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Abstract

We define the notion of a trace kernel on a manifold M . Roughly
speaking, it is a sheaf on M×M for which the formalism of Hochschild
homology applies. We associate a microlocal Euler class to such a ker-
nel, a cohomology class with values in the relative dualizing complex
of the cotangent bundle T

∗
M over M and we prove that this class is

functorial with respect to the composition of kernels.
This generalizes, unifies and simplifies various results of (relative)

index theorems for constructible sheaves, D-modules and elliptic pairs.
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1 Introduction

Our constructions mainly concern real manifolds, but in order to introduce
the subject we first consider a complex manifold (X,OX). Denote by ωhol

X the
dualizing complex in the category of OX-modules, that is, ωhol

X = ΩX [dX ],
where dX is the complex dimension of X and ΩX is the sheaf of holomorphic
forms of degree dX . Denote by O∆X

and ωhol
∆X

the direct images of OX and
ωhol
X respectively by the diagonal embedding δ : X →֒ X×X. It is well-known

(see in particular [Ca05, CaW07]) that the Hochschild homology of OX may
be defined by using the isomorphism

δ∗HH (OX) ≃ RHom
OX×X

(
O∆X

, ωhol
∆X

)
.(1.1)

Moreover, if F is a coherent OX-module and DOF := RHom
OX

(F , ωhol
X )

denotes its dual, there are natural morphisms

O∆X
−→ F ⊠DOF −→ ωhol

∆X
(1.2)

whose composition defines the Hochschild class of F :

hhO(F ) ∈ H0
Supp(F )(X;HH (OX)).

These constructions have been extended when replacing OX with a so-called
DQ-algebroid stack AX in [KS12] (DQ stands for “deformation-quantization”).
One of the main results of loc. cit. is that Hochschild classes are functorial
with respect to the composition of kernels, a kind of (relative) index theorem
for coherent DQ-modules.

On the other hand, the notion of Lagrangian cycles of constructible
sheaves on real analytic manifolds has been introduced by the first named
author (see [Ka85]) in order to prove an index theorem for such sheaves,
after they first appeared in the complex case (see [Ka73] and [McP74]). We
refer to [KS90, Chap. 9] for a systematic study of Lagrangian cycles and for
historical comments. Let us briefly recall the construction.
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Consider a real analytic manifold M and let k be a unital commutative
ring with finite global dimension. Denote by ωM the (topological) dualizing
complex of M , that is, ωM = orM [dimM ] where orM is the orientation
sheaf of M and dimM is the dimension. Finally, denote by πM : T ∗M −→
M the cotangent bundle to M . Let Λ be a conic subanalytic Lagrangian
subset of T ∗M . The group of Lagrangian cycles supported by Λ is given by
H0

Λ(T
∗M ; π−1

M ωM). Denote by D
b
R-c(kM) the bounded derived category of R-

constructible sheaves on M . To an object F of this category, one associates
a Lagrangian cycle supported by SS(F ), the microsupport of F . This cycle is
called the characteristic cycle, or the Lagrangian cycle or else the microlocal

Euler class of F and is denoted here by µeuM(F ).
In fact, it is possible to treat the microlocal Euler classes of R-constructi-

ble sheaves on real manifolds similarly as the Hochschild class of coherent
sheaves on complex manifolds. Denote as above by k∆M

and ω∆M
the direct

image of kM and ωM by the diagonal embedding δM : M →֒ M ×M . Then
we have an isomorphism

H0
Λ(T

∗M ; π−1
M ωM) ≃ H0

Λ

(
T ∗M ;µhom(k∆M

, ω∆M
)
)
,(1.3)

where µhom is the microlocalization of the functor RHom . Then µeuM(F )
is obtained as follows. Denote by DMF := RHom (F, ωM) the dual of F .
There are natural morphisms

k∆M
−→ F ⊠DMF −→ ω∆M

,(1.4)

whose composition gives the microlocal Euler class of F .
In this paper, we construct the microlocal Euler class for a wide class of

sheaves, including of course the constructible sheaves but also the sheaves of
holomorphic solutions of coherent D-modules and, more generally, of ellip-
tic pairs in the sense of [ScSn94]. To treat such situations, we are led to
introduce the notion of a trace kernel.

On a real manifold M (say of class C∞), a trace kernel is the data of
a triplet (K, u, v) where K is an object of the derived category of sheaves
D

b(kM×M) and u, v are morphisms

u : k∆M
−→ K, v : K −→ ω∆M

.(1.5)

One then naturally defines the microlocal Euler class µeuM(K, u, v) of such
a kernel, an element of H0

Λ(T
∗M ;µhom(k∆M

, ω∆M
)) where Λ = SS(K) ∩

T ∗

∆M
(M ×M). By (1.4), a constructible sheaf gives rise to a trace kernel.
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If X is a complex manifold and M is a coherent DX-module, we construct
natural morphisms (over the base ring k = C)

C∆X
−→ ΩX×X

L
⊗

DX×X
(M⊠DDM ) −→ ω∆X

,(1.6)

where DDM denotes the dual of M as a D-module. In other words, one
naturally associates a trace kernel on X to a coherent DX-module. Moreover,
we prove that under suitable microlocal conditions, the tensor product of two
trace kernels is again a trace kernel, and it follows that one can associate a
trace kernel to an elliptic pair.

We study trace kernels and their microlocal Euler classes, showing that
some proofs of [KS12] can be easily adapted to this situation. One of our
main results is the functoriality of the microlocal Euler classes: the microlocal
Euler class of the composition K1◦K2 of two trace kernels is the composition
of the microlocal Euler classes of K1 and K2 (see Theorem 6.3 for a precise
statement). Another essential result (which is far from obvious) is that the
composition of classes coincides with the composition for π−1

M ωM constructed
in [KS90] via the isomorphism between µhom(k∆M

, ω∆M
) and π−1

M ωM .
As an application, we recover in a single proof the classical results on

the index theorem for constructible sheaves (see [KS90, § 9.5]) as well as the
index theorem for elliptic pairs of [ScSn94], that is, sheaves of generalized
holomorphic solutions of coherent D-modules. We also briefly explain how
to adapt trace kernels to the formalism of the Lefschetz trace formula.

We call here µhom(k∆M
, ω∆M

) the microlocal homology of M , and this
paper shows that, in some sense, the microlocal homology of real manifolds
plays the same role as the Hochschild homology of complex manifolds.

To conclude this introduction, let us make a general remark. The cate-
gory D

b
R-c(kM) of constructible sheaves on a compact real analytic manifold

M is “proper” in the sense of Kontsevich (that is, Ext finite) but it does
not admit a Serre functor (in the sense of Bondal-Kapranov) and it is not
clear whether it is smooth (again in the sense of Kontsevich). However this
category naturally appears in Mirror Symmetry (see [FLTZ10]) and it would
be a natural question to try to understand its Hochschild homology in the
sense of [McC94, Ke99]. We don’t know how to compute it, but the above
construction, with the use of µhom(k∆M

, ω∆M
), provides an alternative ap-

proach of the Hochschild homology of this category. This result is not totally
surprising if one remembers the formula (see [KS90, Prop. 8.4.14]):

DT ∗M(µhom(F,G)) ≃ µhom(G,F )⊗ π−1
M ωM .
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Hence, in some sense, π−1
M ωM plays the role of a microlocal Serre functor.

Note that thanks to Nadler and Zaslow [NZ09], the category D
b
R-c(kM) is

equivalent to the Fukaya category of the symplectic manifold T ∗M , and this
is another argument to treat sheaves from a microlocal point of view.

Acknowledgments

The second named author warmly thanks Stéphane Guillermou for extremely
helpful discussions.

2 A short review on sheaves

Throughout this paper, a manifold means a real manifold of class C∞. We
shall mainly follow the notations of [KS90] and use some of the main notions
introduced there, in particular that of microsupport and the functor µhom.

LetM be a manifold. We denote by πM : T ∗M −→ M its cotangent bundle.
For a submanifold N of M , we denote by T ∗

NM the conormal bundle to N .
In particular, T ∗

MM denotes the zero-section. We set Ṫ ∗M := T ∗M \ T ∗

MM

and we denote by π̇M the restriction of πM to Ṫ ∗M . If there is no risk of
confusion, we write simply π and π̇ instead of πM and π̇M . One denotes by
a : T ∗M −→ T ∗M the antipodal map, (x; ξ) 7→ (x;−ξ) and for a subset S of
T ∗M , one denotes by Sa its image by this map. A set A ⊂ T ∗M is conic if
it is invariant by the action of R+ on T ∗M .

Let f : M −→ N be a morphism of manifolds. To f one associates as usual
the maps

T ∗M

πM

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙ M ×N T ∗N

π
��

fdoo fπ // T ∗N

πN

��
M

f // N.

(2.1)

(Note that in loc. cit. the map fd is denoted by tf ′−1.)
Let Λ be a closed conic subset of T ∗N . One says that f is non-characteris-

tic for Λ if the map fd is proper on f−1
π Λ or, equivalently, f−1

π Λ∩f−1
d (T ∗

MM) ⊂
M ×N T ∗

NN .
Let k be a commutative unital ring with finite global homological di-

mension. One denotes by kM the constant sheaf on M with stalk k and by
D

b(kM) the bounded derived category of sheaves of k-modules on M . When
M is a real analytic manifold, one denotes by D

b
R-c(kM) the full triangulated

subcategory of Db(kM) consisting of R-constructible objects.
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One denotes by ωM the dualizing complex onM and by ω⊗−1
M its dual, that

is, ω⊗−1
M = RHom (ωM ,kM). More generally, for a morphism f : M −→ N ,

one denotes by ωM/N := f ! kN ≃ ωM ⊗ f−1(ω⊗−1
N ) the relative dualizing

complex. Recall that ωM ≃ orM [dimM ] where orM is the orientation sheaf
and dimM is the dimension of M . Also recall the natural morphism of
functors

ωM/N ⊗ f−1 −→ f ! .(2.2)

We have the duality functors

D′

MF = RHom (F,kM), DMF = RHom (F, ωM).

For F ∈ D
b(kM), one denotes by Supp(F ) the support of F and by

SS(F ) its microsupport, a closed R
+-conic co-isotropic subset of T ∗M . For a

morphism f : M −→ N and G ∈ D
b(kN), one says that f is non-characteristic

for G if f is non-characteristic for SS(G).
We shall use systematically the functor µhom, a variant of Sato’s microlo-

calization functor. Recall that for a closed submanifold N of M , there is a
functor µN : Db(kM) −→ D

b(kT ∗

N
M) constructed by Sato (see [SKK73]) and

for F1, F2 ∈ D
b(kM), one defines in [KS90] the functor

µhom : Db(kM)op × D
b(kM) −→ D

b(kT ∗M),

µhom(F1, F2) := µ∆RHom (q−1
2 F1, q

!
1 F2)

where q1 and q2 are the first and second projection defined on M ×M and
∆ is the diagonal. This sheaf is supported by T ∗

∆(M ×M) that we identify
with T ∗M by the first projection T ∗(M ×M) ≃ T ∗M ×T ∗M −→ T ∗M . Note
that

Supp(µhom(F1, F2)) ⊂ SS(F1) ∩ SS(F2)(2.3)

and we have Sato’s distinguished triangle, functorial in F1 and F2:

Rπ!µhom(F1, F2) −→ Rπ∗µhom(F1, F2) −→ Rπ̇∗

(
µhom(F1, F2)|Ṫ ∗M

) +1
−→ .(2.4)

Moreover, we have the isomorphism

Rπ∗µhom(F1, F2) ≃ RHom (F1, F2),(2.5)
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and, assuming that M is real analytic and F1 is R-constructible, the isomor-
phism

Rπ!µhom(F1, F2) ≃ D′

MF1

L
⊗ F2.(2.6)

In particular, assuming that F1 is R-constructible and SS(F1) ∩ SS(F2) ⊂
T ∗

MM , we have the natural isomorphism (see [KS90, Cor 6.4.3])

D′

MF1

L
⊗ F2

∼−→ RHom (F1, F2).(2.7)

As recalled in the Introduction, assuming that M is real analytic, we have
the formula (see [KS90, Prop. 8.4.14]):

DT ∗M(µhom(F1, F2)) ≃ µhom(F2, F1)⊗ π−1
M ωM for F1, F2 ∈ D

b
R-c(kM).(2.8)

3 Compositions of kernels

Notation 3.1. (i) For a manifold M , let δM : M −→ M × M denote the
diagonal embedding, and ∆M the diagonal set of M ×M .

(ii) Let Mi (i = 1, 2, 3) be manifolds. For short, we write Mij :=Mi ×Mj

(1 ≤ i, j ≤ 3), M123 = M1 ×M2 ×M3, M1223 = M1 ×M2 ×M2 ×M3,
etc.

(iii) We will often write for short ki instead of kMi
and k∆i

instead of k∆Mi

and similarly with ωMi
, etc., and with the index i replaced with several

indices ij, etc.

(iv) We denote by πi, πij, etc. the projection T ∗Mi −→ Mi, T
∗Mij −→ Mij,

etc.

(v) We denote by qi the projection Mij −→ Mi or the projection M123 −→ Mi

and by qij the projection M123 −→ Mij . Similarly, we denote by pi the
projection T ∗Mij −→ T ∗Mi or the projection T ∗M123 −→ T ∗Mi and by
pij the projection T ∗M123 −→ T ∗Mij.

(vi) We also need to introduce the maps pja or pija , the composition of pj
or pij and the antipodal map on T ∗Mj. For example,

p12a((x1, x2, x3; ξ1, ξ2, ξ3)) = (x1, x2; ξ1,−ξ2).
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(vii) We let δ2 : M123 −→ M1223 be the natural diagonal embedding.

We consider the operation of composition of kernels:

◦
2
: D

b(kM12
)× D

b(kM23
) −→ D

b(kM13
)

(K1, K2) 7→ K1 ◦
2
K2 := Rq13! (q

−1
12 K1

L
⊗ q−1

23 K2)

≃ Rq13! δ
−1
2 (K1

L

⊠K2).

(3.1)

We will use a variant of ◦:

∗
2
: D

b(kM12
)× D

b(kM23
) −→ D

b(kM13
)

(K1, K2) 7→ K1 ∗
2
K2 := Rq13∗

(
q−1
2 ω2 ⊗ δ !

2 (K1

L

⊠K2)
)
.

(3.2)

We also have ωM123/M1223
≃ q−1

2 ω⊗−1
M2

and we deduce from (2.2) a morphism
δ−1
2 −→ q−1

2 ωM2
⊗δ !

2 . Using the morphism R p13! −→ R p13∗ we obtain a natural
morphism for K1 ∈ D

b(kM12
) and K2 ∈ D

b(kM23
):

K1 ◦K2 −→ K1 ∗K2.(3.3)

It is an isomorphism if p−1
12aSS(K1) ∩ p−1

23aSS(K2) −→ T ∗M13 is proper.
We define the composition of kernels on cotangent bundles (see [KS90,

Prop. 4.4.11])

a
◦
2
: D

b(kT ∗M12
)× D

b(kT ∗M23
) −→ D

b(kT ∗M13
)

(K1, K2) 7→ K1
a
◦
2
K2 := Rp13! (p

−1
12aK1

L
⊗ p−1

23 K2)

≃ Rp13a ! (p
−1
12aK1

L
⊗ p−1

23aK2).

(3.4)

We also define the corresponding operations for subsets of cotangent bundles.
Let A ⊂ T ∗M12 and B ⊂ T ∗M23. We set

A
a
×
2
B = p−1

12a(A) ∩ p−1
23 (B),

A
a
◦
2
B = p13(A

a
×
2
B)

=

{
(x1, x3; ξ1, ξ3) ∈ T ∗M13 ; there exists (x2; ξ2) ∈ T ∗M2

such that (x1, x2; ξ1,−ξ2) ∈ A, (x2, x3; ξ2, ξ3) ∈ B

}
.

(3.5)

We have the following result which slightly strengthens Proposition 4.4.11
of [KS90] in which the composition ∗ is not used.
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Proposition 3.2. For G1, F1 ∈ D
b(kM12

) and G2, F2 ∈ D
b(kM23

) there ex-

ists a canonical morphism (whose construction is similar to that of [KS90,
Prop. 4.4.11] ):

µhom(G1, F1)
a
◦
2
µhom(G2, F2) −→ µhom(G1 ∗

2
G2, F1 ◦

2
F2).

Proof. In Proposition 4.4.8 (i) of loc. cit., one may replace F2

L

⊠S G2 with

j ! (F2

L

⊠G2)⊗ω⊗−1
X×SY /X×Y . Then the proof goes exactly as that of Proposi-

tion 4.4.11 in loc. cit. Q.E.D.

Let Λij ⊂ T ∗Mij (i = 1, 2, j = i+1) be closed conic subsets and consider
the condition:

the projection p13 : Λ12

a
×
2
Λ23 −−→T ∗M13 is proper.(3.6)

We set

Λ13 = Λ12
a
◦
2
Λ23.(3.7)

Corollary 3.3. Assume that Λij (i = 1, 2, j = i+ 1) satisfy (3.6). We have

a composition morphism

RΓΛ12
µhom(G1, F1)

a
◦
2
RΓΛ23

µhom(G2, F2) −→ RΓΛ13
µhom(G1 ∗

2
G2, F1 ◦

2
F2).

Convention 3.4. In (3.1), we have introduced the composition ◦
2
of kernels

K1 ∈ D
b(kM12

) and K2 ∈ D
b(kM23

). However we shall also use the nota-

tion M22 = M2 ×M2 and consider for example kernels L1 ∈ D
b(kM122

) and

L2 ∈ D
b(kM223

). Then when writing L1 ◦
2
L2 we mean that the composition

is taken with respect to the last variable of M22 for L1 and the first variable

for L2. In other words, set M4 = M2 and consider L1 and L2 as objects of

D
b(kM142

) and D
b(kM243

) respectively, in which case the composition L1 ◦
2
L2

is unambiguously defined.

4 Microlocal homology

LetM be a real manifold. Recall that δM : M →֒ M×M denotes the diagonal
embedding. We shall identify M with the diagonal ∆M of M × M and we
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sometimes write ∆ instead of ∆M if there is no risk of confusion. We shall
identify T ∗M with T ∗

∆(M ×M) by the map

δaT ∗M : T ∗M � � // T ∗(M ×M) , (x; ξ) 7→ (x, x; ξ,−ξ).

We denote by k∆M
, ω∆M

and ω⊗−1
∆M

the direct image by δM of kM , ωM and

ω⊗−1
M := RHom (ωM ,kM), respectively.
The next definition is inspired by that of Hochschild homology on complex

manifolds (see Introduction).

Definition 4.1. Let Λ be a closed conic subset of T ∗M . We set

MHΛ(kM) := RΓΛ(δ
a
T ∗M)−1

µhom(k∆M
, ω∆M

),

MHΛ(kM) := RΓ(T ∗M ;MHΛ(kM)),

MH
k
Λ(kM) := Hk(MHΛ(kM)) = Hk(T ∗M ;MHΛ(kM)).

(4.1)

We call MHΛ(kM) the microlocal homology of M with support in Λ.

We also write MH(kM) instead of MHT ∗M(kM).

Remark 4.2. (i) We have µhom(k∆M
, ω∆M

) ≃ (δaT ∗M)∗π
−1
M ωM . In par-

ticular, we have MHΛ(kM) ≃ RΓΛ(T
∗M ; π−1

M ωM) and MH(kM) ≃
RΓ(M ;ωM). Assuming that M is real analytic and Λ is a closed conic
subanalytic Lagrangian subset of T ∗M , we recover the space of La-
grangian cycles with support in Λ as defined in [KS90, §9.3].

(ii) The support of µhom(k∆M
, ω∆M

) is T ∗

∆M
(M × M). Hence, we have

RΓδa
T∗M

Λ µhom(k∆M
, ω∆M

) ≃ (δaT ∗M)∗MHΛ(kM).

(iii) IfM is real analytic and Λ is a Lagrangian subanalytic closed conic sub-
set, then we haveHk(MHΛ(kM)) = 0 for k < 0 (see [KS90, Prop. 9.2.2]).

In the sequel, we denote by ∆i (resp. ∆ij) the diagonal subset ∆Mi
⊂ Mii

(resp. ∆Mij
⊂ Miijj).

Lemma 4.3. We have natural morphisms:

(i) ω∆12
◦
22
(k∆2

L

⊠ ω∆3
) −→ ω∆13

,

(ii) k∆13
−→ k∆12

∗
22
(ω⊗−1

∆2

L

⊠ k∆3
).
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Proof. Denote by δ22 the diagonal embedding M112233 →֒ M11222233.
(i) We have the morphisms

ω∆12
◦
22
(k∆2

L

⊠ ω∆3
) = Rq1133! δ

−1
22 (ω∆12

L

⊠ k∆2

L

⊠ ω∆3
)

≃ Rq1133!ω∆123

−→ ω∆13
.

(ii) The isomorphism

δ !
22 (k∆2

⊠ ω∆2
) ≃ k∆2

gives rise to the isomorphisms

k∆12
∗
22
(ω⊗−1

∆2

L

⊠ k∆3
) = Rq1133∗

(
q−1
1133ω22 ⊗ δ !

22 (k∆12

L

⊠ ω⊗−1
∆2

L

⊠ k∆3
)
)

≃ Rq1133∗δ
!
22 (k∆1

L

⊠ ω∆2

L

⊠ k∆23
)

≃ Rq1133∗k∆123

and the result follows by adjunction from the morphism

q−1
1133k∆13

≃ k∆1

L

⊠ k22

L

⊠ k∆3
−→ k∆1

L

⊠ k∆2

L

⊠ k∆3
= k∆123

.

Q.E.D.

Proposition 4.4. Let Mi (i = 1, 2, 3) be manifolds. We have a natural

composition morphism (whose constructions will be given in the course of the

proof ):

µhom(k∆12
, ω∆12

)
a
◦
22
µhom(k∆23

, ω∆23
) −→ µhom(k∆13

, ω∆13
).(4.2)

In particular, let Λij be a closed conic subset of T ∗Mij (ij = 12, 13, 23). If

Λ12
a
◦
2
Λ23 ⊂ Λ13, then we have a morphism

MHΛ12
(k12)

a
◦
2

MHΛ23
(k23) −→ MHΛ13

(k13).(4.3)

Proof. Consider the morphism (see Proposition 3.2 and Convention 3.4)

µhom(ω⊗−1
∆2

, ω⊗−1
∆2

)
a
◦
2
µhom(k∆23

, ω∆23
) −→ µhom(ω⊗−1

∆2
∗
2
k∆23

, ω⊗−1
∆2

◦
2
ω∆23

)

≃ µhom(ω⊗−1
∆2

L

⊠ k∆3
,k∆2

L

⊠ ω∆3
).
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It induces an isomorphism

µhom(k∆23
, ω∆23

) ≃ µhom(ω⊗−1
∆2

L

⊠ k∆3
,k∆2

L

⊠ ω∆3
).(4.4)

Note that this isomorphism is also obtained by

µhom(k∆23
, ω∆23

) ≃ µhom
(
(ω⊗−1

2

L

⊠ k233)
L
⊗ k∆23

, (ω⊗−1
2

L

⊠ k233)
L
⊗ ω∆23

)

≃ µhom(ω⊗−1
∆2

L

⊠ k∆3
,k∆2

L

⊠ ω∆3
).

Applying Proposition 3.2, we get a morphism:

µhom(k∆12
, ω∆12

)
a
◦
22
µhom(k∆23

, ω∆23
)

−→ µhom(k∆12
∗
22
(ω⊗−1

∆2

L

⊠ k∆3
), ω∆12

◦
22
(k∆2

L

⊠ ω∆3
)).(4.5)

It remains to apply Lemma 4.3. Q.E.D.

Corollary 4.5. Let Λij (i = 1, 2, j = i + 1) satisfying (3.6) and let Λ13 =

Λ12
a
◦
2
Λ23. The composition of kernels in (4.3) induces a morphism

a
◦
2

: MHΛ12
(k12)

L
⊗ MHΛ23

(k23) −→ MHΛ13
(k13).(4.6)

In particular, each λ ∈ MH
0
Λ12

(k12) defines a morphism

λ
a
◦
2
: MHΛ23

(k23) −→ MHΛ13
(k13).(4.7)

Proof. These morphisms follow from (4.3).The second assertion follows from
the isomorphism H0(X) ≃ Hom

Db(k)(k, X) in the category D
b(k). Q.E.D.

Theorem 4.6. (i) We have the isomorphisms

µhom(k∆M
, ω∆M

) ≃ (δaT ∗M)∗π
−1
M RHom (kM , ωM)

≃ (δaT ∗M)∗π
−1
M ωM .

(ii) We have a commutative diagram

µhom(k∆12
, ω∆12

)
a
◦
22
µhom(k∆23

, ω∆23
) //

≀
��

µhom(k∆13
, ω∆13

)

≀
��

(δaT ∗M13
)∗
(
π−1
M12

ωM12

a
◦
2
π−1
M23

ωM23

)
// (δaT ∗M13

)∗π
−1
M13

ωM13
.

(4.8)

12



Here the top horizontal arrow of (4.8) is given in Proposition 4.4, and
the bottom horizontal arrow is induced by

p−1
12aπ

−1
M12

ωM12

L
⊗ p−1

23 π
−1
M23a

ωM23
≃ π−1

M1
ωM1

L

⊠ π−1
M2

(ωM2

L
⊗ ωM2

)
L

⊠ π−1
M3

ωM3
,

π−1
M2

(ωM2

L
⊗ ωM2

) ≃ ωT ∗M2
,

Rp13!
(
π−1
M1

ωM1

L

⊠ ωT ∗M2

L

⊠ π−1
M3

ωM3

)
−−→ π−1

M1
ωM1

L

⊠ π−1
M3

ωM3
.

Proof. (i) is obvious.

(ii)–(a) By [KS90, Prop. 4.4.8], we have natural morphisms for (i, j) = (1, 2)
or (i, j) = (2, 3):

µhom(k∆i
, ω∆i

)
L

⊠ µhom(k∆j
, ω∆j

) −→ µhom(k∆ij
, ω∆ij

)

and it follows from (i) that these morphisms are isomorphisms. These iso-
morphisms give rise to the isomorphism

µhom(k∆12
, ω∆12

)
a
◦
22
µhom(k∆23

, ω∆23
) ≃

µhom(k∆1
, ω∆1

)
L

⊠
(
µhom(k∆2

, ω∆2
)

a
◦
22
µhom(k∆2

, ω∆2
)
) L

⊠ µhom(k∆3
, ω∆3

)

Similarly, we have an isomorphism

π−1
M12

ωM12

a
◦
2
π−1
M23

ωM23
≃ π−1

M1
ωM1

⊠
(
π−1
M2

ωM2

a
◦
2
π−1
M2

ωM2

)
⊠ π−1

M1
ωM1

.

Hence, we are reduced to the case where M1 = M3 = pt, which we shall
assume now.

(ii)–(b) We change our notations and we set:

M :=M2, Y :=M ×M,

δM : M →֒ Y the diagonal embedding, ∆M = δM(M),

j : Y →֒ Y × Y the diagonal embedding, ∆Y = δY (Y ),

δaT ∗M : T ∗M →֒ T ∗Y, (x; ξ) 7→ (x, x; ξ,−ξ),

δaT ∗Y : T ∗Y →֒ T ∗Y × T ∗Y,

p : T ∗Y −→ pt the projection,

aY : Y −→ pt the projection.
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With these new notations, the composition
a
◦
22

will be denoted by
a
◦

T ∗Y
.

Consider the diagram 4.9 similar to Diagram (4.4.15) of [KS90]

T ∗M × T ∗M � � i // T ∗Y × T ∗Y T ∗Y? _
δa
T∗Yo

p

""❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉

T ∗Y ×Y T ∗Y

jπ

OO

jd
��

T ∗

∆Y
(Y × Y )? _

s̃o

πY

��

p1∼

OO

T ∗Y

�

Y
soo

aY
// pt.

(4.9)

Here, i is the canonical embedding induced by δaT ∗M , p1 is induced by the first
projection T ∗Y × T ∗Y −→ T ∗Y , s : Y →֒ T ∗Y is the zero-section embedding
and s̃ is the natural embedding. Note that the square labelled by � is
Cartesian. We have

Rp! ◦ (δ
a
T ∗Y )

−1 ≃ RaY ! ◦ RπY ! ◦ p
−1
1 ◦ (δaT ∗Y )

−1

≃ RaY ! ◦ RπY ! ◦ s̃
−1 ◦ j−1

π

≃ RaY ! ◦ s
−1 ◦ Rjd! ◦ j

−1
π .

Therefore,

µhom(k∆M
, ω∆M

)
a
◦

T ∗Y
µhom(k∆M

, ω∆M
)

≃ Rp! (δ
a
T ∗Y )

−1(
µhom(k∆M

, ω∆M
)

L

⊠ µhom(k∆M
, ω∆M

)
)

≃ RaY ! s
−1Rjd! j

−1
π µhom(k∆M

L

⊠ k∆M
, ω∆M

L

⊠ ω∆M
).

Hence, by adjunction, to give a morphism

µhom(k∆M
, ω∆M

)
a
◦

T ∗Y
µhom(k∆M

, ω∆M
) −→ k

is equivalent to giving a morphism in D
b(kY )

s−1Rjd! j
−1
π µhom(k∆M

L

⊠ k∆M
, ω∆M

L

⊠ ω∆M
) −→ a !

Y kpt.(4.10)

Note that the left hand side of (4.10) is supported on ∆M . Hence in order
to give a morphism (4.10), it is necessary and sufficient to give a morphism
in D

b(kM)

δM
−1s−1Rjd! j

−1
π µhom(k∆M

L

⊠ k∆M
, ω∆M

L

⊠ ω∆M
) −→ δM

! a !
Y kpt.(4.11)
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Hence, it is enough to check the commutativity of the upper square in the
following diagram in D

b(kM)

δM
−1s−1Rjd! j

−1
π µhom(k∆M

L

⊠ k∆M
, ω∆M

L

⊠ ω∆M
) //

∼

��

δ !
M a !

Y kpt

id

��
δM

−1s−1Rjd! j
−1
π i∗

(
π−1
M ωM

L

⊠ π−1
M ωM

)
//

∼

��

δ !
M a !

Y kpt

∼

��
ωM

id // ωM .

(4.12)

The top horizontal arrow is constructed by the chain of morphisms (see [KS90,
§ 4.4]):

Rjd! j
−1
π µhom(k∆M

L

⊠ k∆M
, ω∆M

L

⊠ ω∆M
)

−→ µhom(j ! (k∆M

L

⊠ k∆M
)

L
⊗ ωY , j

−1(ω∆M

L

⊠ ω∆M
))

≃ µhom(ω∆M
, ω∆M

⊗ω∆M
) ≃ (δaT ∗M)

∗
π−1
M ωM

and

δM
−1s−1Rjd! j

−1
π µhom(k∆M

L

⊠ k∆M
, ω∆M

L

⊠ ω∆M
)

−→ δM
−1s−1(δaT ∗M)

∗
π−1
M ωM ≃ ωM .

(4.13)

Hence, the commutativity of the diagram (4.12) is reduced to the commuta-
tivity of the diagram below:

δ−1
M s−1Rjd! j

−1
π µhom(k∆M

L

⊠ k∆M
, ω∆M

L

⊠ ω∆M
)

��
λ

++❱❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱

δM
−1s−1Rjd! j

−1
π i∗

(
π−1
M ωM

L

⊠ π−1
M ωM

)
∼ // ωM .

(4.14)

where the morphism λ is given by the morphisms in (4.13). All terms of
(4.14) are concentrated at the degree − dimM . Hence the commutativity of
(4.14) is a local problem in M and we can assume that M is a Euclidean
space. We can checked directly in this case. Q.E.D.
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Remark 4.7. Theorem 4.6 may be applied as follows. Let Λij be a closed
conic subset of T ∗Mij (i = 1.2, j = i + 1). Assume (3.6), that is, the

projection p13 : Λ12

a
×
2
Λ23 −−→T ∗M13 is proper and set Λ13 = Λ12

a
◦
2
Λ23. Let

λij ∈ MH
0
Λij

(kMij
) ≃ H0

Λij
(T ∗Mij; π

−1ωij). Then

λ12
a
◦
2
λ23 =

∫

T ∗M2

λ12 ∪ λ23(4.15)

where the right hand-side is obtained as follows. Set Λ := Λ12

a
×
2
Λ23 and

consider the morphisms

H0
Λ12

(T ∗M12; π
−1ω12)×H0

Λ23
(T ∗M23; π

−1ω23)

−→ H0
Λ(T

∗M123; π
−1ω1

L

⊠ ωT ∗M2

L

⊠ π−1ω3)

−→ H0
Λ13

(T ∗M13; π
−1ω13).

The first morphism is the cup product and the second one is the integration
morphism with respect to T ∗M2.

5 Microlocal Euler classes of trace kernels

In this section, we often write ∆ instead of ∆M .

Definition 5.1. A trace kernel (K, u, v) on M is the data of K ∈ D
b(kM×M)

together with morphisms

k∆
u

−−→ K and K
v

−−→ ω∆ .(5.1)

In the sequel, as far as there is no risk of confusion, we simply write K

instead of (K, u, v).
For a trace kernel K as above, we set

SS∆(K) := SS(K) ∩ T ∗

∆(M ×M) = (δaT ∗M)−1SS(K).(5.2)

(Recall that one often identifies T ∗M and T ∗

∆(M × M) by δaT ∗M : T ∗M →֒
T ∗M × T ∗M .)

Definition 5.2. Let (K, u, v) be a trace kernel.
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(a) The morphism u defines an element ũ in H0
SS∆(K)(T

∗M ;µhom(k∆ , K))

and the microlocal Euler class µeuM(K) of K is the image of ũ by
the morphism µhom(k∆ , K) −→ µhom(k∆ , ω∆) associated with the mor-
phism v.

(b) Let Λ be a closed conic subset of T ∗M containing SS∆(K). One denotes
by µeuΛ(K) the image of ũ in H0

Λ

(
T ∗M ;µhom(k∆ , ω∆)

)
.

Hence,

µeuΛ(K) ∈ MH
0
Λ(kM) ≃ H0

Λ(T
∗M ; π−1ωM).(5.3)

Let ṽ be the element of H0
SS∆(K)(T

∗M ;µhom(K,ω∆)) induced by v. Then

the microlocal Euler class µeuM(K) of K coincides with the image of ṽ by the
morphism µhom(K,ω∆M

) −→ µhom(k∆ , ω∆) associated with the morphism
u, which can be easily seen by the commutative diagram:

(δaT ∗M)−1µhom(K,K) v //

u

��

(δaT ∗M)−1µhom(K,ω∆)

u

��
(δaT ∗M)−1µhom(k∆ , K)

v // (δaT ∗M)−1µhom(k∆ , ω∆).

One denotes by eu(K) the restriction of µeu(K) to the zero-section M of
T ∗M and calls it the Euler class of K. Hence

euM(K) ∈ H0
Supp(K)∩∆(M ;ωM).(5.4)

It is nothing but the class induced by the composition k∆M
−→ K −→ ω∆M

.
We say that L ∈ D

b(kM) is invertible if L is locally isomorphic to kM [d] for

some d ∈ Z. Then, L⊗−1 :=RHom (L,kM) is also invertible and L
L
⊗L⊗−1 ≃

kM .

Proposition 5.3. Let L be an invertible object in D
b(kM) and K a trace

kernel. Then K
L
⊗ (L

L

⊠ L⊗−1) is a trace kernel and µeu
(
K

L
⊗ (L

L

⊠ L⊗−1)
)
=

µeu(K).

Proof. L
L

⊠ L⊗−1 is canonically isomorphic to kM×M on a neighborhood of
the diagonal set ∆M of M ×M . Q.E.D.
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Remark 5.4. Of course, we could also have defined a trace kernel as a
sequence of morphisms

ω⊗−1
∆M

−→ K̃ −→ k∆M
.(5.5)

When treating sheaves, both definitions would give the same microlocal Euler

class by takingK = K̃⊗(kM

L

⊠ωM). However, when working with O-modules
or with DQ-modules as in [KS12], the two constructions give different classes.
Note that we have chosen an analogue of (5.5) in [KS12].

Trace kernels for constructible sheaves

Let us denote by D
b
cc(kM) the full triangulated subcategory of Db(kM) con-

sisting of cohomologically constructible sheaves (see [KS90, § 3.4]).

Lemma 5.5. Let F ∈ D
b
cc
(kM). There are natural morphisms in D

b
cc
(kM×M):

k∆M
−→ F

L

⊠DMF,(5.6)

F
L

⊠DMF −→ ω∆M
.(5.7)

In other words, an object F ∈ D
b
cc(kM) defines naturally a trace kernel

on M .

Proof. (i) We have

kM −→ RHom (F, F ) ≃ δ ! (F
L

⊠DMF ).

Hence, the result follows by adjunction.
(ii) The morphism (5.7) may be deduced from (5.6) by duality, or by adjunc-
tion from the morphism

δ−1(F
L

⊠DMF ) −→ ωM .

Q.E.D.

Notation 5.6. We shall denote by TK(F ) the trace kernel associated with

F ∈ D
b
cc(kM), that is the data of F

L

⊠ DMF and the morphisms (5.6), (5.7).
Note that we have always SS∆(TK(F )) ⊂ SS(F ) and the equality holds if M
is real analytic and F is R-constructible.
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We have the chain of morphisms

µhom(F, F ) ≃ (δaT ∗M)−1
µhom(k∆, F

L

⊠DF )

−→ (δaT ∗M)−1
µhom(k∆, ω∆).

We deduce the map

H0
SS(F )(T

∗M ;µhom(F, F )) −→ MH
0
SS(F )(kM).(5.8)

Definition 5.7. Let F ∈ D
b
cc(kM). The image of idF by the map (5.8) is

called the microlocal Euler class of F and is denoted by µeuM(F ).

Clearly, one has

µeuM(F ) = µeuM(TK(F )).(5.9)

Assume M is real analytic and denote by D
b
R-c(kM) the full triangulated

subcategory of Db(kM) consisting of R-constructible complexes. Of course,
R-constructible complexes are cohomologically constructible. In [KS90, § 9.4]
the microlocal Euler class of an object F ∈ D

b
R-c(kM) is constructed as above

and this class is also called the characteristic cycle, or else, the Lagrangian
cycle, of F .

Remark 5.8. Let (K, u, v) be a trace kernel on M . Let δ : M −→ M ×M be
the diagonal embedding. Then u and v decompose as

k∆M
−→ δ∗δ

! K −→ K −→ δ∗δ
−1K −→ ω∆M

.

Hence δ∗δ
!K and δ∗δ

−1K are also trace kernels. We have evidently

µeuM

(
δ∗δ

! K
)
= µeuM

(
δ∗δ

−1K
)
= µeuM(K) as elements in MH

0
T ∗M(kM).

Trace kernels over one point

Let us consider the particular case where M is a single point, M = pt, and
let us identify a sheaf over pt with a k-module. In this situation, a trace
kernel (K, u, v) is the data of K ∈ D

b(k) together with linear maps

k
u
−→ K

v
−→ k.
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The (microlocal) Euler class eupt(K) of this kernel is the image of 1 ∈ k by
v ◦ u.

Assume now that k is a field and denote by D
b
f (k) the full triangulated

subcategory of Db(k) consisting of objects with finite-dimensional cohomolo-
gies. Let V ∈ D

b
f (k) and set V ∗ = RHom(V,k). Let K = TK(V ) = V ⊗V ∗,

and let v be the trace morphism and u its dual. Then

(a) eupt(V ⊗V ∗) = tr(idV ), the trace of the identity of V .

(b) If k has characteristic zero, then

eupt(V ⊗V ∗) = χ(V ), the Euler-Poincaré index of V .

(5.10)

Trace kernels for D-modules

In this subsection, we denote by X a complex manifold of complex dimension
dX and the base ring k is the field C. We denote by OX the structure sheaf
and by ΩX the sheaf of holomorphic forms of maximal degree. We still
denote by ωX the topological dualizing complex and recall the isomorphism
ωX ≃ CX [2dX ].

One denotes by DX the sheaf of CX-algebras of (finite order) holomorphic
differential operators on X and refers to [Ka03] for a detailed exposition of
the theory of D-modules. We denote by Mod(DX) the category of left DX-
modules and by D

b(DX) its bounded derived category. We also denote by
Modcoh(DX) the abelian category of coherent DX-modules and by D

b
coh(DX)

the full triangulated subcategory of Db(DX) consisting of objects with coher-
ent cohomologies.

We denote by DD : Db(DX)
op −→ D

b(DX) the duality functor for left D-
modules:

DDM := RHom
DX

(M ,DX)⊗OX
Ω

⊗−1

X [dX ].

We denote by •⊠ • the external product for D-modules:

M⊠N := DX×X ⊗
DX

L

⊠DX

(M
L

⊠ N ).

Let ∆ be the diagonal of X ×X. The left DX×X-module HdX
[∆](OX×X) (the

algebraic cohomology with support in ∆) is denoted as usual by B∆. Note
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that

DDB∆ ≃ B∆.

One shall be aware that here, the dual is taken overX×X. We also introduce

B
∨

∆ := B∆ [2dX ].

For M ∈ D
b
coh(DX), we have the isomorphism

RHom
DX

(M ,M ) ≃ RHom
DX×X

(B∆,M⊠DDM ) [dX ].

We deduce the morphism in D
b(DX×X)

B∆ −→ M⊠DDM [dX ](5.11)

and by duality, the morphism in D
b(DX×X)

M⊠DDM [dX ] −→ B
∨

∆.(5.12)

Denote by EX the sheaf on T ∗X of microdifferential operators of [SKK73].
For a coherent DX-module M set

M
E := EX ⊗π−1DX

π−1
M

and recall that, denoting by char(M ) the characteristic variety of M , we
have char(M ) = Supp(M E). One also sets

C∆ := B
E
∆, C

∨

∆ :=
(
B

∨

∆

)E
.

We denote by DE : D
b(EX)

op −→ D
b(EX) the duality functor for left E -modules:

DE M := RHom
EX
(M ,EX)⊗π−1OX

π−1Ω
⊗−1

X [dX ]

and we denote by •⊠ • the external product for E -modules:

M⊠N := EX×X ⊗
EX

L

⊠EX

(M
L

⊠ N ).

The morphisms (5.11) and (5.12) give rise to the morphisms

C∆ −→ M
E
⊠DE M

E [dX ] −→ C
∨

∆ .(5.13)
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Let Λ be a closed conic subset of T ∗X. One sets

HH(EX) = (δaT ∗X)
−1RHom

EX×X
(C∆,C

∨

∆),

HHΛ(EX) = RΓΛ(T
∗X;HH(EX)),

HH
k
Λ(EX) = Hk(HHΛ(EX)) = Hk

Λ(T
∗X;HH(EX)).

We call HHΛ(EX) the Hochschild homology of EX with support in Λ.
The morphisms in (5.13) define a class

hhE (M ) ∈ HH
0
char(M )(EX)(5.14)

that we call the Hochschild class of M .
Let S be a closed subset of X. By restricting to the zero-section X of

T ∗X the above construction, we obtain the Hochschild homology of DX :

HH(DX) = (δX)
−1RHom

DX×X
(B∆,B

∨

∆) ≃ HH(EX)|X ,

HHS(DX) = RΓS(X;HH(DX)),

HH
k
S(DX) = Hk(HHS(DX)) = Hk

S(X;HH(DX)).

Then, to M ∈ D
b
coh(DX) one obtains

hhD(M ) := hhE (M )|X ∈ HH
0
Supp(M )(DX).

We shall make a link between the Hochschild class of M and the mi-
crolocal Euler class of a trace kernel attached to the sheaves of holomorphic
solutions of M . We need a lemma.

Lemma 5.9. For N1 and N2 in D
b
coh(DX), there exists a natural morphism

RHom
E
(N E

1 ,N E
2 ) −→ µhom(ΩX

L
⊗

DX
N1,ΩX

L
⊗

DX
N2).(5.15)

Moreover, this morphism is compatible with the composition

RHom
E
(N E

1 ,N E
2 )⊗RHom

E
(N E

2 ,N E
3 ) −→ RHom

E
(N E

1 ,N E
3 ),

µhom(F1, F2)⊗µhom(F2, F3) −→ µhom(F1, F3).

Proof. We have the natural morphism in D
b(π−1DX ⊗ π−1D

op
X ) (see [KS85,

Prop. 10.6.2])

EX −→ µhom(ΩX ,ΩX).
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This gives rise to the morphisms

RHomπ−1DX
(π−1

N1,EX ⊗π−1DX
π−1

N2)

−→ RHomπ−1DX
(π−1

N1, µhom(ΩX ,ΩX))⊗π−1DX
π−1

N2

≃ µhom(ΩX

L
⊗

DX
N1,ΩX

L
⊗

DX
N2).

Q.E.D.

We have

ΩX×X [−dX ]
L
⊗

DX×X
B∆ ≃ C∆,

ΩX×X [−dX ]
L
⊗

DX×X
B

∨

∆ ≃ ω∆ .

Applying Lemma 5.9, one deduces the morphisms

RHom
EX×X

(C∆,C
∨

∆) −→ µhom(ΩX×X

L
⊗

DX×X
B∆,ΩX×X

L
⊗

DX×X
B

∨

∆)

≃ µhom(C∆, ω∆).

An easy calculation shows that the first arrow is also an isomorphism. There-
fore, we get the isomorphism

HH(EX) ∼−→ MH(CX).(5.16)

Recall that the Hochschild homology of EX has been already calculated
in [BG87].

Applying the functor ΩX×X [−dX ]
L
⊗

DX×X

• to (5.11) and (5.12) we get

the morphisms

C∆ −→ ΩX×X

L
⊗

DX×X
(M⊠DDM ) −→ ω∆ .(5.17)

Notation 5.10. For M ∈ D
b
coh(DX), we denote by TK(M ) the trace kernel

given by (5.17).

Since char(M ) = SS(RHom
DX

(M ,OX)) by [KS90, Th. 11.3.3], we get
that µeuM(TK(M )) is supported by char(M ), the characteristic variety of
M .
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Proposition 5.11. After identifying HH(EX) and MH(CX) by the iso-

morphism (5.16), we have hhE (M ) = µeuX(TK(M )) in HH
0
char(M )(CX).

Proof. This follows from Lemma 5.9 applied to (5.13). Q.E.D.

Note that the class µeuX(TK(M )) coincides with the microlocal Euler class
of M already introduced by Schapira-Schneiders in [ScSn94].

6 Operations on microlocal Euler classes I

In this section, we shall adapt to trace kernels the constructions of [KS12,
Chap. 4 §3] and we shall show that under natural microlocal conditions of
properness, the microlocal Euler class of the composition of two kernels is
the composition of the classes.

We use Notations 3.1 and we consider a trace kernel (K, u, v) on M12.

Lemma 6.1. Let K be a trace kernel on M12. There are natural morphisms

in D
b(kM11

):

k∆13
−→ K ∗

22
(ω⊗−1

∆2

L

⊠ k∆3
),(6.1)

K ◦
22
(k∆2

L

⊠ ω∆3
) −→ ω∆13

.(6.2)

Proof. (i) By Lemma 4.3 (ii) we have a morphism k∆13
−→ k∆12

∗
22
(ω⊗−1

∆2

L

⊠k∆3
).

By composing this morphism with k∆12
−→ K, we get (6.1).

(ii) By Lemma 4.3 (i) we have a morphism ω∆12
◦
22
(k∆2

L

⊠ ω∆3
) −→ ω∆13

. By

composing this morphism with K −→ ω∆12
we we get (6.2). Q.E.D.

Let K be a trace kernel on M12 with microsupport SS(K) contained in
a closed conic subset Λ1122 of T ∗M1122 and let Λ23 a closed conic subset of
T ∗M23. We assume

Λ1122

a
×
22
δaT ∗M23

Λ23 is proper over T ∗M1133.(6.3)
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We set




Λ12 := Λ1122 ∩ T ∗

∆12
M1122,

Λ1133 := Λ1122
a
◦
22
δaT ∗M23

Λ23,

Λ13 := Λ1133 ∩ T ∗

∆13
M1133 = Λ12

a
◦
2
Λ23.

(6.4)

We define a map

ΦK : MHΛ23
(k23)−−→MHΛ13

(k13)(6.5)

by the sequence of morphisms

MHΛ23
(k23) ≃ RΓδa

T∗M23
Λ23

(T ∗M2233 ; µhom(k∆23
, ω∆23

))

≃ RΓδa
T∗M23

Λ23

(
T ∗M2233 ; µhom(ω⊗−1

∆2

L

⊠ k∆3
,k∆2

L

⊠ ω∆3
)
)

−→ RΓΛ1133

(
T ∗M1133 ; µhom(K,K)

a
◦
22
µhom(ω⊗−1

∆2

L

⊠ k∆3
,k∆2

L

⊠ ω∆3
)
)

−→ RΓΛ1133

(
T ∗M1133 ; µhom(K ∗

22
(ω⊗−1

∆2

L

⊠ k∆3
), K ◦

22
(k∆2

L

⊠ ω∆3
))
)

−→ Γ
(
T ∗M1133 ; µhom(k∆13

, ω∆13
)
)
≃ MHΛ13

(k13).

Here the first arrow is given by idK , the second is given by Proposition 3.2,
and the last arrow is induced by the morphisms in Lemma 6.1.

The next result is similar to [KS12, Th. 4.3.5].

Proposition 6.2. Let Λ1122 ⊂ T ∗M1122 and Λ23 ⊂ T ∗M23 be closed conic

subsets satisfying (6.3) and recall the notation (6.4). Let K be a trace kernel

on M12 with microsupport contained in Λ1122. Then the map ΦK in (6.5) is

the map µeuM12
(K)

a
◦
12

given by Corollary 4.5.

Proof. By using the morphism k∆12
−→ K, we find the commutative diagram

below:

RΓΛ23

(
T ∗M2233;µhom(k∆23

, ω∆23
)
)

//

��

RΓΛ13

(
T ∗M1133;µhom(k∆12

∗
22
k∆23

,k∆12
◦
22
ω∆23

)
)

��

RΓΛ1133

(
T ∗M1133;µhom(K ∗

22
k∆23

, K ◦
22
ω∆23

)
)

// RΓΛ13

(
T ∗M1133;µhom(k∆12

∗
22
k∆23

, K ◦
22
ω∆23

)
)
.
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By using the morphism K −→ ω∆12
, we get the commutative diagram

RΓΛ23

(
T ∗M2233;µhom(k∆23

, ω∆23
)
)

//

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
RΓΛ13

(
T ∗M1133;µhom(k∆12

∗
22
k∆23

, ω∆12
◦
22
ω∆23

)
)
.

RΓΛ1133

(
T ∗M1133;µhom(K ∗

22
k∆23

, K ◦
22
ω∆23

)
)

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
(6.6)

Recall the morphisms in Lemma 4.3:

ω∆12
◦
22
(k∆2

L

⊠ ω∆3
) −→ ω∆13

, k∆13
−→ k∆12

∗
22
(ω⊗−1

∆2

L

⊠ k∆3
).(6.7)

We get the morphisms

w : RΓδa
T∗M13

Λ13

(
T ∗M1133;µhom(k∆12

∗
22
k∆23

, ω∆12
◦
22
ω∆23

)

≃ RΓδa
T∗M13

Λ13

(
T ∗M1133;µhom(k∆12

∗
22
(ω⊗−1

∆2

L

⊠ k∆3
), ω∆12

◦
22
(k∆2

L

⊠ ω∆3
))
)

−→ RΓδa
T∗M13

Λ13

(
T ∗M1133;µhom(k∆13

, ω∆13
)
)
.

By its construction, the morphism µeuM12
(K) ◦ is obtained as the com-

position with the map w of the top row of the diagram (6.6). Since the
composition with w of the two other arrows is the morphism ΦK , the proof
is complete. Q.E.D.

The next result is similar to [KS12, Th. 4.3.6].
Let i = 1, 2, j = i + 1 and let Λiijj be a closed conic subset of T ∗Miijj.

Assume that

Λ1122

a
×
22
Λ2233 is proper over T ∗M1133.(6.8)

Set Λ1133 = Λ1122
a
◦
22
Λ2233 and Λij = Λiijj ∩ T ∗

∆ij
Miijj.

Theorem 6.3. Let Kij be a trace kernel on Mij with SS(Kij) ⊂ Λiijj. As-

sume (6.8), set K̃23 = ω⊗−1
∆2

◦
2
K23 ≃ (ω⊗−1

2

L

⊠ k233)
L
⊗ K and set K13 =

K12 ◦
22
K̃23. Then

(a) K13 is a trace kernel on M13,

(b) µeuM13
(K13) = µeuM12

(K12)
a
◦
2
µeuM23

(K23) as elements of MH
0
Λ13

(k13).
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(c) In particular, we have ΦK12
◦ ΦK23

≃ ΦK13
.

Proof. (a) The trace kernel K23 defines morphisms

ω⊗−1
∆2

L

⊠ k∆3
−→ K̃23 −→ k∆2

L

⊠ ω∆3
.

Assuming (6.8) and using (6.1) and (6.2), we get that K13 = K12 ◦
22
K̃23 is a

trace kernel on M13.

(b) We get a commutative diagram in which we set λ23 = µeuM23
(K23) ∈

MH
0(k23) ≃ Hom(ω⊗−1

∆2

L

⊠ k∆3
,k∆2

L

⊠ ω∆3
):

k∆13

//

@A

//

K12 ∗
22
(ω⊗−1

∆2

L

⊠ k∆3
)

λ23 //

��

K12 ◦
22
(k∆2

L

⊠ ω∆3
) // ω∆13

K12 ∗
22
K̃23

K12 ◦
22
K̃23

;;①①①①①①①①①①①①①①①①①①①①①①①①①
BC

OO

≀
OO

The composition of the arrows on the bottom is µeuM13
(K13) and the com-

position of the arrows on the top is ΦK12
(µeuM23

(K23)). Hence, the assertion
follows from the commutativity of the diagram by Proposition 6.2.
(c) follows from (b) and Proposition 6.2. Q.E.D.

7 Operations on microlocal Euler classes II

We shall combine Theorems 4.6 and 6.3 and make more explicit the opera-
tions on microlocal Euler classes for direct or inverse images. In particular,
applying our results to the case of constructible sheaves, we shall recover the
results of [KS90, Ch. IX §5].

Let M be a manifold and let ι : N →֒ M be closed embedding of a smooth
submanifold N . If there is no risk of confusion, we shall still denote by kN

and ωN the sheaves ι∗kN and ι∗ωN on M . Then kN is cohomologically
constructible and moreover

DMkN = RHom (kN , ωM) ≃ ωN .
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Hence, TK(kN) = kN

L

⊠ ωN is a trace kernel on M .
Let Mi be a manifold (i = 1, 2), let Ki be a trace kernel on Mi and let

Λii be a closed conic subset of T ∗Mii with SS(Ki) ⊂ Λii. We set

Λi = Λii ∩ T ∗

∆i
Mii.

For a morphism of manifolds f : M1 −→ M2, we denote by Γf its graph, a
smooth closed submanifold of M12 and we set for short

Λf := T ∗

Γf
(M12), f̃ = (f, f) : M11 −→ M22.

Recall the diagram (2.1)

T ∗M1

πM1
))❙❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

M1 ×M2
T ∗M2

π

��

fdoo fπ // T ∗M2

πM2

��
M1

f // M2.

Note that

Λ11
a
◦
11
Λf̃ = f̃πf̃

−1
d Λ11, Λf̃

a
◦
22
Λ22 = f̃df̃

−1
π Λ22.

In the sequel, we shall identify M1212 with M1122. We take as kernel the sheaf
TK(kΓf

). Then

TK(kΓf
) = kΓf

L

⊠ ωΓf
≃ kΓ

f̃
⊗ (k1

L

⊠ ω1

L

⊠ k22)(7.1)

≃ ω∆1
◦
11

(
(ω⊗−1

1

L

⊠ ω1

L

⊠ k22)
L
⊗ kΓ

f̃

)
.

Moreover, we have (see (5.9)):

µeuM12
(TK(kΓf

)) = µeuM12
(kΓf

).

Also note that

Rf̃!K1 ≃ K1 ◦
11
kΓ

f̃
, f̃−1K2 ≃ kΓ

f̃
◦
22
K2.
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External product

Applying Theorem 4.6 with M2 = pt and M3 being here M2, we get the
commutative diagram

MHΛ1
(kM1

)
L

⊠ MHΛ2
(kM2

)
◦

//

∼

��

MHΛ1×Λ2
(kM12

)

∼

��

RΓΛ1
(π−1

M1
ωM1

)
L

⊠ RΓΛ2
(π−1

M2
ωM2

)
L

⊠ // RΓΛ1×Λ2
(π−1

M12
ωM12

)

and taking the global sections and the 0-th cohomology,

MH
0
Λ1
(kM1

)⊗MH
0
Λ2
(kM2

)
◦

//

∼

��

MH
0
Λ1×Λ2

(kM12
)

∼

��

H0
Λ1
(T ∗M1; π

−1
M1

ωM1
)⊗H0

Λ2
(T ∗M2; π

−1
M2

ωM2
)

L

⊠ // H0
Λ1×Λ2

(T ∗M12; π
−1
M12

ωM12
).

Applying Theorem 6.3, we obtain

Proposition 7.1. The object K1

L

⊠K2 is a trace kernel on M12 and

µeuM12
(K1

L

⊠K2) = µeuM1
(K1)

L

⊠ µeuM2
(K2).

Direct image

Let f : M1 −→ M2 and Γf be as above. Applying Theorem 4.6 with M1 = pt
and M2, M3 being the current M1, M2, we get the commutative diagram

MH(kM1
)
a
◦
1
MH(kM12

) //

∼

��

MH(kM2
)

∼

��

π−1
M1

ωM1

a
◦
1
π−1
M12

ωM12

// π−1
M2

ωM2
.

Now we assume

f is proper on Λ1∩T ∗

M1
M1, or, equivalently, fπ is proper on f−1

d Λ1.(7.2)

29



We set

fµ(Λ1) = Λ1 ◦ Λf = fπ(f
−1
d (Λ1)).

Taking the global sections and the 0-th cohomology of the diagram above,
we obtain the commutative diagram:

MH
0
Λ1
(kM1

)
◦µeu(kΓf

)
//

∼

��

MH
0
fµΛ1

(kM2
)

∼

��

H0
Λ1
(T ∗M1; π

−1
M1

ωM1
)

◦µeu(kΓf
)

// H0
fµΛ1

(T ∗M2; π
−1
M2

ωM2
).

We have natural morphism and isomorphisms, already constructed in [KS90]:

fπ !f
−1
d π−1

M1
ωM1

≃ fπ !π
−1ωM1

≃ π−1
M2

f!ωM1

−→ π−1
M2

ωM2
.

It induces a morphism:

fµ : RΓΛ1
(π−1

M1
ωM1

) −→ RΓfµΛ1
(π−1

M2
ωM2

).

Lemma 7.2. Let λ ∈ H0
Λ1
(T ∗M1; π

−1
M1

ωM1
). Then λ ◦ µeuM12

(kΓf
) = fµ(λ).

Proposition 7.3. Assume that f̃ is proper on Λ11 ∩ T ∗

M11
M11. Then the

object Rf̃!K1 is a trace kernel on M2 and

µeuM2
(Rf̃!K1) = µeuM1

(K1)
a
◦
1
µeuM12

(kΓf
)

= fµ(µeuM1
(K1)).

Proof. Note that µeuM12
(kΓf

) = µeuM12

(
(ω⊗−1

1

L

⊠ ω1

L

⊠ k22)
L
⊗ TK(kΓf

)
)
by

Proposition 5.3. We have Rf̃!K1 ≃ K1 ◦
11

(
ω⊗−1
∆1

◦
1

(
(ω⊗−1

1

L

⊠ ω1

L

⊠ k22)
L
⊗

TK(kΓf
)
))

. It remains to apply Theorem 6.3 in which one replacesM1,M2,M3

with pt,M1,M2, respectively. Q.E.D.
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Inverse image

Let f : M1 −→ M2 and Γf be as above. Applying Theorem 4.6 with M3 = pt,
we get the commutative diagram

MH(kM12
)
a
◦
2
MH(kM2

) //

∼

��

MH(kM1
)

∼

��

π−1
M12

ωM12

a
◦
2
π−1
M2

ωM2

// π−1
M1

ωM1
.

Now we assume

f is non characteristic for Λ2, or, equivalently, fd is proper on
f−1
π Λ2.

(7.3)

We set

fµ(Λ2) = Λf ◦ Λ1 = fd(f
−1
π (Λ2)).

Taking the global sections and the 0-th cohomology of the diagram above,
we obtain the commutative diagram:

MH
0
Λ2
(kM2

)
µeu(kΓf

)◦
//

∼

��

MH
0
fµΛ2

(kM1
)

∼

��

H0
Λ2
(T ∗M2; π

−1
M2

ωM2
)

µeu(kΓf
)◦

// H0
fµΛ2

(T ∗M1; π
−1
M1

ωM1
).

We have a natural morphism constructed in the proof of [KS90, Prop. 9.3.2]:

fµ : fd!f
−1
π π−1

M2
ωM2

−→ π−1
M1

ωM1
.

Hence, we get a map:

fµ : RΓΛ2
(π−1

M2
ωM2

) −→ RΓfµΛ2
(π−1

M1
ωM1

).

Lemma 7.4. Let λ ∈ H0
Λ1
(T ∗M2; π

−1
M2

ωM2
). Then µeuM12

(kΓf
) ◦ λ = fµ(λ).
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Proposition 7.5. Assume that f̃ is non characteristic with respect to Λ22.

Then the object (k1

L

⊠ ωM1/M2
)

L
⊗ f̃−1K2 is a trace kernel on M1 and

µeuM1

(
ω∆1

◦
1
f̃−1(ω⊗−1

∆2
◦
2
K2)

)
= µeuM12

(kΓf
)
a
◦
2
µeuM2

(K2)

= fµ(µeuM2
(K2)).

Proof. Applying Theorem 6.3 with M3 = pt, we get that

(k1

L

⊠ ωM1/M2
)

L
⊗ f̃−1K2 ≃ TK(kf ) ◦

22
(ω⊗−1

∆2
◦
2
(ω2

L

⊠ ω⊗−1
2 )

L
⊗K2)

is a trace kernel. Since euM2

(
(ω2

L

⊠ ω⊗−1
2 )

L
⊗K2)

)
= µeuM2

(K2) by Proposi-
tion 5.3, we obtain the result. Q.E.D.

Tensor product

Consider now the case where M1 = M2 = M and the Λii’s satisfy the
transversality condition

Λ11 ∩ Λa
22 ⊂ T ∗

M×M(M ×M).(7.4)

Then by composing the external product with the restriction to the diagonal,
we get a convolution map

⋆ : MHΛ1
(kM)×MHΛ2

(kM) −→ MHΛ1+Λ2
(kM).(7.5)

Applying Propositions 7.1 and 7.5, we get:

Proposition 7.6. Assume (7.4). Then the object K1

L
⊗ (kM

L

⊠ ω⊗−1
M )

L
⊗K2

is a trace kernel on M and

µeuM(K1

L
⊗ (kM

L

⊠ ω⊗−1
M )

L
⊗K2) = µeuM(K1) ⋆ µeuM(K2).

Following [ScSn94, II Cor. 5.6], we shall recall the link between the prod-
uct ⋆ and the cup product.

Proposition 7.7. Let λi ∈ H0
Λi
(T ∗Mi; π

−1
M ωM) (i = 1, 2), and Λ1 ∩ Λa

2 ⊂
T ∗

MM . Then

(λ1 ⋆ λ2)|M =

∫

πM

(λ1 ∪ λ2)(7.6)

as elements of H0
π(Λ1∩Λ2)

(M ;ωM).
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Proof. Denote by δ : ∆ →֒ M12 = M ×M the diagonal embedding and let us
identify M with ∆. Consider the diagram

T ∗

∆M12

π
��

f
// ∆×M12

T ∗M12

δd
��

∆ s
// T ∗∆

(7.7)

where π is the projection, δd is the map associated with δ, s is the zero-
section embedding and f is the restriction to ∆×M T ∗M12 of the embedding
T ∗

∆M12 →֒ T ∗M12. Since this diagram is Cartesian, we have

s−1δd! ≃ π!f
−1.

Now let λ1×λ2 ∈ H0
Λ1×Λ2

(T ∗M12; π
−1ωM12

) and denote by λ1×M λ2 its image
by the map

H0
Λ1×Λ2

(T ∗M12; π
−1ωM12

) −→ H0
Λ1×MΛ2

(∆×M12
T ∗M12; π

−1ωM12
).

(Here, on the right hand side, we still denote by π the restriction of the
projection πM12

to ∆×M12
T ∗M12.) Then

∫

π

(λ1 ∪ λ2) = π!f
−1(λ1 ×M λ2),

(λ1 ⋆ λ2)|M = s−1δd!(λ1 ×M λ2).

Q.E.D.

Corollary 7.8. Let K1 and K2 be two trace kernels on M with SS(Ki) ⊂ Λii.

Assume (7.4) and assume moreover that Supp(K1) ∩ Supp(K2) is compact.

Then the object RΓ
(
M ×M ;K1

L
⊗ (kM

L

⊠ω⊗−1
M )

L
⊗K2

)
is a trace kernel on pt

and

eupt

(
RΓ(M ;K1

L
⊗ (kM

L

⊠ ω⊗−1
M )

L
⊗K2

)
=

∫

T ∗M

µeu(K1) ∪ µeu(K2).

Remark 7.9. Let M be a real analytic manifold and let F ∈ D
b
R-c(kM).

Recall that one associates to F the trace kernel TK(F ) = F
L

⊠DMF and that
µeuM(F ) = µeuM(TK(F )). Assume now that f : M1 −→ M2 is a morphism
of real analytic manifolds.
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Let F1 ∈ D
b
R-c(kM1

) and assume that f is proper on Supp(F1). Applying
Proposition 7.3 and noticing that

Rf̃!TK(F1) ≃ TK(Rf!F1),(7.8)

we find that µeu(Rf!F1) = fµ(µeu(F1)). It is nothing but [KS90, Prop. 9.4.2].

Let F2 ∈ D
b
R-c(kM2

) and assume that f is non characteristic with respect to
F2. Applying Proposition 7.5 and noticing that

TK(f−1F2) ≃ (k1

L

⊠ ωM1/M2
)

L
⊗ f̃−1TK(F2),

we find that µeu(f−1F2) = fµ(µeu(F2)). Hence, we recover [KS90, Prop. 9.4.3].

8 Applications: D-modules and elliptic pairs

As an application of Theorem 6.3, we shall recover the theorem of [ScSn94]
on the index of elliptic pairs. In this section, X is a complex manifold, k = C,
M is an object of Db

coh(DX) and F is an object of Db
R-c(CX).

Recall that we have denoted by TK(F ) and TK(M ) (see Notation 5.10)
the trace kernels associated with F and with M , respectively:

TK(F ) := F
L

⊠DXF,

TK(M ) := ΩX×X

L
⊗

DX×X
(M⊠DDM ).

The pair (M , F ) is called an elliptic pair in loc. cit. if char(M ) ∩ SS(F ) ⊂
T ∗

XX. From now on, we assume that (M , F ) is an elliptic pair.
It follows from Proposition 7.6 that the tensor product of TK(F ) and

TK(M ) shifted by −2dX is again a trace kernel. We denote it by TK(M , F ).
Hence

TK(M , F ) ≃ ΩX×X

L
⊗

DX×X
(M⊠DDM )⊗ (F

L

⊠D′

XF ).(8.1)

Moreover the same statement gives:

µeuX

(
TK(M , F )

)
= µeuX(M ) ⋆ µeuX(F ).(8.2)
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We set

Sol(M , F ) := RHom
DX

(M ⊗F,OX),(8.3)

DR(M ,F) := RΓ(X;ΩX

L
⊗

DX
M ⊗F) [dX].(8.4)

As explained in [ScSn94], Theorem [KS90, Th 11.3.3] and isomorphism (2.7)
provides a generalization of the classical Petrovsky regularity theorem, namely,
the natural isomorphisms

RHom
DX

(M ,D′

XF ⊗OX) ∼−→ RHom
DX

(M ⊗F,OX).(8.5)

Now assume that Supp(M )∩ Supp(F ) is compact and let us take the global
sections of the isomorphism (8.5). We find the isomorphism

RHom
DX

(M ,D′

XF ⊗OX) ∼−→ RHom
DX

(M ⊗F,OX).(8.6)

It is proved in [ScSn94] 1 that one can represent the left hand side of (8.6) by
a complex of topological vector spaces of type DFN and the right hand side
of (8.6) by a complex of topological vector spaces of type FN. It follows that
the complexes Sol(M , F ) and DR(M ,F) have finite dimensional cohomology
and are dual to each other. More precisely, denoting by ( • )∗ the duality
functor in D

b
f (C), we have

(
Sol(M , F )

)∗
≃ DR(M ,F).

It follows from the finiteness of the cohomology of the complexes Sol(M , F )
and DR(M ,F) that

RΓ(X ×X; TK(M , F )) ≃ Sol(M , F )⊗DR(M ,F).

One checks that this isomorphism commutes with the composition of
the morphisms C −→ RΓ(X × X; TK(M , F )) −→ C and C −→ Sol(M , F ) ⊗
DR(M ,F) −→ C, which implies

eupt

(
RΓ(X ×X; TK(M , F )

)
= χ

(
Sol(M , F )

)
.(8.7)

Therefore, one recovers the index formula of loc. cit.

χ
(
RHom

DX
(M ⊗F,OX)

)
=

∫
X
(µeuX(M ) ⋆ µeuX(F ))|X

=
∫
T ∗X

µeuX(M ) ∪ µeuX(F ).
(8.8)

1In fact, the finiteness of the cohomology of this complex is only proved in loc. cit.
under the hypothesis that M admits a good filtration, but this hypothesis may be removed
thanks to the results of [KS96, Appendix].
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Remark 8.1. In general the direct image of an elliptic pair is no more an
elliptic pair. However, it remains a trace kernel.

Remark 8.2. As already mentioned in [ScSn94], formula (8.8) has many
applications, as far as one is able to calculate µeuX(M ) (see the final remarks
below). For example, if M is a compact real analytic manifold and X is a
complexification of M , one recovers the Atiyah-Singer theorem by choosing
F = D′

CM . If X is a complex compact manifold, one recovers the Riemann-
Roch theorem: one takes F = CX and if F is a coherent OX-module, one
sets M = DX ⊗

OX
F .

9 The Lefschetz fixed point formula

In this section, we shall briefly show how to adapt the formalism of trace
kernels to the Lefschetz trace formula as treated in [KS90, § 9.6]. Here we
assume that k is a field.

Assume to be given two maps f, g : N −→ M of real analytic manifolds,
an object F ∈ D

b
R-c(kM) and a morphism

ϕ : f−1F −→ g ! F.(9.1)

Set

h = (g, f) : N ×N −→ M ×M,

S = Supp(F ), L = h−1(∆M) = {(x, y) ∈ N ×N ; g(x) = f(y)} ,

i : L →֒ N ×N,

T = f−1(S) ∩ g−1(S).

One makes the assumption

The set T is compact.(9.2)

Then we have the maps

RΓ(M ;F ) −→ RΓf−1S(N ; f−1F )
ϕ
−→ RΓT (N ; g ! F ) −→ RΓ(M ;F ).

The composition gives a map
∫

ϕ : RΓ(M ;F ) −→ RΓ(M ;F ),(9.3)
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and this map factorizes through RΓT (N ; g ! F ) which has finite-dimensional
cohomologies. Hence, we can define the trace tr(

∫
ϕ).

We have the chain of morphisms

kN −→ RHom (g ! F, g ! F )

ϕ
−→ RHom (f−1F, g ! F ) ≃ δ !

N (g ! F
L

⊠DNf
−1F )

≃ δ !
N (g ! F

L

⊠ f !DMF ) ≃ δ !
N h ! (F

L

⊠DMF ).

We have thus constructed the morphism

k∆N
−→ h ! (F

L

⊠DMF ).

By using the morphism F
L

⊠DMF −→ ω∆M
and the isomorphism h ! ω∆M

≃
i∗ωL, we get the morphisms

k∆N
−→ h ! (F

L

⊠DMF ) −→ i∗ωL(9.4)

in D
b(kN×N). The support of the composition is contained in δN(T ) ∩ L.

Theorem 9.1 ([KS90, Proposition 9.6.2]). The trace tr(
∫
ϕ) coincides with

the image of 1 ∈ k by the composition of the morphisms

k −→ RΓ(N,kN) −→ RΓc(L, ωL) −→ k.

Here the middle arrow is derived from (9.4).

Although (9.4) is not a trace kernel in the sense of Definition 5.1, it should
be possible to adapt the previous constructions to the case of D-modules and
to elliptic pairs, then to recover a theorem of [Gu96] but we do not develop
this point here (see [RTT12] for related results).

Final remarks

The microlocal Euler class of constructible sheaves is easy to compute since
it is enough to calculate some multiplicities at generic points. We refer
to [KS90] for examples.

On the other hand, there is no direct method to calculate the microlocal
Euler class of a coherent D-module M (except in the holonomic case). In
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[ScSn94], the authors made a precise conjecture relying µeuX(M ) and the
Chern character of the associated graded module (an OT ∗X-module), and this
conjecture has been proved by Bressler-Nest-Tsygan [BNT02].

Similarly, the Hochschild class of coherent OX-modules is usually cal-
culated through the so-called Hochschild-Kostant-Rosenberg isomorphism,
but this isomorphism does not commute with proper direct images, and a
precise conjecture (involving the Todd class) has been made by Kashiwara
in [Ka91] and this conjecture has recently been proved in the algebraic case
by Ramadoss [Ra06] and in the general case by Grivaux [Gr09].
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