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Abstract 

 A new Monte Carlo method to calculate two types of kinetics parameters, the 

effective delayed neutron fraction (eff) and the prompt neutron generation time (), is 

proposed in this paper. The new method uses perturbation techniques in which extra 

delayed neutrons or a fictitious 1/v absorber is added to the unperturbed system to 

calculate the eff or , respectively. In the new method, the perturbation is added as a 

complex-valued perturbation. This paper conjectures that the change in the eigenvalue 

due to the perturbation is accurately approximated by the imaginary part of the 

eigenvalue of the complex-valued perturbed equation. The conjecture is corroborated by 

certain numerical tests presented in this paper. A Monte Carlo calculation algorithm is 

established to solve the complex-valued perturbed eigenvalue equation. One single 

Monte Carlo calculation to solve the complex-valued eigenvalue equation yields highly 

accurate approximations of the exact kinetics parameters with much less computational 

costs compared with the previously proposed method that uses multiple Monte Carlo 
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1. Introduction 

 Although the continuous-energy Monte Carlo method is widely considered a 

versatile calculation tool for particle transport problems, problems remain that the 

Monte Carlo method cannot properly handle. The perturbation calculation and the 

calculation of kinetics parameters, such as the effective delayed neutron fraction (eff) 

and the prompt neutron generation time (), are among the examples of problems that 

must be solved. The difficulties in these calculations stem from the difficulties in the 

calculations of the adjoint flux in a continuous-energy scheme. These difficulties are 

remaining problems that must be overcome to expand the capability of the Monte Carlo 

method. 

 Many studies have been performed on the Monte Carlo method for calculating 

kinetics parameters. A method proposed by Meulekamp and van der Mark (2006) and 

by Nauchi and Kameyama (2005) approximates the adjoint function (i.e., the 

importance of a neutron) with the probability that a neutron causes fission in the next 

generation. Although this method is an approximate estimate for a true adjoint function 

(Nagaya et al., 2010), the kinetics parameters can be obtained using the forward 

calculation without performing the backward calculation. The approximation was 

recently improved by introducing the concept of “iterated fission probability (IFP)”. 

Many papers have been published concerning the works that use the IFP method 

(Raskach and Blyskavka, 2010; Shim et al., 2010; Nauchi and Kameyama, 2010; 
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Kiedrowski et al., 2011; Leppänen et al., 2014). The IFP method extends the fission 

chains up to several generations in the future. A similar concept has been proposed by 

Feghhi et al. (2008). This concept corresponds to a method named “integrated fission 

probability” by Bécares et al. (2014). These methods, IFP and “integrated fission 

probability”, have been reviewed and compared by Bécares et al. (2014). 

 Another approach for calculating kinetics parameters uses the perturbation theory. 

For calculating eff, a fictitious change in the number of delayed neutrons is added to a 

system as a perturbation (Nagaya and Mori, 2011). Then, we can obtain an approximate 

eff of the unperturbed system from the change in keff caused by the perturbation. 

Similarly, for calculating the , a 1/v-absorber is uniformly added to a system as a 

perturbation (Verboomen et al., 2006). An approximate  is estimated from the 

reactivity caused by the 1/v-absorber. To obtain an accurate kinetics parameter, the 

perturbation must be small. However, the Monte Carlo method has difficulties in 

calculating the small difference in keff. Nagaya and Mori (2011) developed a Monte 

Carlo technique for calculating an exact eff by taking the infinitesimally small limit of 

the perturbation using the differential operator sampling technique. 

 The present paper proposes a new method of calculating kinetics parameters based 

on perturbation methods. The new method introduces a complex-valued perturbation 

into an ordinary real-valued eigenvalue equation. The change in keff is accurately (but 

not exactly) provided by the imaginary part of the complex-valued eigenvalue of the 

perturbed equation. In the sections that follow, the theory and numerical examples are 

presented. 

 



 4 

2. Monte Carlo Calculation of the eff 

2.1. Calculation technique of the complex-valued perturbation method 

This section presents how the effective delayed neutron fraction (eff) is calculated 

by the perturbation theory based on the method by Nagaya and Mori (2011). Then, a 

new method in which a complex-valued perturbation is introduced to a transport 

eigenvalue equation is explained. In (Nagaya and Mori, 2011), the eff is obtained by the 

following equation: 
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where )0(k  is the effective multiplication factor of an unperturbed eigenvalue equation, 

and )(ak  is the perturbed effective multiplication factor. The unperturbed eigenvalue 

equation based on the transport theory is as follows: 
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),,( EΩr the neutron flux at position r with energy E and direction Ω , t the 
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macroscopic total cross section, s  the macroscopic scattering cross section, 

mf , the macroscopic fission cross section of nuclide m, )(Ep
m the prompt 

neutron spectrum of nuclide m, )(, Ed
jm  the delayed neutron spectrum of nuclide m 

and delayed neutron family j, )(Ep
m the number of prompt neutrons per fission of 

nuclide m, and )(, Ed
jm  the number of delayed neutrons per fission of nuclide m and 

delayed neutron family j. The perturbed eigenvalue, )(ak , in Eq. (1) is the eigenvalue 

of the perturbed eigenvalue equation, as shown below: 
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The adjoint equation for the unperturbed system is as follows: 

),,(
)0(

1
),,( *** ES

k
E f ΩrΩrH  ,                (11) 

where 

,)',',(),,(''

),,(),(),,(

),,(

4

*

**

**

  










EEEdEd

EEE

E

s

t

ΩrΩΩrΩ

ΩrrΩrΩ

ΩrH

       (12) 


j

d
jf

p
ff ESESES ),,(),,(),,( *

,
**

ΩrΩrΩr ,          (13) 



 6 

,);',',()(''
4

),()(
);,,(

4

*,*
   
m

p
m

mf
p
mp

f aEEdEd
EE

aES






ΩrΩ

r
Ωr    (14) 

   
m

d
jm

mf
d

jmd
jf aEEdEd

EE
aES








4

*
,

,,*
, );',',()(''

4

),()(
);,,( ΩrΩ

r
Ωr . (15) 

Using Eqs. (7) and (11), we obtain the following equation: 
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where the angle brackets denote integration over all phase space. Thus, the limit of Eq. 

(16) as a approaches zero becomes the following equation: 
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Eq. (1) gives an exact eff if the limit as a approaches zero can be exactly obtained. In 

(Nagaya and Mori, 2011), the limit is taken by the introduction of the differential 

operator sampling technique. 

 An approximate eff can be calculated using the left-hand side of Eq. (16) for a 

non-zero a, as shown below: 

a

kak

k
eff

)0()(

)0(

1 
 .                       (18) 

A Monte Carlo calculation of the eff using Eq. (18) would require small statistical 

uncertainties for two independent Monte Carlo calculations. Calculating an accurate eff 

requires that the perturbation parameter a be small enough to keep the perturbation 

within the range of linearity. As a becomes smaller, the computational cost for 

calculating an accurate eff increases. However, if the linearity is kept for a larger a, then 
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the requirement for the small uncertainties is relaxed, and the computational cost may 

be reduced. This topic is mentioned later in this paper. 

 The method of Eq. (18) is similar to the so-called “prompt method” (Bretscher, 

1997; Meulekamp and van der Marck, 2006; Carta et al., 2011). The “prompt method” 

approximates the eff as follows: 

)0(
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eff  ,                          (19) 

where pk  is the eigenvalue of Eq. (2) calculated without delayed neutrons (i.e., 

d
jm, 0). The “prompt method” is identical to Eq. (18) when 1a . The difference 

between pk  and )0(k  is less than or comparable to 0.008. In a fuel composed of 

239
Pu, the difference is much smaller. The computational cost of the “prompt method” 

may be prohibitively large for obtaining the eff within an accuracy of pcm order. 

Although the degree of perturbation in Eq. (18) can be arbitrarily chosen and expanded, 

the perturbation in the “prompt method” is always fixed. 

 The present paper proposes a new method in which a complex-valued perturbation 

is added to the unperturbed eigenvalue equation, Eq. (2), as shown below: 
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where 1i , and the tilde denotes a complex-valued quantity. The authors of the 

present paper pose a conjecture that the imaginary part of the complex-valued 

eigenvalue )(
~

ak  (i.e., )](
~

Im[ ak ) represents an extremely close approximation of the 

difference in k (= )0()( kak  ) caused by the perturbation. The real part of )(
~

ak  (i.e., 

)](
~

Re[ ak ) may represent the unperturbed eigenvalue, )0(k . The mathematical 

interpretation of this conjecture cannot be presented at this stage. The conjecture is to be 

corroborated by scrutinizing the results of some numerical tests shown below. 



 8 

 The advantage of this method is that the difference in k can be obtained by one 

single eigenvalue calculation. The statistical uncertainty of )](
~

Im[ ak  entailed by the 

Monte Carlo method is expected to be small, with a reasonable computational cost. 

Thus, the accuracy of the eff calculated using this newly proposed method may be 

comparable to that calculated using other methods, such as deterministic methods or 

other Monte Carlo methods (e.g., IFP and Nagaya’s method). 

 

2.2. Verification by a deterministic method 

 Before applying the new method to the Monte Carlo method, this method is applied 

to a deterministic method to investigate how accurately the perturbed eigenvalue can be 

estimated. The following 2-group diffusion equation is solved for the verification: 
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where g =1, 2; gD the diffusion coefficient; ag the absorption cross section; 

 gg
s the group transfer cross section from the g th group to the gth group; and 

1-group delayed neutron family is assumed. This complex-valued eigenvalue equation 

can easily be solved with the conventional numerical algorithm for solving an ordinary 

real-valued equation. It is only necessary to declare relevant variables as complex 

numbers in the FORTRAN statement. 

 A cylinder of infinite height is used for the numerical tests. The cylinder is 

composed of two regions. The inner region has a diameter of 40 cm, which is 

surrounded by an annular region with an outer diameter of 80 cm. Table 1 lists group 

constants that are fabricated for the numerical tests. The delayed neutron fraction 

( )/( pdd   ) is 0.002 in the inner region and 0.007 in the outer region. The 
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diffusion equation is solved with the finite difference method. The initial guesses of the 

flux are unity for the real and imaginary parts throughout the region. The initial guesses 

of the eigenvalue are unity and 0 for the real and imaginary parts, respectively. Fig. 1 

shows the convergence criteria of the flux and eigenvalues versus the outer iteration 

number for a =1. The convergence criteria are defined as follows: 
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where n is the outer iteration number, and i denotes the mesh point. The outer iteration 

is repeated until all convergence criteria are less than 10
-7

. Fig. 2 shows the converged 

flux distributions for a =1. In Fig. 2, the real parts are almost the same as the imaginary 

parts in both energy groups. However, the ratio of the real part to the imaginary part is 

arbitrary, depending on the initial guesses. The final results of the eigenvalues are 

completely free from the effect of the initial guesses for the eigenvalues and for the flux 

distributions. 

The calculated real part and imaginary part of )(
~

ak  in Eq. (21) are provided in 

Table 2. For comparison, an ordinary real-valued diffusion equation where ia  in Eq. 

(21) is substituted by a is solved to obtain )(ak . The difference between the eigenvalue 

)(ak  and the unperturbed eigenvalue )0(k  is compared with )](
~

Im[ ak  in Table 2. 

The real part of )(
~

ak , )](
~

Re[ ak , remains almost constant for a smaller perturbation. 
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The agreement between )](
~

Im[ ak  and )0()( kak   becomes better as a becomes 

smaller. The effective delayed neutron fraction is calculated by the following equations: 
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which are compared with the eff using Eq. (18) and with exact eff using Eq. (17) in 

Table 3. Fig. 3 shows the eff values calculated using Eqs. (18) and (27) as a function of 

a. The eff calculated using Eq. (18) remains almost unchanged for a larger perturbation 

(a ~ 1) compared with the exact eff. The results in Table 3 suggest that Eq. (18) could 

yield a relatively good approximation of the eff, even for a larger perturbation where 

the difference in the eigenvalue k is large enough to obtain a statistically accurate 

estimation of eff with a reasonable computational cost. Eq. (18) provides a good 

approximation for a case where the delayed and prompt sources form similar 

distributions. The numerical tests in Table 3 may correspond to such a situation. Eqs. 

(26) and (27) provide almost the same results, except for an extremely large 

perturbation because )](
~

Re[ ak  is extremely close to )0(k , except for a larger 

perturbation. The use of Eq. (27) is preferable to Eq. (26) because the eff can be 

obtained using one single calculation, which can omit the calculation of the unperturbed 

eigenvalue )0(k . 

[Fig. 1], [Fig. 2], [Fig. 3], [Table 1], [Table 2], [Table 3] 

2.3. Monte Carlo calculation method for solving a complex-valued equation 

 Next, the treatment of the complex-valued transport equation, Eq. (20), with the 

Monte Carlo technique is discussed. A Monte Carlo method that addresses 
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complex-valued neutron transport equations was developed by Yamamoto (2012) to 

implement the B1 approximation method. Then, Yamamoto (2013, 2014) extended the 

complex-valued Monte Carlo method to reactor noise analyses to solve the frequency 

domain transport equation. The algorithm of the complex-valued Monte Carlo 

calculation can be applied to kinetics parameter calculations. In the algorithm, the 

complex-valued particle weight can be positive and negative. The negative weights 

must be cancelled by the positive weights using an appropriate weight cancellation 

technique. However, the cancellation of the positive and negative weights cannot occur 

without introducing an intentional weight cancellation technique because no two 

neutrons undergo collision at exactly the same point. Thus far, certain techniques have 

been proposed for this weight cancellation (Booth and Gubernatis, 2010; Yamamoto, 

2011; Bo and Petrovic, 2012). This paper uses the “binning procedure” for the weight 

cancellation (Yamamoto, 2009; Yamamoto, 2011). The entire region where fission can 

occur is divided into many small regions (bins). Fission sources with positive and 

negative weights accumulate in the bins. If the size of each bin is small enough, then the 

bias caused by the binning procedure can be negligibly small. The positive and negative 

weights in each bin are summed (cancelled) at the end of each cycle. 

The calculation flow for the eff is shown below: 

(1) The entire region where fission can occur is divided into small bins. 

(2) At the beginning of each cycle, particles are started from the fission source sites 

determined from the fission source distribution inherited from the previous cycle. In 

the first cycle, a user-specified initial source distribution, which can be real or 

complex numbers, is used. The particle weights are always complex numbers after 

the second cycle even when a real-valued initial source distribution is used in the 

first cycle. The energy of the starter particle is determined as follows: First, whether 
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the starting neutron is delayed or prompt is decided. If 
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then the neutron is a delayed neutron, otherwise, the neutron is a prompt neutron, 

where  is a uniform pseudo random number from [0, 1], and )/( pdd   . 

The energy is determined from 
d  or 

p , depending on whether the neutron is a 

delayed or prompt neutron, respectively. The weight of the nth starting particle in 

the kth bin is ks
n

s WW ,

~~
  for a prompt neutron and is )1/()1(

~~
, aaiWW ks

n
s   

for a delayed neutron, where ksW ,

~
 is a complex-valued starting weight in the kth 

bin. ksW ,

~
 is defined later. 

(3) The particles are tracked in the same manner as conventional real-valued transport 

problems. 

(4) At each collision site, the number of sources used for the next cycle is estimated as 

follows: 
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where the index k stands for a bin number,   is summed over all collisions in a 

cycle, and W
~

 is a complex-valued particle weight before the  th collision. As 

stated above, the tilde denotes a complex number. ,
~

kS  can also be obtained by the 

track length estimator as follows: 

 WtS kkfdpk

~
)(

~
,,,   ,                   (30) 

where ,kt  is a track length in the kth bin and in the  th trajectory.  

(5) At each collision site, both the real and imaginary parts of the complex-valued 

weight are reduced from the probability of absorption as follows: 
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where W
~
= the weight after the weight reduction at the  th collision site. 

(6) The Russian roulette game is separately applied to the real and imaginary parts 

when either or both ]Re[ W   and ]Im[ W   are less than a prescribed lower 

weight boundary. When either the real or imaginary part is killed but the other part 

still survives, then the weight is continually transported until both parts are 

simultaneously killed. The weight of an imaginary part is generally much smaller 

than that of a real part. The lower weight boundary of the imaginary part should be 

smaller than that of the real part. As the perturbation parameter a becomes smaller, 

]Im[ W  becomes smaller as well. Thus, the lower weight boundary for the 

imaginary part must be adjusted depending on the parameter a.  

(7) After all of the random walk processes within one cycle are completed, the 

complex-valued eigenvalue is estimated as follows: 
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where   is summed over all collisions in the current cycle, and n is summed over 

all starter fission sources of the current cycle inherited from the previous cycle. The 

denominator is a sum of the weights of all starting particles in the cycle. Again, 

)(
~

ak  can be obtained using the track length estimator. 

(8) The fission sources used for the next cycle are obtained as follows: The number of 

starting particles in the kth bin for the next cycle is determined using the following 

equation: 

      1,
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where Int(·)= the integer part,   ,
~~

kk SS , and   is summed over all collisions 

in the kth bin within the cycle. ksW ,

~
 used in the step (2) is provided by the 

following equation: 

M
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n
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, ,                         (34) 

where N is the nominal number of source particles per cycle, and  k knM . 

Although the total number of starting particles for the next cycle is M rather than N, 

the weight is normalized as if N particles started in each cycle. The starting particles 

are uniformly distributed within the bin. 

 

2.4. Numerical examples of eff calculations with the Monte Carlo method 

Using the new Monte Carlo calculation method explained above, eff calculations 

were performed for cylindrical geometries of infinite height. This new method has not 

yet been implemented into a production Monte Carlo code. A simple test program has 

been developed to perform the numerical tests. For the numerical examples, 3 energy 

group constants were prepared with the standard reactor analysis code SRAC (Okumura 

et al., 2007). The first example is composed of a low-enriched light-water moderated 

UO2 fuel rod array surrounded by a light-water reflector. The outer diameter of the fuel 

rod is 1.25 cm. The square lattice pitch is 1.956 cm, which corresponds to a 

water-to-fuel volume ratio of 1.83. The region of the fuel rod array has a diameter of 

24.4 cm, and the thickness of the light-water reflector is 30 cm. The 3 group constants 

of the homogenized UO2 fuel rod array and of the light-water reflector are provided in 

Table 4. The scattering was assumed isotropic, and up-scattering was neglected. 

The eigenvalue calculations with a complex-valued perturbation were performed 

with 50,000 neutrons per cycle, skipping 20 cycles and running 2,000 active cycles. The 
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unperturbed and perturbed eigenvalues, )0(k  and )(ak , were calculated with 50,000 

neutrons per cycle, skipping 20 cycles and running 10,000 active cycles. As stated in 

Sec. 2.2, the imaginary part in the initial source distribution can be arbitrary. In this 

paper, the imaginary part is tentatively set to 0 to see how the real-valued initial source 

distribution works. The lower weight boundaries for the Russian roulette game were 

0.001 and 0.0001 for the real part and for the imaginary part, respectively. The 

homogenized fuel region was divided into 854 concentric rings where the positive and 

negative weights were cancelled. As a reference for comparison with a deterministic 

method, the discrete ordinates transport calculation code DANTSYS (Alcouffe et al., 

1995) was used to calculate the exact eff defined by Eq. (17), with the same group 

constants. The accuracy of this new method has already been demonstrated by the 

deterministic diffusion calculations in Sec. 2.2. The purpose of the numerical examples 

focuses on how efficiently the new method calculates the eff compared with two 

independent Monte Carlo calculations. The calculated results are provided in Table 5 

for a = 0.1, 0.5, 1.0, 1.5, and 3.0. The relative figure of merit, which is defined by 

1/(cpu time)/(square of one fractional standard deviation), is provided for each eff. The 

newly developed method (Eq. (27)) can provide an extremely good estimate of the eff 

compared with the exact eff calculated using the deterministic method. Furthermore, the 

newly developed method outperforms the method using Eq. (18) in terms of the 

computational efficiency. In this numerical example, the linearity between a and 

)0()( kak   is kept for a larger a. Thus, a relatively good eff can be obtained by Eq. 

(18). However, if the linearity were kept only for a smaller perturbation, then Eq. (18) 

could no longer be available. In contrast, the newly developed method can provide an 

accurate eff with a small statistical uncertainty for a small perturbation. 

[Table 4], [Table 5] 
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The next example addresses a fast system where a metal plutonium (
239

Pu:
240

Pu= 

95.3 wt%:4.7 wt%) cylinder is surrounded by a graphite reflector. The region of the 

metal fuel has a diameter of 4.12 cm, and the thickness of the graphite reflector is 20 cm. 

The fuel region was divided into 268 concentric rings for the weight cancellation. The 

3-group constants for this example are provided in Table 4. The calculations were 

performed in the same manner as in the previous example. The results are shown in 

Table 6 for a = 0.1, 0.5, 1.0, 3.0, and 10.0. Although the eff of a plutonium system is 

much smaller than that of a uranium system, this value can be accurately estimated 

using the newly developed method with a small statistically uncertainty. 

[Table 6] 

3. Monte Carlo Calculation of  

3.1. Theory of complex-valued perturbation method 

 Verboomen et al. (2006) proposed a method for calculating a prompt neutron 

generation time  without an explicit solution for the adjoint flux. In this method, a 

fictitious 1/v-absorber is uniformly introduced in the system. The transport eigenvalue 

equation with an introduced 1/v-absorber is as follows: 
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where )(E  the velocity of a neutron with energy E, and c = the parameter for 
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We take the inner product of Eq. (35) with the adjoint flux in the unperturbed system 

(i.e., the solution of Eq. (11)). Then, we take the inner product of Eq. (11) with 

);,,( cEΩr  of Eq. (35), and subtract one inner product from the other. As a result, we 

obtain the following equation: 
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The limit of Eq. (39) as c approaches zero becomes the following equation: 
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.         (40) 

If the parameter c is small enough, then an approximate  value can be obtained using 

the following equation: 











)0(

1

)(

11

kckc
 .                        (41) 

This method can be easily implemented into Monte Carlo calculation codes, with minor 

modifications. However, if the linearity between c and )0(/1)(/1 kck  (= reactivity due 

to adding the 1/v-absorber) does not hold for a larger c, then the small reactivity must be 

calculated with a high accuracy by spending much computational resources. 

Next, the newly developed method for eff calculations is applied to  calculations. 

For  calculations, the following complex-valued transport equation is solved: 

);,,(
~
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~

)(
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~
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ck
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cE f ΩrΩrΩrH  


 ,        (42) 
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where the tilde denotes a complex-valued quantity. The Monte Carlo algorithm for 

solving Eq. (42) is almost identical to that for eff. Thus, the Monte Carlo algorithm for 

 calculations can be realized by setting a = 0 in the calculation flow in Sec.2.3. 

However, the second term on the left-hand side of Eq. (42) must be considered in the 

random walk process of the Monte Carlo calculation for . This technique has already 

been established for B1 approximation calculations and for frequency domain 

calculations (Yamamoto, 2012; Yamamoto, 2013; Yamamoto, 2014). Due to the second 

term on the left-hand side of Eq. (42), the particle weight continuously changes as the 

particle flies. The weight change rate of a particle that flies an infinitesimal distance ds 

is described by the following equation: 

ds
E

ci

W

Wd

)(
~

~


 .                         (43) 

After the particle flies a distance s  in the  th flight path, the initial weight W
~

 

changes to the following equation: 
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.                    (44) 

Because the complex-valued weight continuously changes as the particle moves, the 

product of the track length and weight is provided by the following equation: 
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.    (45) 

Thus, Wtk

~
,  in Eq. (30) is replaced by T

~
 of Eq. (45). The free flight distance is 

sampled as usual by tn  / , where  is a uniform pseudo random number from [0, 

1]. The effect of )(/ Ec   is already included in Eq. (44). Thus, )(/ Ec   is not used 

for sampling the next collision points (Yamamoto, 2012). 
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3.2. Verification using a deterministic method 

 For verification of the newly developed method for  calculations, the following 

2-group complex-valued diffusion equation was solved: 

  .0
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where g =1, 2. Numerical tests were performed for a cylindrical fuel with a diameter of 

65 cm, which was surrounded by an annular reflector with an outer diameter of 130 cm. 

The 2 group constants used for the calculations are provided in Table 7. The calculated 

real and imaginary parts of )(
~

ck  of Eq. (46) are provided in Table 8. The prompt 

neutron generation time  was estimated using three methods. One method is an exact 

 calculated by the perturbation theory as defined in Eq. (40). The second method uses 

Eq. (41) where an approximate  is calculated using the change in eigenvalues. The 

third method is provided by the following equation: 















kckckc 
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 .               (48) 

The formulation of Eqs. (47) and (48) is found through trial and error such that the  is 

as close as possible to the exact value. Refer to the Appendix for the derivation of Eq. 

(48). This formulation yields an almost constant and exact  regardless of parameter c, 

as shown in Table 8. In contrast, the approximate  obtained by Eq. (41) deviates from 

the exact value as the perturbation becomes larger. 

[Table 7], [Table 8] 
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3.3. Numerical examples of  calculations using the Monte Carlo method 

 The two test problems for the eff in Sec. 2.4 were used again for the numerical tests 

of  calculations with the newly developed Monte Carlo method. The calculational 

conditions of the Monte Carlo calculations were identical to those conditions in Sec. 2.4. 

The calculated results of the  for the UO2 fuel rod array for c = 20, 40, 80, 100, and 

200 are provided in Table 9. For the plutonium metal, the results for c = 300, 500, 1000, 

2000, and 4000 are provided in Table 10. For comparison, DANTSYS code (Alcouffe 

et al., 1995) was used for calculating the exact  by Eq. (40) with the same group 

constants. For both the thermal and fast systems, the  values calculated using the 

newly developed method agree well with the exact one calculated using the 

deterministic method. The newly developed method outperforms the method using Eq. 

(41) in terms of the computational efficiency. 

[Table 9], [Table 10] 

4. Conclusions 

 This paper proposes a new method in which a complex-valued quantity is added to 

the transport eigenvalue equation as a perturbation for the kinetics parameter calculation. 

For the eff calculation, this paper adopts a perturbation method proposed by Nagaya 

and Mori (2011). An exact eff can be obtained by taking the infinitesimally small limit 

of the perturbation. An accurate approximation to the exact eff can be obtained for a 

small perturbation. However, the previously proposed Monte Carlo method requires a 

large computational cost for an accurate estimation of the approximate eff because the 

difference in two eigenvalues calculated by two independent Monte Carlo runs must be 

obtained with a small statistical uncertainty. The new method proposed in this paper can 

provide the perturbed and unperturbed eigenvalues using one single Monte Carlo run, 

thereby achieving high computational efficiency. 
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 For the  calculation, this paper adopts a perturbation method proposed by 

Verboomen et al. (2006) in which a 1/v-absorber is homogenously added in an 

unperturbed system. Again, the newly proposed method in this paper can provide an 

extremely accurate  with much less computational cost. 

 The proposed method is based on a conjecture that the real part and imaginary part 

of the eigenvalue of a complex-valued eigenvalue equation are close approximations to 

the unperturbed eigenvalue and to the change in the eigenvalue due to the perturbation, 

respectively. The mathematical verification of the conjecture has not been presented in 

this paper. The proof will be one of our future works to strengthen the basis of the 

proposed method. Some numerical examples are presented to corroborate this 

conjecture. 

A technique that uses complex-valued weights has already been implemented into 

the MCNP code (Briesmeister, 2000) by Yamamoto (2012). Thus, the development of a 

viable method for weight cancellation or a novel method for avoiding weight 

cancellation must be performed to bring the new method into a production Monte Carlo 

code. 

  

Appendix 

 The derivation of Eq. (48) is presented in this Appendix. The inverse of )(
~

ck  is 

defined as follows: 
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We assume that the unperturbed and perturbed keff values are approximated as ]
~

Re[/1   

and ])
~

Im[]
~

/(Re[1   , respectively. As a result, we obtain k , which is the 

difference of keff due to the addition of 1/v absorber, as follows: 
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Figure legends 

Fig. 1 Convergence criteria for eigenvalue and flux versus outer iteration number for a 

= 1. 

Fig. 2 Converged flux distributions by the complex-valued diffusion calculation for a = 

1. 

Fig. 3 eff by Eqs. (18) and (27) as a function of a. 



 

 

 

 

Fig. 1 Convergence criteria for eigenvalue and flux versus outer iteration number for a = 1. 
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Fig. 2 Converged flux distributions by the complex-valued diffusion calculation for a = 1. 
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Fig. 3 eff by Eqs. (18) and (27) as a function of a. 
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Table 1  2-group constants for eff calculation. 

 

 Inner region Outer region 

1D (cm) 1.111 1.190 

2D (cm) 0.1667 0.1587 

1f  (cm
-1

)  0.005 0.001 

2f  (cm
-1

) 0.04 0.036 

1a  (cm
-1

) 0.013 0.005 

2a  (cm
-1

) 0.09 0.096 

21
s  (cm

-1
) 0.00574 0.055 

12
s  (cm

-1
) 0 0 

p  2.994 2.979 

d  0.006 0.021 

)/( dpp    0.002 0.007 

p
1  0.98 0.98 

p
2  0.02 0.02 

d
1  0.5 0.5 

d
2  0.5 0.5 

 

 

 

Table1



Table 2 Real part and imaginary part of eigenvalues of the diffusion equation, Eq. (21), and 

comparison with the direct eigenvalue calculations. 

 

a )](
~

Re[ ak  )](
~

Im[ ak  )0()( kak   

0 1.00686 0 0 

0.01 1.00686 5.1658E-5
a
 5.1600E-5 

0.05 1.00686 2.5829E-4 2.5830E-4 

0.1 1.00682 5.1658E-4 5.1670E-4 

0.5 1.00682 2.5829E-3 2.5859E-3 

1 1.00685 5.1658E-3 5.1780E-3 

2 1.00681 1.0332E-2 1.0380E-2 

3 1.00675 1.5499E-2 1.5607E-2 

5 1.00656 2.5849E-2 2.6132E-2 

10 1.00563 5.1707E-2 5.2843E-2 

50 0.97486 2.6599E-1 2.8271E-1 
a
 Read as 5.1658×10

-5
 

 

 

Table2



Table 3 Comparison of eff (pcm) by Eqs. (26), (27), and (18) with the exact one. 

 

a Exact (Eq. (17)) Eq. (26) Eq. (27) Eq. (18) 

-1 

513.1 

513.1 513.1 511.8
*
 

0.01 513.1 513.1 512.4 

0.05 513.1 513.1 513.1 

0.1 513.1 513.1 513.1 

0.5 513.1 513.1 513.7 

1 513.1 513.1 514.3 

2 513.1 513.1 515.5 

3 513.1 513.2 516.7 

5 513.5 513.6 519.1 

10 513.6 514.2 524.8 

50 528.4 545.7 561.6 
*
prompt method 

Table3



Table 4  3-group constants for UO2 fuel rod array, light-water reflector, Pu metal, and 

graphite reflector 

 

 
UO2 fuel rod 

array 

Light-water 

reflector 
Pu metal 

Graphite 

reflector 

1t  (cm
-1

) 0.29829 0.33207 0.28573 0.21053 

2t  (cm
-1

) 0.83334 1.1265 0.35423 0.45009 

3t  (cm
-1

) 1.6389 2.7812 0.62448 0.53500 

1f  (cm
-1

)  0.0030586 ― 0.072424 ― 

2f  (cm
-1

) 0.0021579 ― 0.052973 ― 

3f  (cm
-1

) 0.056928 ― 0.13267 ― 

1a  (cm
-1

) 0.003385 0.00030500 0.073056 0.00013890 

2a  (cm
-1

) 0.11895 0.00036990 0.064640 0.0000017 

3a  (cm
-1

) 0.086180 0.018250 0.022681 0.000021 

21
s  (cm

-1
) 0.073843 0.10464 0.029374 0.029672 

32
s  (cm

-1
) 0.043803 0.097961 0.00030767 0.015913 

p  2.3831 ― 3.1934 ― 

d  0.016905 ― 0.00662 ― 

p
1  0.88149 ― 0.77541 ― 

p
2  0.11851 ― 0.22362 ― 

p
3  0 ― 0.00097120 ― 

d
1  0.41461 ― 0.16598 ― 

d
2  0.58539 ― 0.81806 ― 

d
3  0 ― 0.015953 ― 

1 (cm/s) 1.6674×10
9
 1.6674×10

9
 1.9128×10

9
 1.9128×10

9
 

2 (cm/s) 1.7373×10
7
 1.7373×10

7
 6.9765×10

8
 6.9765×10

8
 

3 (cm/s) 3.4685×10
5
 3.4685×10

5
 1.6899×10

7
 1.6899×10

7
 

 

Table4



Table 5 Comparison of eff (pcm) by Eq. (27) and Eq. (18) with the exact one (UO2 fuel rod array) 

 

a )](
~

Re[ ak  )](
~

Im[ ak  
eff (pcm) 

by Eq. (27) 
)0()( kak  c 

eff (pcm) 

by Eq. (18) 

eff (pcm) by 

DANTSYS

0.1 
1.001556 

±0.000057 

7.564E-4
a
 

±1.5E-6
b
 

755.3 

±1.5 (157)
d
 

― ― 

756.7 

0.5 
1.001534 

±0.000058 

3.7893E-3 

±3.4E-6 

756.7 

±0.7 (729) 

0.003726 

±3.6E-5 

744.1 

±7.1 (1) 

1.0 
1.001517 

±0.000057 

7.5785E-3 

±4.8E-6 

756.7 

±0.5 (1461) 

0.007556 

±3.6E-5 

755.4 

±3.6 (4) 

1.5 
1.001604 

±0.000058 

1.1363E-2 

±6E-6 

756.3 

±0.4 (2297) 

0.011417 

±3.6E-5 

756.0 

±2.3 (9) 

3.0 
1.001528 

±0.000058 

2.2721E-2 

±8E-6 

756.2 

±0.3 (4534) 

0.027400 

±3.6E-5 

756.0 

±1.2 (36) 

-1.0
e
 ― ― ― 

-0.007592 

±3.5E-5 

758.0 

±3.5 (4) 
a 
Read as 7.564×10

-4
. 

b
 one standard deviation 

c )0(k 1.001537±0.000025 
d 

Relative figure of merit with respect to “eff by Eq. (18) and a = 0.5” 
e
 “prompt method” 

 

Table5



Table 6 Comparison of eff (pcm) by Eq. (27) and Eq. (18) with the exact one (Pu metal) 

 

a )](
~

Re[ ak  )](
~

Im[ ak  
eff (pcm) 

by Eq. (27) 
)0()( kak  c 

eff (pcm) 

by Eq. (18) 

eff (pcm) by 

DANTSYS

0.1 
0.999597 

±0.000065 

2.121E-4
a
 

±9E-7
b
 

212.1 

±0.9 (8.9E+2)
d
 

― ― 

212.6 

0.5 
0.999524 

±0.000065 

1.0620E-3 

±2.0E-6 

212.5 

±0.4 (4.3E+3) 

0.001069 

±4.0E-5 

213.8 

±8.0 (1) 

1.0 
0.999466 

±0.000064 

2.1239E-3 

±2.9E-6 

212.5 

±0.3 (9.1E+3) 

0.002135 

±4.7E-5 

213.6 

±4.7 (3) 

3.0 
0.999519 

±0.000063 

6.3803E-3 

±5.1E-6 

212.8 

±0.2 (2.7E+4) 

0.006383 

±4.0E-5 

212.9 

±1.3 (18) 

10.0 
0.999438 

±0.000065 

2.1238E-2 

±9E-6 

212.5 

±0.1 (7.1E+4) 

0.021256 

±4.0E-5 

212.7 

±0.4 (397) 

-1.0
e
 ― ― ― 

-0.002146 

±4.0E-5 

214.7 

±4.0 (4) 
a 
Read as 2.121×10

-4
. 

b
 one standard deviation 

c )0(k 0.999516±0.000028 
d 

Relative figure of merit with respect to “eff by Eq. (18) and a = 0.5” 
e
 “prompt method” 
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Table 7  2-group constants for  calculation. 

 

 Inner region Outer region 

1D (cm) 1.4529 0.90541 

2D (cm) 0.19718 0.12565 

1f  (cm
-1

)  0.0026803 ― 

2f  (cm
-1

) 0.064620 ― 

1a  (cm
-1

) 0.0096419 0.00046006 

2a  (cm
-1

) 0.11741 0.018881 

21
s  (cm

-1
) 0.022521 0.058421 

12
s  (cm

-1
) 0 0 

p  2.3832 ― 

d  0.0168 ― 

p
1  0.98 ― 

p
2  0.02 ― 

d
1  0.5 ― 

d
2  0.5 ― 

1  (cm/s) 2.8×10
7
 2.8×10

7 

2  (cm/s) 3.0×10
5
 3.0×10

5 

 

Table7



Table 8  Comparison of  by three methods. 

 

c )](
~

Re[ ck  )](
~

Im[ ck  
 (s)  

by Eq. (47) 

 (s)  

by Eq. (41) 

 (s)  

by Eq. (40)

0 0.987184 0 ― ― 

2.7610E-5 

10 0.987184 -2.6907E-4
a
 2.7610E-5 2.7634E-5 

30 0.987183 -8.0721E-4 2.7610E-5 2.7594E-5 

120 0.987167 -3.2287E-3 2.7610E-5 2.7561E-5 

240 0.987119 -6.4566E-3 2.7610E-5 2.7514E-5 

400 0.987004 -1.0758E-2 2.7610E-5 2.7454E-5 

500 0.986904 -1.3443E-2 2.7610E-5 2.7417E-5 

1000 0.986071 -2.6826E-2 2.7610E-5 2.7244E-5 
a
 Read as -2.6907×10

-4
 

 

 

Table8



Table 9 Comparison of  by Eq. (47) and Eq. (41) with the exact one (UO2 fuel rod array) 

 

c )](
~

Re[ ck  )](
~

Im[ ck  
 (s) 

by Eq. (47) 
)0(/1)(/1 kck  c 

 (s) 

by Eq. (41) 

 (s) by 

DANTSYS 

20 
1.001617 

±0.000056 

-7.669E-4
a
 

±2E-7
b
 

3.822E-5 

±7E-9 (7E+4)
d
 

― ― 

3.832E-5 

40 
1.001516 

±0.000057 

-1.534E-3 

±2E-7 

3.823E-5 

±5E-9 (1E+5) 

-1.537E-3 

±3.5E-5 

3.842E-5 

±8.9E-7 (1) 

80 
1.001519 

±0.000056 

-3.067E-3 

±3E-7 

3.823E-5 

±4E-9 (3E+5) 

-2.988E-3 

±3.6E-5 

3.735E-5 

±4.5E-7 (4) 

100 
1.001383 

±0.000056 

-3.834E-3 

±4E-7 

3.824E-5 

±4E-9 (3E+5) 

-3.786E-3 

±3.6E-5 

3.786E-5 

±3.6E-7 (6) 

200 
1.001423 

±0.000058 

-7.667E-3 

±6E-7 

3.823E-5 

±3E-9 (3E+5) 

-7.637E-3 

±3.6E-5 

3.818E-5 

±1.8E-7 (30) 
a 
Read as -7.669×10

-4
. 

b
 one standard deviation 

c )0(k 1.001502±0.000025 
d 

Relative figure of merit with respect to “ (s) by Eq. (41) and c = 40” 
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Table 10 Comparison of  by Eq. (47) and Eq. (41) with the exact one (Pu metal) 

 

c )](
~

Re[ ck  )](
~

Im[ ck  
 (s) 

by Eq. (47) 
)0(/1)(/1 kck  c 

(s) 

by Eq. (41) 

 (s) by 

DANTSYS 

300 
0.999505 

±0.000063 

-3.510E-4
a
 

±1E-7
b
 

1.171E-6 

±4E-10 (3E+5)
d
 

― ― 

1.178E-6 

500 
0.999504 

±0.000063 

-5.845E-4 

±2E-7 

1.170E-6 

±4E-10 (3E+5) 

-6.399E-4 

±4.9E-5 

1.280E-6 

±9.7E-8 (1) 

1000 
0.999501 

±0.000064 

-1.169E-3 

±4E-7 

1.170E-6 

±4E-10 (3E+5) 

-1.176E-3 

±4.9E-5 

1.176E-6 

±4.9E-8 (4) 

2000 
0.999514 

±0.000062 

-2.339E-3 

±7E-7 

1.170E-6 

±4E-10 (3E+5) 

-2.390E-3 

±4.9E-5 

1.195E-6 

±2.4E-8 (13) 

4000 
0.999366 

±0.000063 

-4.676E-3 

±2E-6 

1.170E-6 

±4E-10 (3E+5) 

-4.613E-3 

±4.9E-5 

1.153E-6 

±1.2E-8 (61) 
a 
Read as -3.510×10

-4
. 

b
 one standard deviation 

c )0(k 0.999565±0.000034 
d 

Relative figure of merit with respect to “ (s) by Eq. (41) and c = 500” 
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