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Cosmological entropy production is studied in the (1 + 3 + 6)-dimensional space-times con-
sisting of the outer space (the 3-dimensional expanding section) and the inner space (the
6-dimensional section). The inner space expands initially and contracts later. First it is shown
how the production of the 3-dimensional entropy S3 within the horizon is strengthened by the
dissipation due to viscous processes between the two spaces, in which we consider the viscosity
caused by the gravitational-wave transport. Next it is shown under what conditions we can have
the critical epoch when S3 reaches the value 1088 in the Guth level and at the same time the outer
space is decoupled from the inner space. Moreover, the total entropy S9 in the 9-dimensional
space at the primeval expanding stage is also shown corresponding to S3.
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1. Introduction

Our observed Universe consists of 4-dimensional space-time, and its 3-dimensional spatial section is
very isotropic, homogeneous, and flat. According to the super-string theories, on the other hand, the
space-time originally has 10 (= 1 + 9) dimensions and our Universe is considered as a partial section
of the total space-time after its evolution. In order that the section may be our observed Universe,
it must satisfy the famous cosmological condition that it has the vast entropy ∼ 1088 within the
horizon-size region [1].

Recently, the evolution of the space-time was analyzed by Kim et al. [2,3] in a matrix model of
super-string theory and it was shown that owing to the dimensional symmetry-breaking the total
9-dimensional space is separated into the outer space (the 3-dimensional expanding section) and the
inner space (the 6-dimensional expanding section), and that the expansion rate of the inner space
is smaller than that of the outer space. As suggested by them, this may show the beginning of the
separation of our (1 + 3)-dimensional Universe from the other section. In order that our Universe
may form in this direction, the evolution of the inner space must tend from the expanding phase
to the contracting phase, collapse, and finally decouple from the expanding outer space, while the
outer space inflates and tends to the Friedman phase. A similar scenario of such a dynamic evolution
of anisotropic multi-dimensional space-times was studied in the form of Kaluza–Klein models in
1980–1990 [4–7]. The cosmological entropy problem was also discussed in many papers [8–14] in
the framework of classical relativity. Kolb et al. [12] paid attention to the freeze-out epoch and found
it is impossible, if the dimension of the inner space is less than 16, that at that epoch we obtain the
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3-dimensional entropy within the horizon in the Guth level and the outer space is decoupled from
the inner space. Abbott et al. [9,10] showed that it is possible, if the dimension of the inner space is
∼40.

In this paper we consider the entropy production which is obtained at an epoch different from
the freeze-out epoch, so as to avoid Kolb et al.’s and Abbott et al.’s above results. For this purpose
we show in Sect. 2 our previous treatment [14] for the dynamics of multi-dimensional space-times.
As for the initial condition, the multi-dimensional universe is assumed to start from the state of
nearly isotropic expansion, in the same way as Kolb et al.’s and Abbott et al.’s treatments, but in a
different way from that in our previous one [14], in which we treated only highly anisotropic cases.
We include imperfect fluid with viscosity caused by the transport of gravitational waves, as well as the
perfect fluid. In Sect. 3 we describe the difference between the freeze-out epoch (t∗), the decoupling
(or stabilization) epoch, and the epoch (t†) when the 3-dimensional entropy S3 within the horizon
reaches the critical value 1088. In Sect. 4 we study first the behaviors of S3 and the total entropy S,
and compare them in two cases with non-viscous and viscous fluids. The role of viscosity is found
to be so strong as to bring vast entropies at the final stage in the collapse of the compact inner space
and the inflation of the outer space. Next, using approximate power solutions (at the final stage), the
condition (A) for S3 ∼ 1088 is derived, together with the condition (B) that the outer space should
be decoupled from the inner space, and the compatibility of the two conditions A and B at epoch t†
(different from t∗) is shown.

In Sect. 5, moreover, we solve numerically the differential evolution equations for scale factors
from the initial singular epoch to the final epoch, taking account of viscosity due to the gravitational-
wave transport, and derive the model parameters satisfying the above two conditions A and B, by
comparing their solutions (at the later stage) with the asymptotic power solutions. In Sect. 6 we
derive the (9-dimensional) primeval total entropy S9, and it is found that the primeval entropy in the
viscous case is much smaller than that in the non-viscous case. In Sect. 7, the epoch which may cause
the dimensional symmetry-breaking is discussed from the viewpoint of energy conservation, and
the possible epoch of symmetry-breaking is estimated. In Sect. 8 concluding remarks are given. In
Appendix A the treatment of imperfect fluids is shown, in Appendix B the Planck length in the outer
space is derived in connection with the sizes of these two spaces, and in Appendix C the relations
between S3 and S9 are derived.

2. Multi-dimensional space-times with viscous fluid

First we assume that the fluid consists of massless particles with the energy density ε and the pressure
p expressed as

ε = NanT 4+n and p = ε/(3 + n), (1)

where T is the temperature, n(= 6) is the dimension of the inner space, an is the (4 + n)-dimensional
Stefan–Boltzmann constant defined by

an ≡ (3 + n) �((4 + n)/2) ζ(4 + n)/π(4+n)/2, (2)

and N is the number of particle species. The units c = � = k (the Boltzmann constant) = 1 are used.
Since the total entropy S within a comoving volume V is given from the second law of thermody-

namics by

T dS = V [dε + (ε + p)dV/V ], (3)
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S is expressed as

S/V = [(4 + n)/(2 + n)]Nan(ε/Nan)
(3+n)/(4+n). (4)

As viscous quantities, we have the shear viscosity η and the bulk viscosity ζ , but ζ vanishes for
the fluid of massless particles. In imperfect fluids, propagating gravitational waves are absorbed in
multi-dimensional universes as well as in 4-dimensional universes. The corresponding η is expressed
as

κη = η0
√

κε, (5)

where

η0 ≡
[ 4 + n

2(3 + n)(5 + n)

Nr

N
]1/2

, (6)

G = κ/8π is a (4 + n)-dimensional gravitational constant, and Nr is the number of radiative particle
species absorbing gravitational waves. We consider states so hot that there are many interactions
between particles, and so we assume Nr/N = 1 for simplicity. The definition of η and ζ and the
derivation of Eq. (6) are shown in Appendix A.

The space-times are described by the line element

ds2 = gM N dx M dx N

= −c2dt2 + f (t)2gi j dxi dx j + h(t)2gαβdxαdxβ,
(7)

where M, N = 0, . . . , (3 + n), i, j = 1, 2, 3, and α, β = 4, . . . , (3 + n). The spaces with metrics
gi j and gαβ are the spaces with constant curvatures k f and kh (= 0 or ±1). The Einstein equations
are

RM N − 1

2
RgM N = κTM N , (8)

where G = κ/8π is a (4 + n)-dimensional gravitational constant. The energy–momentum tensor
TM N for fluids with energy density ε, pressure p, and viscosity η is defined in Appendix A, and their
components are expressed under the comoving condition (uL = δL

0 ) as

T 0
0 = −ε, T 0

M = 0 (M �= 0),

T M
N = p′δM

N − ηκM
N (M, N �= 0),

(9)

where κ i
j = 2( ḟ / f )δi

j , κα
β = 2(ḣ/h)δα

β (an overdot denoting ∂/∂t), and

p′ ≡ p −
[
ζ − 2

3 + n
η

]
V̇ /V, (10)

where V̇ /V = 3 ḟ / f + nḣ/h. Then the above Einstein equations are expressed as

f̈ / f = −2( ḟ 2 + k f )/ f 2 − n ḟ ḣ/( f h) − 2κη ḟ / f + κ A/(2 + n),

ḧ/h = −(n − 1)(ḣ2 + kh)/h2 − 3 ḟ ḣ/( f h) − 2κηḣ/h + κ A/(2 + n),
(11)

where

A ≡ ε − p +
[
ζ + 2(2 + n)

3 + n
η

]
V̇ /V, (12)

and

κε = 3( ḟ 2 + k f )/ f 2 + 1

2
n(n − 1)(ḣ2 + kh)/h2 + 3n ḟ ḣ/( f h). (13)
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From the above equations we can get

ε̇ = −(ε + p)V̇ /V +
[
ζ + 2(2 + n)

3 + n
η

]
(V̇ /V )2 − 2η{3( ḟ / f )(2 ḟ / f + nḣ/h)

+ n(ḣ/h)[3 ḟ / f + (n − 1)ḣ/h]}. (14)

For the change in the total entropy S, we obtain from Eqs. (4) and (14)

(ε + p)Ṡ/S = ζ(V̇ /V )2 + 6n

(3 + n)
η( ḟ / f − ḣ/h)2 > 0. (15)

Evidently S = const for the non-viscous case (η = ζ = 0).
It is assumed that initially the universe expands isotropically, but the expansion of the n-

dimensional inner space is slower than that of the 3-dimensional outer space. At the later anisotropic
stage the inner space contracts, while the outer space continues to expand. These behaviors corre-
spond to the solutions with kh = 1 and k f = 0 or −1. Their solutions can be derived solving Eq. (11)
numerically, but, paying attention to their early isotropic stage and the later anisotropic stage (after
the epoch of maximum expansion of the inner space), we can use approximate power solutions which
are derived in the following, neglecting the curvature terms. They are expressed as

h = hI (t − tI )
μ, f = f I (t − tI )

ν (16)

with μ = ν at the isotropic stage, and

h = h A(tA − t)μ, f = f A(tA − t)ν (17)

with μ �= ν at the anisotropic stage, where hI , f I , tI , h A, f A, and tA are constants. The times tI

and tA represent the initial epoch of the isotropic stage and the final epoch of the anisotropic stage,
respectively. From Eq. (11), we obtain the solutions expressed as

(nμ + 3ν − 1)(nμ + 3ν) − H = 0,

(μ − ν)(nμ + 3ν − 1 − 2η0
√

H) = 0,
(18)

where H ≡ 3ν2 + 1
2n(n − 1)μ2 + 3nμν.

In the isotropic case, the solutions of these equations and the energy density are

μ = ν = 2/(4 + n), κε = H(t − tI )
−2 (> 0). (19)

In the anisotropic case, which we consider from now on, they are

μ = (1 + ξ/n)[(3 + n)(1 − 4η0
2)]−1,

ν = (1 − ξ/3)[(3 + n)(1 − 4η0
2)]−1

(20)

with

ξ2 ≡ n2 + 2n(3 + n)(1 − 12η0
2), (21)

and

κε = H(tA − t)−2, (22)

where H = 4η0
2/(1 − 4η0

2). For viscous fluid and n = 6, we have μ = 0.345, ν = −0.272, and
η0 = 0.225, where Eq. (6) was used. Moreover, H > 0 and so Eq. (22) is applicable. For non-viscous
fluid (η0 = 0), we have μ = −ν = 1/3, but H = 0, so that Eq. (22) is not applicable, and we must
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take account of higher terms in f and h due to the curvature terms to derive ε. For η0 = 0, on the
other hand, S is constant and so, from Eq. (4),

ε ∝ V −(4+n)/(3+n) ∝ (tA − t)−α, (23)

where α ≡ (nμ + 3ν)(4 + n)/(3 + n) = 10/9 for n = 6.
The temperature T (∝ ε1/(n+4)) is expressed as

T ∝ (tA − t)−1/5, (tA − t)−1/9 (24)

for η0 �= 0, = 0, respectively. Accordingly, the temperature change for η0 �= 0 is very rapid, compared
with that for η0 = 0.

Around the epoch when the inner space takes maximum expansion, the above power solution can-
not be used and curvature terms must be considered. Here we specify the epoch tM as the epoch
which is comparatively near the epoch of maximum expansion but when the power solutions are
approximately applicable. In Sect. 4 we consider the anisotropic stage after tM for simplicity and use
the approximate power solutions. In Sects. 5, 6, and 7 we treat the solutions applicable at all epochs
and compare them with the approximate power solutions.

3. Epochs of freeze-out and decoupling of the inner space

While the inner space continues to collapse, the outer space inflates. In order that the expansion of the
outer space may change to the Friedman-like slow one, the inner space must be separated from the
outer space (see Fig. 1). This epoch is called the decoupling (or stabilization) epoch. At this epoch
the size of the inner space is estimated to be comparable with or smaller than the Planck length in
the outer space, so that the space-time may be completely quantized on that scale in the outer space.

Around this epoch, we may have an epoch when the physical state in the inner space may change.
Kolb et al. [12] suggested that classical treatments of space-time and fluids in the inner space may be
questionable around the epoch (t∗) when hT = 1, in which h represents the size of the inner space
and T is related to ε by ε = T 4+n (n = 6). This is because h is comparable with the mean wavelength
of massless particles. This epoch (t∗) is called the freeze-out epoch. Kolb et al. assumed that t∗ is
near the decoupling epoch, and derived the 3-dimensional entropy S3 within the horizon. But they

time
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t M
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Fig. 1. Scale factors of outer and inner spaces.
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found it is impossible for it to reach the expected value ∼1088 in the Guth level [1] if the dimension
n of the inner space is less than 16. Abbott et al. [9,10] found that at t∗ it reaches the expected value,
if n is ∼40.

In the next section we analyze the entropies at t† (which is different from t∗), and derive the con-
dition (A) for S3 = 1088 using classical relativity. Moreover, we also consider the Planck length in
the outer space ( fpl), corresponding to the Newtonian gravitational constant (GN). It is defined in
the connection with G(= κ/8π) by

κ/8π = [h(t†)]
n fpl

2. (25)

Using this relation, we derive the condition (B) that the size of the inner space h(t) is comparable
with or smaller than fpl, and examine the compatibility between conditions A and B.

4. Total entropy S and the 3-dimensional entropy S3

The total entropy S in the multi-dimensional space-time is expressed at the stage of (tA − t) 	 tA

using Eqs. (4) and (17) as

S ∝ (tA − t)−β, (26)

where β ≡ (3 + n)/(4 + n) − (nμ + 3ν) for η0 �= 0. For the non-viscous case, S is constant. The
behavior of S was discussed in Ref. [14] using the inflation and collapse factors of the outer and
inner spaces. The important quantity which is to be noticed directly from the viewpoint of cosmo-
logical observations, however, is not S, but the 3-dimensional entropy S3 within the horizon lh of
3-dimensional outer space.

Here S3 is defined by

S3 = s3(lh)
3, (27)

where the 3-dimensional entropy density s3 is given by s3 = ε
3/4
3 , and the 3-dimensional energy

density ε3 is

ε3 = h(t)nε = h(t)nT n+4. (28)

In contrast to S, S3 increases with time, not only in the viscous case but also in the non-viscous case,
because the common temperature T increases with the decrease of the volume V of the total space
in both cases.

Here and in the following we neglect the factors ≈1 such as a0. Then

(S3)
1/3 = [h(t)T ]

n+4
4 h(t)−1lh, (29)

where the horizon-size lh is

lh = f (t)
∫ t

0
dt ′/ f (t ′). (30)

4.1. Entropy in the freeze-out epoch t∗
At epoch t∗ with h(t∗)T∗ ≡ 1, we have

(S3)∗ = [h(t∗)−1 f (t∗)]3
[∫ t∗

0
dt ′/ f (t ′)

]3 ∼ [(tA − t∗)/(tA − tM)]3(ν−μ)( f/h)M
3, (31)

where we assumed that this epoch t∗ is at the stage of (tA − t) 	 tA.
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In the non-viscous case, we have μ = −ν = 1/3, and

(S3)∗ ∼ [(tA − t∗)/(tA − tM)]−2( f/h)M
3 = [h(t∗)/h(tM)]−6( f/h)M

3, (32)

which is consistent with Kolb et al.’s result—Eq. (5.5) in Ref. [12].
In our viscous case (n = 6), we have μ = 0.345, ν = −0.272, and η0 = 0.225 [cf. Eq. (6)], and

(S3)∗ ∼ [(tA − t∗v)/(tA − tM)]−1.83( f/h)M
3 = [h(t∗v)/h(tM)]−5.38( f/h)M

3, (33)

where we used the notation t∗v to discriminate t∗ in the viscous case from t∗ in the non-viscous case.
Now let us compare quantities at t∗ and t∗v . Using Eq. (24), we have

h(t∗)T (t∗)
h(tM)T (tM)

=
( tA − t∗

tA − tM

)2/9
,

h(t∗v)T (t∗v)

h(tM)T (tM)
=

( tA − t∗v

tA − tM

)0.145
(34)

for η0 = 0, η0 �= 0, respectively. Since h(t∗)T (t∗) = h(t∗v)T (t∗v) = 1 and h(tM)T (tM) is common,
we obtain from these equations

( tA − t∗
tA − tM

)2/9 =
( tA − t∗v

tA − tM

)0.145
, (35)

so that S3 in the non-viscous case is expressed in terms of t∗v as

(S3)∗ ∼
( tA − t∗v

tA − tM

)0.131
( f/h)M

3 = [h(t∗v)/h(tM)]−3.78( f/h)M
3. (36)

By comparing this with Eq. (33), therefore, it is found that (S3)∗ in the viscous case is much larger
than (S3)∗ in the non-viscous case, since h(t∗v)/h(tM) 	 1.

4.2. Entropy at epoch t† (different from t∗)

Now let us derive the conditions A and B suggested in Sect. 3. First we derive S3 at epoch t† with

h(t†)T† ≡ λ (�= 1). (37)

In this case we have

(S3)
1/3 = λ

n+4
4 [h(t†)

−1 f (t†)]
∫ t†

0
dt ′/ f (t ′). (38)

4.2.1. The viscous case (η0 = 0.225). Using Eq. (24) we obtain

λ = [h(t†)/h(tM)]1− 1
5μ h(tM)TM , (39)

with μ = 0.345.
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For S3 at t†, we obtain, neglecting the factors of integrals,

(S3)† ∼ [h(t†)/h(tM)]γ S0, (40)

with γ ≡ −3(1 − ν/μ) = −5.362, where

S0 ≡ λ3(n+4)/4( f/h)M
3 (41)

and we assumed that the epoch t† is at the stage of (tA − t) 	 tA. If we express (S3)† in terms of λ,
we have, by use of Eq. (39),

(S3)† ∼
[
λ/(hT )M

]δ

S0 (42)

with δ ≡ [γ /(1 − 1
5μ

)] = −12.77. Assuming (S3)† = 1088, we have

h(t†)/h(tM) = [(S3)†/S0]1/γ = 10−16.4(S0)
0.186,

λ/(hT )M = [(S3)†/S0]1/δ = 10−6.89(S0)
0.0783.

(43)

Moreover, we obtain from these relations

T†/TM = [λ/(hT )M ][h(t†)/h(tM)]−1 = 109.51(S0)
−0.108. (44)

Next we consider the relations of f and h to the Planck length fpl in the outer space (cf. Sect. 3),
which are derived in Appendix B. In order that the space-time in the outer space can be treated
classically at epoch t†, the condition f†/ fpl � 1 must be satisfied. This condition gives λ > 1.96.
Moreover, h†/ fpl is smaller than 1 if λ < 1.06 × 104. It is found, therefore, that, if λ ∼ 1.06 × 104,
the outer space at epoch t† gets (S3)† = 1088 and is decoupled from the inner space at the same time,
because it has the quantized space-time.

For λ = 1.06 × 104, we obtain, assuming ( f/h)M = 1.5,

S0 = 5.22 × 1030 (45)

from Eq. (41),

h(t†)/h(tM) = 2.06 × 10−11,

λ/(hT )M = 2.28 × 10−5
(46)

from Eq. (43), and

T†/TM = 1.59 × 106 (47)

from Eq. (44). The model-dependent value of ( f/h)M is shown in Sect. 6. Since fpl corresponds
to the Planck temperature Tpl (= 1019 GeV) and h†/ fpl = 1, we have T† = λTpl and TM = 6.67 ×
10−3Tpl. From Eq. (46), moreover, we can also obtain

(hT )M = 3.23 × 108. (48)

4.2.2. The non-viscous case (η0 = 0). Using Eq. (24) we obtain

λ = [h(t†)/h(tM)]2/3h(tM)TM . (49)
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For S3 at t†, we obtain, neglecting the factors of integrals,

(S3)† ∼ [h(t†)/h(tM)]γ S0, (50)

with γ ≡ −3(1 − ν/μ) = −6 and S0 in Eq. (41). If we compare them in terms of λ, we have, by use
of Eq. (49),

(S3)† ∼
[
λ/(hT )M

]δ

S0 (51)

with δ ≡ (3/2)γ = −9. Assuming (S3)† = 1088, we have

h(t†)/h(tM) = [(S3)†/S0]1/γ = 10−14.7(S0)
0.167,

λ/(hT )M = [(S3)†/S0]1/δ = 10−9.78(S0)
0.111.

(52)

Moreover, we obtain from these relations

T†/TM = [λ/(hT )M ][h(t†)/h(tM)]−1 = 104.89(S0)
−0.0556. (53)

Next we consider the relations of f and h to the Planck length fpl in the outer space, which are
derived in Appendix B. In order that the space-time in the outer space can be treated classically
at epoch t†, the condition f†/ fpl � 1 must be satisfied. This condition gives gives λ > 10−5.88.
Moreover, h†/ fpl is smaller than 1 if λ < 46.1. It is found, therefore, that if λ ∼ 46.1, the outer
space at epoch t† gets (S3)† = 1088 and is decoupled from the inner space at the same time, because
it has the quantized space-time.

For λ = 46.1, we obtain, assuming ( f/h)M = 1.5,

S0 = 1.01 × 1013 (54)

from Eq. (41),

h(t†)/h(tM) = 2.94 × 10−13,

λ/(hT )M = 4.57 × 10−9
(55)

from Eq. (52), and

T†/TM = 1.55 × 104 (56)

from Eq. (53). Since fpl corresponds to the Planck temperature Tpl (= 1019 GeV) and h†/ fpl = 1,
we have T† = λTpl and TM = 2.97 × 10−3Tpl. From Eq. (55), moreover, we can also obtain

(hT )M = 1.01 × 1010. (57)

These values of TM and (hT )M give the condition on the thermal state that the multi-dimensional
universe must satisfy at the epoch near the maximum expansion and so at the stage of the early
isotropic expansion.

5. Numerical histories of multi-dimensional universes

In this section let us solve numerically equations of scale factors f (t) and h(t) in the outer and inner
spaces and equations of the energy density ε(t)—given by Eqs. (11) and (13)—at the total stage and
relate their behaviors at the final asymptotic stage (which were treated in the previous section) to the
behaviors at the earliest stage. Here we assume that the inner space has positive curvature (kh = 1)

and the outer space is flat or has negative curvature (k f = 0 or −1).
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Now let us transform variables (t, f, h, ε, p, η) to (t̄, f̄ , h̄, ε̄, p̄, η̄) as follows, for the convenience
of numerical calculations:

t = ζ t̄, f = ζ f̄ , h = ζ h̄, ε = ζ−2ε̄, p = ζ−2 p̄, η = ζ−1η̄, (58)

where ζ is a positive constant and η0, k f , kh are assumed to be invariant. For this transformation, the
forms of Eqs. (11), (12), and (13) are invariant. In this section these equations for the new variables
are solved, where ζ is determined so as to be consistent with the initial condition in the following.

To determine the initial condition at t = ti for solving these equations, we consider the approximate
solutions f (t) and h(t) around the isotropic solution t1/5 (in the limit of small t) as

f = f0t1/5[1 + f1(t)],

h = h0t1/5[1 + h1(t)]
(59)

with constants h0 and f0 (= h0), where we assume f1 	 1, h1 	 1. Here the isotropic solution is
equal to Eqs. (16) and (19) with TI = 0, and ti is a small positive time. Then we obtain, from Eq. (11),

f̈1 = −28 + 24η0

15t
ḟ1 − 2 − 24η0

15t
ḣ1 + 5

3
(1 − k f )

t−2/5

h0
2 ,

ḧ1 = −1 − 12η0

15t
ḟ1 − 29 + 12η0

15t
ḣ1 − (10 − k f )

3

t−2/5

h0
2 ,

(60)

where the last terms come from the positive curvature (kh = 1) in the inner space and the curvature
k f (= 0 or 1) in the outer space, and, from Eq. (13),

κε = 36

25t2

[
1 + 10

3
t ( ḟ1 + 2ḣ1) + 25

12
(5 + k f )

t8/5

h0
2

]
. (61)

Solving these equations, we obtain the following approximate solutions:

f = h0t1/5(1 + f10t8/5),

h = h0t1/5(1 + h10t8/5),
(62)

where

f10 = 125

288 × 13

14 − 12η0 − 4
5(16 + 3η0)k f

1 + η0
h0

−2,

h10 = − 125

288 × 13

25 + 12η0 − 2
5(7 − 6η0)k f

1 + η0
h0

−2,

(63)

and

f10 − h10 = 125 × 3

288

1 − 2k f

1 + η0
h0

−2. (64)

Next, using these solutions, we make six types of initial conditions f , h, ḟ , and ḣ at t = ti which
are discriminated with η0, h0, and ti as

a. (010): η0 = 0, h0 = 1, ti = 0.1,
b. (007): η0 = 0, h0 = 0.7, ti = 0.064,
c. (015): η0 = 0, h0 = 1.5, ti = 0.166,
d. (210): η0 = 0.225, h0 = 1, ti = 0.1,
e. (207): η0 = 0.225, h0 = 0.7, ti = 0.064,
f. (215): η0 = 0.225, h0 = 1.5, ti = 0.166,

where these parameters satisfy the relation h0
−2(ti )8/5 = 0.025. After the transformation (58)

corresponding to these initial conditions, t is dimensionless, while ζ has a dimension of length.
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For these initial values, Eq. (11) was solved numerically using the Runge–Kutta method, and the
result is shown by solid curves for t ≥ ti and by short-dashed curves for t < ti in Figs. 2, 3, 4, 5, 6,
and 7 for k f = 0. The behavior of f and h for k f = −1 is similar to that for k f = 0.

In these solutions we estimated the singular epoch t = tA and derived the power solutions with
f = f A(tA − t)ν , h = h A(tA − t)μ, using it where (μ, ν) = (1/3, −1/3), (0.345, −0.272) for

0.1 0.2 0.3 0.4 0.5 0.6
t

0.2

0.4

0.6

0.8

1

Scale factors

Fig. 2. Scale factors of the outer and inner spaces in a. (010). Solid and short-dashed curves denote the scale
factors f and h for t ≥ ti and < ti , respectively. Long-dashed curves denote the power solutions tangent to f
and h at epoch tA. The thin solid line denotes the possible epoch of dimensional symmetry-breaking.

0.05 0.1 0.15 0.2 0.25 0.3 0.35
t

0.2

0.4

0.6

0.8
Scale factors

Fig. 3. Scale factors of the outer and inner spaces in b. (007). The notation of the curves is as in Fig. 2.

0.2 0.4 0.6 0.8 1
t

0.5

1

1.5

2

Scale factors

Fig. 4. Scale factors of the outer and inner spaces in c. (015). The notation of the curves is as in Fig. 2.
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0.1 0.2 0.3 0.4 0.5 0.6
t

0.25

0.5

0.75

1

1.25

1.5

Scale factors

Fig. 5. Scale factors of the outer and inner spaces in d. (210). The notation of the curves is as in Fig. 2.

0.1 0.2 0.3 0.4
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scal factors

Fig. 6. Scale factors of the outer and inner spaces in e. (207). The notation of the curves is as in Fig. 2.

0.2 0.4 0.6 0.8 1
t

0.5

1

1.5

Scale factors

Fig. 7. Scale factors of the outer and inner spaces in f. (215). The notation of the curves is as in Fig. 2.

η0 = (0, 0.225), respectively. Constants f A and h A are determined so that these power solutions
are tangent to the true solutions at epoch tA. These solutions are shown by long-dashed curves in
Figs. 2, 3, 4, 5, 6, and 7.

12/21

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on July 6, 2014

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2014, 053E01 K. Tomita

Moreover, the factors [appearing in Eqs. (B2) and (B5)]

�0(t) ≡
√

8π

κε
( f/h2)(h/ f )0.667,

�2(t) ≡
√

8π

κε
( f/h2)(h/ f )0.06

(65)

for η0 = 0, 0.225, respectively, are shown as functions of t by solid curves in Figs. 8, 9, 10, 11, 12,
and 13 for k f = 0. The temperature T [= (ε/Nan)

1/10] is also shown by dashed curves in the same
figures. These two quantities �0(t) and �2(t) are invariant for the transformation (58) and so they
can be regarded as quantities on the ordinary scale of (t, f, h, ε, p, η). Moreover, λ, S0 and the ratios
of f , h, and T also, which are determined in the next section using these �0(t) and �2(t), can be
treated as quantities on the ordinary scale.

6. Physical states at the initial and decoupling epochs and the primeval entropy

Let us use the formulation in Appendix B to derive λ [≡ h(t†)T†] and the formulation in Sect. 4.2.2
to derive S0, hM [≡ h(tM)], and TM [≡ T (tM)], where tM is the earliest epoch in the time interval
when each solution can be approximated by the corresponding power solutions. For this purpose
we first determine the epochs tA and tM , and the factors �0 and �2 at epoch tM , ( f/h)M , hi/hM ,

0.2 0.3 0.4 0.5
t

0.75

1.25

1.5

1.75

2

2.25

factor, T

Fig. 8. Factor �0 and temperature in a. (010). The solid and dashed curves denote �0 and T , respectively.

0.15 0.2 0.25 0.3 0.35
t

0.75

1.25

1.5

1.75

2

2.25

factor, T

Fig. 9. Factor �0 and temperature in b. (007). The notation of the curves is as in Fig. 8.
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0.2 0.4 0.6 0.8
t

0.75

1.25

1.5

1.75

2

factor, T

Fig. 10. Factor �0 and temperature in c. (015). The notation of the curves is as in Fig. 8.

0.1 0.2 0.3 0.4 0.5 0.6
t

1.5

2

2.5

3

factor, T

Fig. 11. Factor �2 and temperature in d. (210). The solid and dashed curves denote �2 and T , respectively.

0.1 0.2 0.3 0.4
t

1.5

2

2.5

3

factor, T

Fig. 12. Factor �2 and temperature in e. (207). The notation of the curves is as in Fig. 11.

and Ti/TM using the numerical results. The results are shown in Tables 1 and 2 for k f = 0 and −1,
respectively.

Next, λ, S0, TM , and hM are obtained using the following formulas (derived in Sect. 4) and the
values of �0M , �2M , and ( f/h)M (in Tables 1 and 2).
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0.2 0.4 0.6 0.8 1
t

1.5

2

2.5

3

factor, T

Fig. 13. Factor �2 and temperature in f. (215). The notation of the curves is as in Fig. 11.

Table 1. Model parameters in cases a, b, . . . , f (k f = 0). �0M = �0(tM) and �2M = �2(tM).

model types tA tM �0M , �2M ( f/h)M hi/hM Ti/TM

a. (010) 0.589 0.575 1.63 7.30 2.110 0.9092
b. (007) 0.376 0.370 1.62 8.49 2.279 0.8855
c. (015) 0.977 0.970 1.58 15.34 3.074 0.7996
d. (210) 0.644 0.630 2.30 5.74 2.217 0.7500
e. (207) 0.412 0.410 2.25 13.69 3.585 0.5746
f. (215) 1.068 1.060 2.26 10.65 3.090 0.6222

Case of η0 = 0:

λ = 46.13[�0(tM)]−0.1715(Nan)
−0.08576,

S0 = λ7.5( f/h)M
3,

TM/Tpl = 10−4.89λ(S0)
0.0556,

hM/ fpl = 1014.7S0
−0.167.

(66)

Case of η0 = 0.225:

λ = 1.164 × 104[�2(tM)]−0.1307(Nan)
−0.06536,

S0 = λ7.5( f/h)M
3,

TM/Tpl = 10−9.51λ(S0)
0.108,

hM/ fpl = 1016.4S0
−0.186.

(67)

Moreover, Ti and hi are derived from TM and hM using (hi/hM) and (Ti/TM) (given in Tables 1
and 2). In all cases a, . . ., f, we show their values in Tables 3 and 4 for k f = 0 and −1, respectively, in
the case ofNan = 1. The values of tM were determined due to the comparison between the numerical
solutions ( f and h) and their corresponding power solutions. So, hM and TM depend on the epoch
tM , but hi and Ti do not depend on it.

Here, fi/hi and ti/hi are derived from the relations in Sect. 5 as

fi/hi = (1 + f10ti
8/5)/(1 + h10ti

8/5)  1 + 0.0327(1 − 2k f )/(1 + η0),

hi/ti = h0ti
−4/5(1 + h10ti

8/5)  0.0251−1/2 = 6.325.
(68)
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Table 2. Model parameters in cases a, b, . . . , f (k f = −1). �0M = �0(tM) and �2M = �2(tM).

model types tA tM �0M , �2M ( f/h)M hi/hM Ti/TM

a. (010) 0.582 0.570 2.08 10.05 2.321 0.9155
b. (007) 0.372 0.366 2.08 11.14 2.445 0.8996
c. (015) 0.965 0.958 2.07 19.62 3.251 0.8171
d. (210) 0.643 0.630 3.34 7.92 2.318 0.7568
e. (207) 0.412 0.410 3.34 19.41 3.893 0.5735
f. (215) 1.068 1.060 3.34 14.56 3.299 0.6202

Table 3. Model parameters in cases a, b, . . . , f (k f = 0).

λ S0 103 TM/Tpl 103 Ti/Tpl hM/ fpl hi/ fpl

a 42.42 6.266 × 1014 3.437 3.043 1.694 × 1012 3.564 × 1012

b 42.47 9.946 × 1014 3.532 3.127 1.568 × 1012 3.574 × 1012

c 42.65 6.051 × 1015 3.924 3.138 1.158 × 1012 3.558 × 1012

d 1.044 × 104 2.605 × 1032 9.998 7.498 2.348 × 1010 5.205 × 1010

e 1.047 × 104 3.615 × 1033 13.27 7.626 1.440 × 1010 5.160 × 1010

f 1.046 × 104 1.699 × 1033 12.26 7.629 1.652 × 1010 5.114 × 1010

Table 4. Model parameters in cases a, b, . . . , f (k f = −1).

λ S0 103 TM/Tpl 103 Ti/Tpl hM/ fpl hi/ fpl

a 40.67 1.191 × 1015 3.369 3.084 1.522 × 1012 3.533 × 1012

b 40.68 1.626 × 1015 3.429 3.085 1.445 × 1012 3.533 × 1012

c 40.73 8.968 × 1015 3.924 3.085 1.086 × 1012 3.533 × 1012

d 0.9944 × 104 4.771 × 1032 10.16 7.693 2.098 × 1010 4.864 × 1010

e 0.9941 × 104 6.996 × 1033 13.57 7.782 1.273 × 1010 4.966 × 1010

f 0.9943 × 104 2.958 × 1033 12.37 7.672 1.474 × 1010 4.863 × 1010

Table 5. The primeval total entropies S9 in the cases of k f = 0, −1. The values of 10−77S9 are shown.

model types a b c d e f

10−77S9 (k f = 0) 2.29 × 1013 3.00 × 1013 2.97 × 1013 1.26 1.36 1.26
10−77S9 (k f = −1) 2.87 × 1013 2.88 × 1013 2.88 × 1013 1.81 2.38 1.77

Now let us consider the total entropy S9 within the volume V (= f 3h6) at epoch ti . From Eqs. (1)
and (4), the total entropy S is given by S = 5

4NanV T 9 for n = 6, so that S9 is defined by

S9 ≡ Ti
9( fi

3hi
6) = (Ti hi )

9( fi/hi )
3. (69)

The values in cases a, . . . , f on the ordinary scale are shown in Table 5 for k f = 0 and −1. In the case
of k f = 0 the average values of S9 for η0 = 0 and 0.225 are 2.75 × 1090 and 1.29 × 1077, respec-
tively, and so (S9)η0=0/(S9)η0=0.225 = 2.13 × 1013. In the case of k f = −1 the average values of S9

for η0 = 0 and 0.225 are 2.87 × 1090 and 1.99 × 1077, respectively, and so (S9)η0=0/(S9)η0=0.225 =
1.45 × 1013.

As shown in Appendix C, S9 and the 3-dimensional entropy (S3)† are closely related, and so these
values of S9 are the primeval total entropies necessary at the starting point of multi-dimensional
universes. In the non-viscous case (η0 = 0), entropy S9 equal to ∼ 1090[(S3)†/1088]2 is needed, while
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in the viscous case of η0 = 0.225, only the entropy S9 equal to ∼ 1077[(S3)†/1088]0.71 is needed at
the starting point, and so most entropy is produced by the dissipation.

We assumed Nan = 1 in the above calculations. This factor Nan appears often in the calcula-
tions, as hi/ fpl ∝ (Nan)

0.1074 and Ti/Tpl ∝ (Nan)
−0.1215 for η0 = 0, and hi/ fpl ∝ (Nan)

0.09118

and Ti/Tpl ∝ (Nan)
−0.1182 for η0 = 0.225. But the product does not much depend on Nan as

Ti hi ∝ (Nan)
0.014, (Nan)

0.027, respectively.

7. Dimensional symmetry breaking and the primeval state of
multi-dimensional universes

Kim et al. [2,3] showed in a matrix model of super-string theory that, due to the symmetry-breaking,
the (1 + 3 + 6)-dimensional universe with isotropic expansion changes to that with anisotropic
expansion, in which the 3-dimensional space expands at a larger rate than the 6-dimensional space.
In the present treatment due to classical relativity, such a symmetry-breaking cannot be studied
accurately. From the viewpoint of energy balance, however, we may examine the behavior of the
symmetry-breaking in simplified situations.

7.1. Case of k f = 0

Let us assume that at epoch tbr the symmetry-breaking occurred from the isotropic state with scale
factors f̄ = h̄ (k f̄ = kh̄ = 1) to the anisotropic state with f �= h (k f = 0 and kh = 1), without
change in ḟ / f , ḣ/h, and ε. Then, from Eq. (13), we obtain the following condition for consistency:

18

h̄2
br

= 15

hbr
2 or hbr/h̄br =

√
5/6, (70)

so that

(δh/h̄)br ≡ [(h − h̄)/h̄]br =
√

5/6 − 1 = −0.087. (71)

On the other hand, since we assume that f does not change, i.e. (δ f/ f̄ )br = 0, we have

(δh/h̄ − δ f/ f̄ )br = −0.087. (72)

This difference can be regarded as the difference of f and h from the average at the instant of
symmetry-breaking, which is given by Eq. (64) in Sect. 5:

(δh/h̄ − δ f/ f̄ )br = −125 × 3

288

1

1 + η0
h0

−2(tbr/ti )
8/5ti

8/5. (73)

From Eq. (72) and this relation we obtain

tbr/ti = 1.84(1 + η0)
5/8 = 1.84, 2.09 (74)

for η0 = 0, 0.225, respectively. These epochs (tbr ) are indicated in Figs. 2, . . ., 7 by thin solid lines.

7.2. Case of k f = −1

We assume also in this case that at epoch tbr the symmetry-breaking occurred from the isotropic
state with with scale factors f̄ = h̄ (k f̄ = kh̄ = 1) to the anisotropic state with f �= h (k f = −1 and
kh = 1), without change in ḟ / f , ḣ/h, f , and ε. Then, similarly to the case of k f = 0, we obtain the
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following condition for consistency from Eq. (13):

21

h̄2
br

= 15

hbr
2 or hbr/h̄br =

√
5/7, (75)

so that

(δh/h̄)br ≡ [(h − h̄)/h̄]br =
√

5/7 − 1 = −0.155. (76)

On the other hand, since we assume that f does not change, we have

(δh/h̄ − δ f/ f̄ )br = −0.155. (77)

This difference can be regarded as the difference of f and h from the average at the instant of
symmetry-breaking, which is given by Eq. (64):

(δh/h̄ − δ f/ f̄ )br = −125 × 9

288

1

1 + η0
h0

−2(tbr/ti )
8/5ti

8/5. (78)

From Eq. (77) and this relation we obtain

tbr/ti = 1.57(1 + η0)
5/8 = 1.57, 1.78 (79)

for η0 = 0, 0.225, respectively.
The primeval entropy S9 within the closed 9-dimensional space before the symmetry-breaking is

equal to (S9)i × (h̄/h)br
6 = 1.73(S9)i , where (S9)i is given by Eq. (69).

8. Concluding remarks

In this paper we first derived the 3-dimensional entropy S3 within the horizon, and compared it in
the viscous and non-viscous cases. It was found that the time evolutions of temperature T and S3 in
the viscous case are much larger than those in the non-viscous case. Such a remarkable change in
these quantities is caused by the change in the energy density ε and the viscous dissipation. Next,
we derived the values of f , h, and T at the epoch (t†) satisfying the condition that the 3-dimensional
entropy S3 within the horizon should be ∼ 1088. Then, we examined the condition ( f/ fpl)† � 1,
where fpl is the Planck length in the outer space, and it was found that λ [≡ (hT )†] must be � 1.96
and 10−5.88 in the viscous and non-viscous cases, respectively. It was found, moreover, that, at epoch
t† with λ ∼ 1.06 × 104, 46.1 (different from the freeze-out epoch t∗), the condition (h/ fpl) ∼ 1 is
satisfied at the same time, so that the outer space may be decoupled from the inner space.

Moreover, in Sect. 6 we considered the primeval entropy S9, and found that, for an equal value of
S3, S9 in the viscous case can be much smaller than that in the non-viscous case. If S9 in the universe
at the primeval stage is comparable with the critical value (such as in Table 5), the outer space does
not need any additional 3-dimensional inflation and dissipation after the decoupling epoch. If S9 in
the universe is much smaller than the critical value, on the other hand, the outer space must create an
additional entropy by the 3-dimensional inflation and dissipation after the decoupling epoch, so that
S3 may reach ∼1088.

Here we considered only the viscosity due to the transport of multi-dimensional gravitational
waves. If we consider quantum particle creation [13] and the other transport processes, the viscous
entropy production and S3 may be much larger than those in the present treatment.

Our results were derived using classical relativity and thermodynamics. As the decoupling epoch
may be in the world of the quantum super-string, the results may not hold in the original form, but
may give a qualitative trend of entropy production.
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Appendix A. Imperfect fluid

The energy–momentum tensor of an imperfect fluid is expressed as

T M N = εuM uN + pH M N − ηH M K H N L
[

uK ;L + uL;K − 2

3 + n
gK L�

]

− ζ H M N � − χ(H M K uN + H N K uM)(T;K + T uK ;LuL),

(A1)

where the (4 + n)-dimensional velocity uM satisfies gM N uM uN = −1, and H M N is the projection
tensor defined by

H M N = gM N + uM uN , (A2)

and � denotes uL ;L . From the equation of relativistic radiative transport, we obtain (see Appendix B
of Ref. [14] for details):

η = 4 + n

(3 + n)(5 + n)
εrτ,

ζ = (4 + n)εrτ [1/(3 + n) − (∂p/∂ε)V ]2,

χ = (4 + n)

(3 + n)
εrτ, εr = Nr anT 4+n,

(A3)

where η, ζ , and χ are the shear viscosity, the bulk viscosity, and the heat conductivity, respectively,
τ is the mean free time, and Nr is the number of radiative particle species. For the radiative matter,
we have ζ = 0 and χ does not contribute to our present treatment.1

The gravitational waves are absorbed in imperfect fluids. Their mean free time τ is expressed as

τ = (2κη)−1, (A4)

as shown in Appendix A of Ref. [14].

Appendix B. The Planck length fpl in the outer space

Let us consider the relation of f and h with the Planck length fpl given by Eq. (25).

B.1. The viscous case

From Eq. (25) we get

(
f

fpl

)2

†

=
[

8π

κε
( f 2/h4)

]
M

λ4+n

[
f†h†

−2(tA − t†)

fM hM
−2(tA − tM)

]2

Nan, (B1)

where κε is given by Eqs. (13) and (22). Here, we use Eqs. (41) and (43) and the t-dependence of f
and h, such as f h−2(tA − t) ∝ h−2+(ν+1)/μ. Then we obtain, for n = 6,(

f

fpl

)
†

= 10−1.804

[√
8π

κε
( f/h2)

]
M

λ5.15( f/h)M
0.06(Nan)

1/2 (B2)

1 A misprint was found in the expression for η in the previous paper (Ref. [14]).
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and (
h

fpl

)
†

=
(

h

f

)
†

(
f

fpl

)
†

= 10−29.3λ5/2
(

f

fpl

)
†

. (B3)

Here we estimate
[√

8π
κε

( f/h2)
]

M
( f/h)M

0.06 [≡ �2(tM)] to be 2, since tM is near the epoch of

maximum expansion of the inner space. Its model-dependent value (�2) is shown in Sect. 6. Then,
if we assume ( f/ fpl)† � 1, we get the condition λ � 1.96. But if λ < 1.06 × 104, h/ fpl is smaller
than 1. Here the factor Nan was neglected, because its contribution is small.

B.2. The non-viscous case

From Eq. (25) we get, similarly,

(
f

fpl

)2

†

=
[

8π

κε
( f 2/h4)

]
M

λ4+n

[
f†h†

−2(tA − t†)α/2

fM hM
−2(tA − tM)α/2

]2

Nan, (B4)

where κε is given by Eqs. (13) and (23), and α = 10/9 for n = 6. Here we use Eqs. (41) and (52)
and the t-dependence of f and h, such as f h−2(tA − t)α/2 ∝ h−2+(ν+α/2)/μ. Then we obtain

(
f

fpl

)
†

= 1019.6

[√
8π

κε
( f/h2)

]
M

λ3.33(h/ f )M
0.667(Nan)

1/2 (B5)

and (
h

fpl

)
†

=
(

h

f

)
†

(
f

fpl

)
†

= 10−29.3λ5/2
(

f

fpl

)
†

. (B6)

Here we estimate
[√

8π
κε

( f/h2)
]

M
(h/ f )M

0.667 [≡ �0(tM)] to be 1, since tM is near the epoch of

maximum expansion of the inner space. Its model-dependent value (�0) is shown in Sect. 6. Then, if
we assume ( f/ fpl)† � 1, we get the condition λ � 10−5.88. But if λ < 46.1, h/ fpl is smaller than 1.
On the other hand, h/ fpl = 10−9.7 for λ = 1 (or at epoch t∗), which is consistent with Eq. (5.7) of
Kolb et al. [12].

Thus, if λ [= (hT )†] is comparable with 1, h/ fpl is much smaller than 1 in both cases, and for
η0 = (0.225, 0), we obtain (h/ fpl) ∼ 1 if λ ∼ (1.06 × 104, 46.1).

Appendix C. Dependence of (S9)i on the 3-dimensional entropy (S3)†

In the text we treated only the case when (S3)† = 1088. Here we consider the dependence of (S9)i

on (S3)†/1088 (≡ R), under the condition that h(t†) is equal to the Planck length fpl.

1. The viscous case

From Eqs. (43), we obtain

λ/(hT )M ∝ [(S3)/S0]1/δ, (C1)

where δ = −12.77 and S0 ≡ λ15/2( f/h)M
3. Here, λ is determined by the above condition (that h(t†)

is equal to the Planck length) which is given in Appendix B, but it is independent of S3. Therefore
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we have

(hT )M ∝ R0.0783, (C2)

and, using the ratios hi/hM and Ti/TM in Tables 1 and 2 and the values of μ and ν (which are
independent of S3), we obtain

Ti hi ∝ R0.0783, (C3)

so that

(S9)i = (Ti hi )
9 ∝ R0.7047. (C4)

2. The non-viscous case

From Eqs. (52), similarly, we obtain

λ/(hT )M ∝ [(S3)/S0]−1/9, (C5)

Ti hi ∝ R1/9, (C6)

so that

(S9)i = (Ti hi )
9 ∝ R. (C7)

It is found, therefore, that (S9)i is proportional to (S3)†/1088 (≡ R) for η0 = 0 and the dependence
of (S9)i on R is smaller for η0 = 0.225 than for η0 = 0.
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