, we

assayed for irradiation-stimulating phosphorylation of ATM

(pATM), SMC1 (pSMC1), and p53 at serine 15 (p53-pS15), all

of which are involved in the signaling pathway initiated by activa-

tionofATM,alsobywesternblotting. ExpressionofMRE11protein

was almost completely absent from fibroblasts derived from the

patient, both before and after irradiation (Fig. 3C). The patient

showed significantly reduced levels of NBS1 and RAD50 proteins,

which, together with MRE11, form the MRE11/RAD50/NBS1

(MRN) complex [Czornak et al., 2008]. Bands representing

pATM, pSMC1, and p53-pS15 were also markedly reduced in

the patient compared to the control. These results demonstrate

that absence of theMRE11 protein unstabilized theMRN complex,

leading to reduced activation of ATM and proteins downstream of

ATM, such as SMC1 and p53.
We also examined whether the restoration of ATM phosphory-

lation was rescued by introducing the wild-typeMRE11 gene into

the cells. In this experiment, we used SV40-transformedfibroblasts.

SV40 transformation increasesATMandMRNcomplex in cultured

fibroblasts; therefore, MRE11, which was not detected in the non-

transformed patient’s fibroblasts (Fig. 3C), was weakly detected by

western blotting assay. However, phosphorylation of ATM and

SMC after irradiation was markedly decreased, indicating that

MRE11 protein of the patient was non-functioning. Both ATM

and SMC phosphorylation was restored by introduction of wild-

type MRE11, indicating that other members of MRN complex

functioned normally (Fig. 3D).
DISCUSSION

Here, we report a female patient with the following clinical features:

progressive cerebellar ataxia, oculomotor apraxia, writing dystonia,

hypergonadotropic hypogonadism, andhypersegmentedneutrophils.

Genetic analysis identified amissensemutation, c.140C>T (p.

Ala47Val), in MRE11 both the patient and her father. The
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mutation of the 47th alanine residue is highly likely to be

pathogenic as it is located within the important nuclease domain

and is highly conserved fromplants to humans [Park et al., 2011].

We could not detect any other mutations as far as we investigat-

ed; however, the patient’s mRNA was expressed only from the

mutated T-allele and, in contrast, the father’s mRNA was

expressed from both of the mutated T-allele and the other

wild-type C-allele. As ATLD is an autosomal recessive disorder,

the most plausible explanation is that the patient is a compound

heterozygote for MRE11 comprising the paternally derived

mutated allele-T and an unidentified mutation on the other

normal-looking C-allele bearing chromosome that might be

derived from her mother. Such an unidentified alteration may

include a promoter regionmutation, an epigenetic alteration, or

an intronic mutation. This hidden mutated allele of the patient

would not expressmRNA, thus, mRNA is expressed as if it comes

only from the mutated T-allele. We analyzed MRE11 protein

levels and mRNA expression in the patient and her parents, but

the results were inconclusive. A similar result was described in a

previous report [Stewart et al., 1999]. We speculate mRNA

expression is likely increased through a feedback mechanism,

and the presence of one normal allele is sufficient to maintain

normal protein levels, as observed in the father’s sample. West-

ern blot assay revealed an almost complete absence of MRE11

and reduced expression of associated proteins in the patient,

even after irradiation. Furthermore, the deficit in ATM phos-

phorylation pathway was rescued by introducing wild-type

MRE11 gene into the patient’s fibroblasts, indicating that the

lack of MRE11 was pathogenic in this case. Based on these data,

we diagnosed ATLD, which is caused by MRE11 deficiency.

The association between cerebellar ataxia and hypogonadism

has been described as Gordon–Holmes cerebellar ataxia for more

than 100 years [Holmes, 1908]. The classification Gordon–Holms

type cerebellar ataxia is used to describe individuals presenting

with either hypogonadotropic or hypergonadotropic hypogonad-

ism; however, these two conditions are completely different [Amor

et al., 2001; Seminara et al., 2002]. Hypogonadotropic hypogo-

nadism is much more frequent and is secondary to reduced

pituitary production of gonadotropins. By contrast, hypergona-

dotropic hypogonadism means primary dysfunction of the ovary

or testis.

Due to the rarity of ATLD, the gonadal status of patients has not

been well described. In the case of AT, some female patients have

been reported to show primary ovarian failure [Zadik et al., 1978].

In addition, Atm-deficient mice, models of AT, demonstrate pri-

mary gonadal failure, including significantly atrophied gonads,

decreased levels of testosterone in males or decreased estradiol in

females, and elevated levels of follicle-stimulating hormone

[Rasheed et al., 2006]. These data suggest that the hypogonadism

observed in AT patients is essentially a result of primary gonadal

failure; although accompanying secondary gonadal failure due to

pituitary dysfunction canmask primary gonadal failure. According

to a study of Atm-deficient mice, Atm is necessary for appropriate

meiotic DNA recombination, and the authors speculate that Atm is

involved in the repair ofDNAbreaks duringmeiotic recombination

[Barlow et al., 1998]. As ATM and MRE11 proteins are known to

interact, and both play critical roles in the DSBR pathway, ATLD
patientsmay present with hypergonadotropic hypogonadism, sim-

ilar to AT patients.

Hypersegmented neutrophils are also known to occur in several

conditions that affect DNA replication, such as vitamin B12 defi-

ciency, folate deficiency, or other DNA damaging conditions.

Similarly, hypersegmentation of neutrophils in our patient could

be the result of impaired DSBR, though the underlying mechanism

remains to be established.

Unlike AT, extraneurological symptoms are not usually de-

scribed in patients diagnosed with ATLD, and this can lead to

delays in reaching a correct diagnosis. Uchisaka et al. [2009]

recently reported that two brothers with ATLD developed lung

adenocarcinoma during childhood, indicating the importance of

early diagnosis and careful observation formalignancies in patients

with ATLD, as well as those with AT.

In this study, we describe hypergonadotropic hypogonadism

and hypersegmented neutrophils, which are features previously

unreported in ATLD. It suggests that impaired DSBR may be

associated with hypergonadotropic hypogonadism and neutrophil

hypersegmentation. Our conclusion is that clinicians should con-

sider the possibility ofATLDandotherDNArepair disorders, when

assessing patients presenting with ataxia of unknown cause, and

evaluate the gonadal state and peripheral blood smear samples of

patients.
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