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Abstract

A new procedure for simultaneously finding the optimal cluster structure
of multivariate functional objects and finding the subspace to represent the
cluster structure is presented. The method is based on the k-means criterion
for projected functional objects on a subspace in which a cluster structure
exists. An efficient alternating least-squares algorithm is described, and the
proposed method is extended to a regularized method for smoothness of
weight functions. To deal with the negative effect of the correlation of coef-
ficient matrix of the basis function expansion in the proposed algorithm, a
two-step approach to the proposed method is also described. Analyses of ar-
tificial and real data demonstrate that the proposed method gives correct and
interpretable results compared with existing methods, the functional princi-
pal component k-means (FPCK) method and tandem clustering approach.
It is also shown that the proposed method can be considered complementary
to FPCK.
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1. Introduction

In the last few decades, due to technical advances in storing and process-
ing data, we can obtain the large amount of data at hand. A particular case
of such data is that of variables taking values into an infinite dimensional
space, typically a space of functions defined on some set T . Such data are
represented by curves or functions and thus called as functional data. Re-
cently, it becomes easier to observe functional data in medicine, economics,
psychometrics, and many others domains (for example, see Ramsay and Sil-
verman, 2005 for an overview).

In the framework of functional data analysis, many clustering methods
have been already proposed in the literature. A common way to proceed is
to filter first, that is to approximate each function by a linear combination
of a few number of basis functions, and then to apply a classical clustering
method to the resulting basis coefficients. For example, the works of Abra-
ham et al. (2003) and Serban and Wasserman (2005) adopt the filtering
approach. Another approach is a distance-based method in which cluster-
ing algorithms based on specific distances for functional data are used. In
Tarpey and Kinateder (2003), the k-means algorithm with the usual L2-
metric distance is investigated for Gaussian processes, and they prove that
the cluster centers are linear combinations of functional principal component
analysis (FPCA) eigenfunctions. In addition, Ferraty and Vieu (2006) pro-
pose to use a hierarchical clustering algorithm combined with the L2-metric
distance with the semi-metric distance. Recent developments of clustering
methods for functional data are excellently overviewed in Jacques and Preda
(in press).

As described in Jacques and Preda (in press), recently, the other cluster-
ing methods for functional data have been developed; the new procedure is
to identify simultaneously optimal cluster structure of functions and optimal
subspaces for clustering. The use of a low-dimensional representation of func-
tions can be of help in providing simpler and more interpretable solutions.
Actually, cluster analysis of functional objects is often carried out in combi-
nation with dimension reduction (e.g., Illian et al., 2009; Suyundykov et al.,
2010). Bouveyron and Jacques (2011) developed a model-based clustering
method for functional data that finds cluster-specific functional subspaces.
Yamamoto (2012) proposed a method, called functional principal component
k-means (FPCK) analysis, which attempts to find an optimal common sub-
space for the clustering of multivariate functional data. The method aims
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to overcome the problem of tandem clustering (Arabie and Hubert, 1994)
for functional data, in which first a dimension-reduction technique, such as
FPCA (e.g., Ramsay and Silverman, 2005; Besse and Ramsay, 1986; Boente
and Fraiman, 2000), is applied and subsequently the ordinary clustering al-
gorithm is used for the principal component scores. Note that Gattone and
Rocci (2012) have also developed a subspace clustering procedure that is
essentially equivalent to FPCK, though their method deals with univariate
functional data.

The methods of Bouveyron and Jacques (2011) and Yamamoto (2012) can
be classified into subspace clustering techniques (Timmerman et al., 2010;
Vidal, 2011) for functional data. Like subspace clustering techniques for mul-
tivariate matrix data, there are two types of methods for functional data: one
intends to find a subspace specific to each cluster (Bouveyron and Jacques,
2011), and the other intends to find a subspace that is common to all clusters
(Yamamoto, 2012). Here, we focus on the common subspace clustering.

Yamamoto (2012) shows that in various cases the FPCK method can find
both an optimal cluster structure and the subspace for the clustering. The
FPCK method, however, has a drawback caused by the definition of its loss
function; if no substantial correlation is present in the part of functions which
is informative on a cluster structure, FPCK fails in obtaining the cluster
structure and a subspace for the structure. The drawback will be explained
in more detail in the next section. In this paper, to overcome this drawback,
we present a new method that simultaneously finds the cluster structure and
reduces the dimension of multivariate functional objects. It will be shown
that the proposed method has a mutually complementary relationship with
the FPCK method.

This paper is organized as follows. Section 2 defines the notation used
in this paper and discusses the drawbacks of FPCK analysis. In Section
3, a new clustering and dimension reduction method for functional objects
is described, and an algorithm to implement the method is proposed. In
Section 4, the performance of the proposed method is studied using artificial
data, and an illustrative application to real data is presented in Section 5.
Finally, in Section 6, we conclude the paper with a discussion and make
recommendations for future research.
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2. Notation and the Drawbacks of the FPCK Method

2.1. Notation

First we present the notation that we will use throughout this paper.
Here, the same notations as Yamamoto (2012) will be used for ease of ex-
planation. Suppose that the nth functional object (n = 1, . . . , N) with P
variables is represented as xn(t) = (xnp(t) | p = 1, . . . , P ) with a domain
T ⊂ Rd. For simplicity, we write xn = (xn(t) | t ∈ T ) to denote the nth
observed function. In the rest of paper, for general understanding of the
problem, we consider the single-variable case, i.e., P = 1; in this case, the
suffix p in the above notation will be omitted. The multivariate case will be
described in Appendix A. Let L = L2(T ), which is the usual Hilbert space
of function f from T to R. Here, the inner product for any x, y ∈ L is
defined as

⟨x, y⟩ :=
∫
T

x(t)y(t)dt,

and for any x ∈ L , ∥x∥ := ⟨x, x⟩1/2 < ∞.
For simplicity, we shall assume that the mean function of the xn’s has been

subtracted, so without loss of generality, we assume that
∑N

n=1 xn(t) = 0 for
all t ∈ T .

In this paper, we simultaneously find an optimal projection of the data
x = (x1, · · · , xN)

′ onto a low-dimensional subspace and a cluster structure.
Let V = {vl} (l = 1, . . . , L < ∞; vl ∈ L ) be orthonormal basis functions
of the projected low-dimensional subspace. As with Yamamoto (2012), we
call vl a weight function. In addition, let Pv be an orthogonal projection
operator from the functional data space L onto the subspace Sv, which is
spanned by V . Let U = (unk)N×K be cluster assignment parameters, where
unk equals one if subject n belongs to cluster k, and zero, otherwise. Let Nk

be the number of subjects that are assigned to the kth cluster, and for all
k, x̄k := N−1

k

∑N
n=1 unkxn, which is the centroid of the kth cluster. In this

paper, we consider the crisp clustering, in which each object is assigned to
only one group.

A basis function expansion approach is used in many functional data
analysis models. Let us approximate an object xn using a basis function, as
follows

xn ≈
M∑

m=1

gnmϕm = ϕ′gn,
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where ϕm’s (m = 1, . . . ,M) are basis functions (e.g., Fourier or B-spline basis
functions) and gnm is a coefficient corresponding to (xn, ϕm), and we write
ϕ = (ϕ1, . . . , ϕM)′ and gn = (gn1, · · · , gnM)′. Then, we have

(x1, . . . , xN)
′ ≈ (g1, . . . , gN)

′ϕ = Gϕ. (1)

Similarly, the weight functions described above are expanded by the same
basis functions,

vl ≈
M∑

m=1

almϕm = ϕ′al,

where al = (al1, · · · , alM)′. Then, we also have

(v1, . . . , vL)
′ ≈ (a1, . . . ,aL)

′ϕ = A′ϕ. (2)

Let H be an M ×M matrix that has ⟨ϕi, ϕj⟩ for the ijth element. Further-

more, let GH = GH
1
2 and AH = H

1
2A.

2.2. Drawbacks of the FPCK method

As described in Introduction, the clustering method with dimension re-
duction can produce useful information about the cluster structure that exists
in functional data. To attain this purpose, FPCK has been proposed (Ya-
mamoto, 2012), and this method succeeds in extracting a cluster structure
that provides useful information. However, the FPCK method has a draw-
back. A typical example in which the FPCK analysis does not perform well
is given as follows:

Example 1. Consider that a 100× 10 coefficient matrix GH consists of two
parts, GH = (G1,G2), where G1 is a 100× 2 matrix which defines a cluster
structure and G2 is a 100×8 matrix whose elements are generated randomly
independent of the cluster structure. G1 is shown in the middle panel of
Figure 1, and the left panel of the figure shows functional data of 100 objects
generated through the basis function expansion with the fourth-order B-spline
basis functions using GH as its coefficient. If the FPCK method is applied to
the data, we obtain the result shown in the right panel of Figure 1. As seen
in the figure, the FPCK method fails to recover the true cluster structure,
since there are many misclustered objects.
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Figure 1: Curves of 100 functional objects (left), the true cluster structure in a two-
dimensional subspace (middle), and estimated cluster structure by the FPCK method
with two dimensions and four clusters (right). The colors and symbols indicate the true
cluster in which each object is grouped. In the right panel, a black square denotes a
misclustered object.

This failure of the FPCK method can be explained through the decom-
position of its loss function. The loss function Lfpck of the FPCK method
has the following decomposition:

Lfpck(U, V ) =
N∑

n=1

∥xn − Pvxn∥2 +
N∑

n=1

K∑
k=1

unk∥Pvxn − Pvx̄k∥2. (3)

If we use basis function expansions of the data and weight functions, Lfpck

is approximated as

Lfpck(U, V ) ≈ ∥GH −GHAHA
′
H∥2 + ∥GHAHA

′
H −PUGHAHA

′
H∥2,

where PU is a projection matrix onto the space spanned by the columns of
U = (unk). The first term of the right-hand side measures the distance be-
tween the coefficient matrix GH and the projection of GH onto the subspace
spanned by the columns of AH . That is, this term determines the degree of
the dimension reduction of the data. On the other hand, the second term
measures the distance between the projection of GH and the centroid of clus-
ters in the subspace. Based on this formulation, it is found that there are
some cases where FPCK analysis does not work well. We illustrate this using
a concrete example.
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As with Example 1, consider that an N ×M coefficient matrix GH con-
sists of two parts, GH = (G1,G2), where G1 is an N × M1 matrix that is
related to the cluster structure, and G2 is an N×M2 matrix (M = M1+M2)
that is independent of the cluster structure. Usually, N denotes the sample
size, and M is the number of basis functions. If G1 has no substantial cor-
relations, then FPCK analysis is likely to provide a different subspace from
that spanned by the true AH . This is mainly because G1 is full rank, and the
first term of the decomposition may be minimized by weight functions which
are different from true ones. It can be inferred that when G1 is full rank, the
FPCK method gets worse with an increase in the column size of G2. Evi-
dently, it can be seen that, if the contributing partG1 to the cluster structure
has no substantial correlations and the masking part G2 substantially exists,
the FPCK method may fail to find the true cluster structure.

3. Proposed Method

3.1. Criterion of the functional factorial k-means method

To overcome the drawback of FPCK analysis discussed above, we propose
a new clustering method with dimension reduction. The notation and set-
tings were explained in Section 2. For ease of explanation, we first consider
the case in which there is only one variable, i.e., P = 1. Thus, in this section,
the suffix p is omitted from the notation. An extension to the multivariate
model is straightforward and is described in Appendix A.

A least-squares objective function for the proposed approach, in which
the first few principal components of the data are defined to be the most
informative about the cluster structure, is

Lffkm(U, V ) =
N∑

n=1

K∑
k=1

unk∥Pvxn − Pvx̄k∥2. (4)

This loss function is optimized over the cluster parameter U and the projected
space V .

Here, a component score fnl of subject n for the lth component is defined
as fnl = ⟨xn, vl⟩ using the estimated weight function vl. Analysis for the first
few estimated component scores {fnl} (l = 1, . . . , L), where L is two or three,
seems to be helpful for the interpretation of a cluster structure in functional
data.
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Figure 2: Estimated cluster structures by the FFKM method with two dimensions and
four clusters. There were no misclustered objects.

This approach, minimizing the objective function in (4) with respect to
U and V simultaneously, is called the functional factorial k-means (FFKM)
method because this method is a direct extension of the factorial k-means
method (Vichi and Kiers, 2001) to the method for the functional setting.
The loss function (4) is equivalent to the second term of the decomposition
(3) of the loss function of FPCK. It might be expected that we can resolve
the problem of FPCK by ruling out the first term in Eq. (3). Note that this
loss function (4) was shortly referred in Yamamoto (2012).

Example 2. The FFKM method was applied to the data in Example 1. Fig-
ure 2 shows the two-dimensional representation of the data given by FFKM.
It is found that FFKM recovered the true cluster structure completely.

3.2. Algorithm for optimizing the proposed criterion

We now present an efficient algorithm for this approach. As in the FPCK
method, the loss function (4) can be optimized using the alternating least-
squares (ALS) approach, as follows.

STEP1. Initialize parameter V subject to the restriction mentioned above.

STEP2. Minimize the loss function in Eq. (4) for fixed V over U .

STEP3. Minimize the loss function in Eq. (4) for fixed U over V .

STEP4. Go to STEP2, or stop.
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There are two parts to the algorithm. The first part of the above ALS
algorithm is to minimize Lffkm for fixed V over U . To solve the optimization
problem, we use a basis function expansion technique described in Section
2. If a projected object Pvxn is expanded using some basis function, that is,
Pvxn = d′

nϕ where dn = (dn1, . . . , dnM)′, then the loss function (4) can be
written as

N∑
n=1

K∑
k=1

unk∥Pvxn − Pvx̄k∥2 =
N∑

n=1

K∑
k=1

unk∥dn − d̄k∥2H, (5)

where d̄k is a coefficient vector corresponding to the basis function expansion
of the projected mean function x̄k of the kth cluster, and ∥ · ∥H means the
Euclidean norm with the metric H, i.e., for y ∈ RM , ∥y∥2H = y′Hy. Thus,
Eq. (5) can be minimized using the usual k-means algorithm (Lloyd, 1982) for

H
1
2dn. Using the expansions in Eq. (2), it is found that H

1
2dn = AHA

′
HgHn.

The second part is to minimize Lffkm regarding V . The loss function in
Eq. (4) can be written as (see Yamamoto, 2012, p.246)

Lffkm(U, V ) = −
L∑
l=1

⟨vl, Fvl⟩, (6)

where F is an integral operator defined as, for any y ∈ L ,

(Fy)(t) := −
N∑

n=1

K∑
k=1

unk⟨xn − x̄k, y⟩(xn(t)− x̄k(t)).

Note that it is easily verified that the integral operator F is a Hilbert-Schmidt
integral operator. Thus, F is a compact operator. In addition, F is clearly
self-adjoint. Minimizing the loss function is, therefore, equivalent to solving
the following eigenvalue equation (see, for example, Dunfort and Schwartz,
1988),

Fξl = ρlξl, subject to ⟨ξl, ξl′⟩ = δll′ (7)

for l = 1, . . . , L, where δll′ is the Kronecker delta. Each eigenfunction {ξl}
(l = 1, . . . , L) corresponds to a weight function {vl} (l = 1, . . . , L), which is
to be estimated. As with the first part of the ALS algorithm, to solve this
eigenvalue problem, we use the basis function expansion. Then, F operates
on a function ξl as

(Fξl)(t) = ϕ′(t)G′(PU − IN)GHal.
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Eventually, solving the eigenvalue problem (7) amounts to solving the eigen-
value problem

G′
H(PU − IN)GHaHl = ρaHl,

where aHl = H
1
2al. The eigenfunction ξl is given by the estimated eigenvec-

tor aHl as the approximation in Eq. (2) using al = H− 1
2aHl.

The above ALS algorithm monotonically decreases the loss function Lffkm

and the loss function is bounded from below. Then this algorithm guarantees
the convergence to a certain point; but it may not be the global minimum.
Also, in general, the k-means algorithm, which is utilized in the ALS al-
gorithm, is sensitive to local optima (Steinley, 2003). Thus, to safeguard
against those local minima, the proposed algorithm needs to be repeated
with a number of random initial starts for V .

3.3. Regularized method

In this section, we propose a smoothing method for the FFKM model.
If functional data can be assumed to be sufficiently smooth, taking into ac-
count their smoothness often provides better results (Ramsay and Silverman,
2005). To take into account such smoothness in FFKM, we may assume that
functions exist in some smooth functional space such as Sobolev space (Silver-
man, 1996). It can be achieved by using the following inner product instead
of the usual inner product defined earlier, for x, y ∈ L ,

⟨x, y⟩λ := ⟨x, y⟩+ λ⟨D2x, D2y⟩,

where D2 denotes the second-order differential operator and λ is a roughness
penalty. For any x ∈ L , ∥x∥λ := ⟨x, x⟩1/2λ . Let S2λ be the usual spline
smoothing operator (Green and Silverman, 1994). Then, to obtain smooth
weight function vl, the following loss function is minimized over U and V

Lffkm(U, V ) =
N∑

n=1

K∑
k=1

unk∥PvS2λxn − PvS
2
λx̄k∥2λ.

The parameters U and V , which minimize Lffkm(U, V ), are estimated us-
ing an ALS algorithm similar to that for the non-regularized FFKM method,
though there are two differences between the two methods: in the regular-
ized method, the inner product ⟨·, ·⟩λ is used and the smoothed data S2λxn is
expanded. Let gλ,n be a vector with length M containing coefficients corre-
sponding to the basis function expansion of S2λxn, and let Hλ be an M ×M
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matrix in which the ijth element is ⟨ϕi, ϕj⟩λ. Furthermore, let AHλ
= H

1
2
λA

and W = H
1
2
λAHλ

A′
Hλ

H
1
2
λ . Then, in STEP2 of the ALS algorithm, the opti-

mal U is obtained by minimizing the following loss function for fixed V over
U :

N∑
n=1

K∑
k=1

unk∥gλ,n − ḡk∥2W,

where ∥ · ∥W is the Euclidean norm with metric W. Thus, as with the
non-regularized method, this loss function will be optimized using the usual
k-means algorithm for AHλ

A′
Hλ

gHλn
.

Next, we describe how to estimate the weight functions V in STEP3.
Using the above basis function expansion to estimate the optimal V , the
following eigenvalue problem is considered:

G′
Hλ

(PU − In)GHλ
aHλl = ρaHλl,

where aHλl is the lth column ofAHλ
. Then, as in the non-regularized method,

the smoothed weight function vl is approximated as vl ≈ ϕ′H
− 1

2
λ aHλl.

A component score fnl can be defined as that for the FFKM method,
fnl = ⟨xn, vl⟩. The determination of the value of λ is presented in the next
section.

3.4. Model selection

Prior to applying the above algorithm, we need to determine the values of
parameters: the smoothness of the basis functions λ, the number of clusters
K, and the dimensionality of the subspace L. We adopt the same procedure
as those recommended in Yamamoto (2012). The value of λ is determined
by generalized cross-validation (GCV) criterion for individual functions. The
value of K is chosen according to usual decision procedures, such as those
described in Milligan and Cooper (1985) and Hardy (1996). Then, for the
selection of L, it is recommended to first take L = K − 1 and then check
the adequacy of the dimensionality. For instance, it may be useful to check
whether the cluster centroids appear to lie in a lower-dimensional plane, in
which case it is advised to refit the FFKM model with fewer components. By
thus verifying the solutions for different numbers of clusters, one can select
the solution that gives the most interpretable results.
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4. Analyses of Artificial Data

4.1. Data and evaluation procedures

To investigate the performance of the FFKM method, artificial data,
which included a known low-dimensional cluster structure, were analyzed
by four different methods: (i) the FFKM method, (ii) the two-step FFKM
method (FFKMts) (iii) the FPCK method, and (iv) tandem analysis (TA)
that consisted of FPCA using a basis function expansion (Ramsay and Silver-
man, 2005) followed by a standard k-means cluster analysis of the principal
component scores on the first L principal components. Note that the loss
function of FFKM is bounded above by the squared norm of the projected
functional data as follows:

N∑
n=1

K∑
k=1

unk∥Pvxn − Pvx̄k∥2 ≤
N∑

n=1

∥Pvxn∥2. (8)

Thus, when an empirical covariance operator of functional data has exces-
sively small eigenvalues compared with the others, the subspace spanned by
eigenfunctions corresponding to the small eigenvalues provides the smallest
values of loss function of FFKM regardless of cluster assignments. In fact,
when the smallest eigenvalue of an empirical covariance operator is zero, us-
ing the corresponding eigenfunction as a weight function for Pv sets the value
of right-hand side of (8) to zero, and then the loss of FFKM is also zero.
That is, if there exist trivial dimensions of functional data, FFKM may fail
to find the optimal cluster structure. Thus, to avoid such trivial solutions
of FFKM, here we introduce a two-step approach, called two-step FFKM.
The two-step FFKM method is a two-step approach in which first we elimi-
nate trivial dimensions from the data and then apply the FFKM algorithm
to the reduced data. This two-step approach can improve the efficiency of
the FFKM method when the coefficient matrix GH has some correlations.
This two-step approach is described in Appendix B in more detail. The ar-
tificial functional data had a structure of four clusters in a two-dimensional
subspace, i.e., L = 2 and K = 4.

As described in Section 2.2, we suppose that the coefficient matrix GH

consists of two parts, GH = (G1,G2), where G1 is an N ×M1 matrix that is
related to the cluster structure and G2 is an N ×M2 matrix that is indepen-
dent of the cluster structure. Let an N × L component score matrix F have
a cluster structure with N objects drawn from four bivariate normal distri-
butions with the same covariance matrices, I2, and different means. Let A1

12
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Figure 3: Selected artificial data. The color denotes to which group each functional object
was assigned. The proportion of overlap is 0.05.

be an M1 ×L orthonormal matrix whose elements were randomly generated
and subsequently orthonormalized. Using these matrices, the matrix G1 was
calculated as G1 = FA′

1. The elements of G2 were generated according to a
strategy described later.

Let ϕ be the fourth-order B-spline basis functions with eight knots, and
let Φ be a T × M matrix whose tmth element is ϕm(t). In this simulation
study, we consider 100 sampling points t = (1, . . . , 100) and 10 basis func-
tions. Then, an artificial data matrix that includes discretized functional
data was calculated as X = GHH

− 1
2Φ′. Note that before calculating X, the

columns of GH were standardized. The artificial data selected are shown in
Figure 3.

In this simulation analysis, four factors were manipulated in the experi-
ment: (1) the number of objects (N), (2) the expected proportion of overlap
(PO) between clusters in the correct subspace, (3) the ranks of the coeffi-
cient matrices G1 and G2, and (4) the number of variables which have no
information about the true cluster structure (the number of non-informative
variables, NN). The number of objects was varied from 100 to 500 in steps
of 200. The PO was defined as the proportion of shared density between
clusters, as proposed by Steinley and Henson (2005). The PO was set at four
levels: 0.0001, 0.05, 0.10, and 0.15. To offer an impression of the effect of
the manipulation of the PO, an example of F for 200 objects in four clus-
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Figure 4: Example of simulated component scores for 300 objects in four clusters in the
correct two-dimensional subspace at four levels of proportion of overlap (PO).

ters is depicted in Figure 4, for each of the different levels of the PO. We
considered two cases for the ranks of G1 and G2: full rank (FR) or rank
deficient (RD). The rank of G1 was controlled by the number of columns
M1, which was set at 2 for an FR case and 5 for an RD case. For an FR
case of G2, the elements of G2 were independently drawn from a standard
normal distribution N(0, 1), while for an RD case, G2 was calculated as
G2 = EA′

2, where E is an N × 2 matrix and A is an M2 × 2 matrix. The
elements of E and A2 were independently drawn from N(0, 1) and A2 was
subsequently orthonormalized. When G1 and G2 are FR, FFKM works well
but FPCK does not. On the other hand, when G1 is RD and G2 is FR,
FPCK works well but FFKM does not. Furthermore, it can be inferred that
both FFKM and FPCK are effected negatively by the rank deficiency of G2.
A non-informative variable Z was also generated through the basis function
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expansion Z = G∗
HH

− 1
2Φ′ in which elements of a coefficient matrix G∗

H were
independently drawn from N(0, 1) and standardized to have a same variance
with the informative data X. In this study, the number of non-informative
variables was set at three levels: 0, 1, and 2. The experimental design was
fully crossed, with 50 replicates per cell, yielding 3× 4× 4× 3× 50 = 7200
simulated data sets.

The cluster membership recovery was assessed by the Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985). The ARI has the maximal value of 1
in the case of a perfect recovery of the underlying clustering structure, and a
value of 0 in the case where the true membership U and estimated member-
ship Û coincide no more than would be expected by chance. When the PO is
high, the k-means clustering in the true subspace defined by the true A1 does
not work. Thus, in order to calculate the ARI, the k-means clustering with
100 random starts was conducted with the true F, and then the estimated
cluster structure was considered to be the true cluster structure.

The FFKM and FPCK methods need initial values for the parameters in
the first step of the algorithms. In our limited experience, FFKM is rather
sensitive to local optima so that it needs many initial values. Thus, in this
simulation, we used 1000 random initial values for FFKM and 100 random
initial values for FPCK. For two-step FFKM, a selection of the number R of
components in the first step is needed. In this simulation, R was determined
in view of cumulative percentage of the total variation (Jolliffe, 2002) in
which a selected cut-off provided 90% cumulative variation.

4.2. Results

Boxplots of the ARIs obtained by the four methods are shown in Figure
5, 6, 7, and 8 that are results for the cases of (FR, FR), (RD, FR), (FR,
RD), and (RD, RD), respectively, corresponding to the ranks of (G1,G2).
The modified boxplot (Hubert and Vandervieren, 2008) was used for the
asymmetry of the distributions of ARIs. In these figures, boxplots of four
methods for each sample size are arranged by the proportion of overlap (PO)
and the number of non-informative variables (NN). As can be inferred from
Figure 5, when both G1 and G2 were FR, under all conditions, FFKM and
two-step FFKM showed the best result, or at least a result comparable to
those of the other two methods. It can be seen that ARIs became worse with
an increase in PO and NN, while the indices improved with an increase in the
sample size. FPCK also worked well only under the easiest condition where
PO was small, N was large, and there was no non-informative variable. This
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Figure 5: Boxplots of the adjusted Rand indices when G1 is FR and G2 is FR. In each
case, from the left, the boxplots indicate the results of the FFKM, two-step FFKM, FPCK,
and tandem analysis by sample size, respectively. The numbers under the name of each
method in abscissa axis denotes sample size.

result shows that the FPCKmethod provided a poor result if the contributing
part G1 to the cluster structure was FR. We also see that tandem analysis
did not work well, regardless of the chosen values of PO, NN, and N .

When G1 was RD and G2 was FR (Figure 6), we can see that FPCK
showed the best result under all values of PO and NN, while FFKM did
not. The two-step FFKM method provided better results when PO = 0.0001
than when PO was large, and the ARI became worse with an increase in
PO and NN. Since G2 was FR and all columns of G1 contributed to the
cluster structure, the optimal subspace obtained from functional principal
component analysis are coincident with that obtained from FPCK. This fact
explains that tandem analysis worked as well as FPCK in this case.

When G1 was FR and G2 was RD (Figure 7), only two-step FFKM
recovered the true cluster structure. It can be inferred that FFKM were
effected negatively by the correlation of G2, while two-step FFKM improved
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Figure 6: Boxplots of the adjusted Rand indices when G1 is RD and G2 is FR. In each
case, from the left, the boxplots indicate the results of the FFKM, two-step FFKM, FPCK,
and tandem analysis by sample size, respectively. The numbers under the name of each
method in abscissa axis denotes sample size.

the performance of FFKM to remove the negative effect of the cumbersome
correlation as it had been expected.

When bothG1 andG2 were RD (Figure 8), FPCK showed the best result,
or at least a result comparable to those of other methods. Two-step FFKM
also worked well under mild conditions in which both PO and NN were
small. FFKM and tandem analysis did not recovered the cluster structure
well because of the existence of substantial correlation of G2.

We used 1000 random starts for the FFKM method. However, even in
the case of one of the easiest settings, where PO = 0.0001 and N = 500,
only 93 initial starts attained the global optimal solution. In addition, more
local optimal solutions seem to occur when the overlap is increased. Thus,
in practice, it is necessary to check carefully whether the solution is a global
optimal solution. If not, more initial random starts may be necessary.
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Figure 7: Boxplots of the adjusted Rand indices when G1 is FR and G2 is RD. In each
case, from the left, the boxplots indicate the results of the FFKM, two-step FFKM, FPCK,
and tandem analysis by sample size, respectively. The numbers under the name of each
method in abscissa axis denotes sample size.

5. Empirical Example

In this section, we perform an empirical analysis to demonstrate the use
of the FFKM method and to compare its performance with that of the exist-
ing methods, the FPCK and tandem analysis (TA). We used the well-known
phoneme dataset for a speech-recognition problem, as described by Hastie et
al. (1995). The data are log-periodograms of 32 ms duration that correspond
to five phonemes, as follows: “sh” as in “she”, “dcl” as in “dark”, “iy” as the
vowel in “she”, “aa” as the vowel in “dark”, and “ao” as the first vowel in
“water”. Hastie et al. (1995) applied their penalized discriminant analysis to
obtain a discriminant rule for well separation of phonemes. Ferraty and Vieu
(2003) analysed this dataset by their nonparametric curves discrimination.
Although this dataset is used for an illustration of newly proposed methods
in the context of the supervised learning, it is also useful for an illustration of
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Figure 8: Boxplots of the adjusted Rand indices when G1 is RD and G2 is RD. In each
case, from the left, the boxplots indicate the results of the FFKM, two-step FFKM, FPCK,
and tandem analysis by sample size, respectively. The numbers under the name of each
method in abscissa axis denotes sample size.

the methods in the context of the unsupervised learning, e.g., clustering. In
the unsupervised learning contexts, since there are no true cluster labels, it
is difficult to evaluate the goodness of the clustering results objectively. On
the other hand, in the supervised learning contexts, we have the true cluster
labels so that we can easily evaluate the goodness of the clustering results
by some agreement measures (e.g., the Adjusted Rand Index). Actually, the
phoneme data are used to investigate performances of clustering algorithms.
For example, Shamir and Tishby (2008) used phoneme data to illustrate their
model selection procedure based on cluster stability. In addition, Gattone
and Rocci (2012) used the data to investigate the performance of their func-
tional reduced k-means. Then, we used the phoneme data to investigate the
performance of the proposed method. Here, we considered only the first 150
frequencies used in Ferraty and Vieu (2003), thus obtaining a dataset of 2000
log-periodograms with the known class-phoneme membership.
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Figure 9: Selected phoneme data of 200 log-periodograms; the color denotes groups of
phoneme.

In this example, suppose that we want to find correct clusters with K = 5
and obtain a low-dimensional subspace with L = 2 for interpreting the cluster
structure. For all methods, we used the fourth-order B-spline basis function
with ten knots. In this case, the number of basis functions is twelve. The
value of λ that gives the minimum of GCV among the different values of
λ, varying from 0.1 to 500, was selected: λ = 61.31. The selected log-
periodograms expanded by these basis functions are shown in Figure 9. For
the FFKM and FPCK method, the initial random starts with 100 were used.

In general, the coefficient matrix GH of the functional data has some
correlations between the coefficient vectors corresponding to the discretized
basis functions ϕm(t). In such a case, there often exist small eigenvalues,
which may be nearly zero, of G′

HGH , so that the FFKM is likely to provide
a poor recovery of the true cluster structure. Thus, we used a two-step
approach which was investigated in Section 4.

Then, first we conducted FPCA with four components; the number of
components was determined by the cumulative percentage of the total varia-
tion and the size of the variances of the principal components, as introduced
in Jolliffe (2002). In view of cumulative percentage of the total variation,
Jolliffe (2002) notes that choosing a cut-off somewhere between 70% and
90% and retaining R components, where R is the number determined by the
cut-off, provides a rule that preserves most of the information in the data in
the first R components. This is shown in the left panel of Figure 10. Further-
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Figure 10: Plots for justification of the number of components; the left denotes the pro-
portion of eigenvalues; the right denotes the eigenvalues divided by their mean value.

more, in view of the size of the variances of the principal components, it is
recommended that we take as a cut-off the average value of the eigenvalues.
The eigenvalues divided by their mean are shown in the right panel of Fig-
ure 10. From these plots, we see that the chosen number, four, is justified.
We therefore conducted the FFKM analysis using the first four component
scores.

The ARIs obtained by the three methods are shown in parentheses of
Figure 11. We can see that the FFKM method can recover the true phoneme
clusters well, while the other two methods provide cruder recoveries of the
true cluster structure. The estimated component scores with the estimated
cluster labels are plotted in the figure. In each plot, the symbols denote the
estimated clusters of objects and the colors denote the true cluster structure.
From these plots, it is concluded that the FFKM gives the optimal sub-
space representing the true cluster structure, while the subspaces given by
the FPCK method and tandem analysis may not be appropriate for finding
the cluster structure. This result may be compared with Figure 4 of Hastie
et al. (1995) where log-periodograms are represented in the first two discrim-
inant coordinates and only three groups are clearly identified, while FFKM
provided the cluster structure in which four clusters were well identified.

As with the FPCK method described by Yamamoto (2012), it may be
beneficial to interpret the estimated subspace using the estimated weight
functions vl. The weight functions estimated by the two-step approach are
shown in Figure 12. In the figure, the black and red curves denote the weight
functions corresponding to the first and second components, respectively. It
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Figure 11: Plots of the component scores estimated by the FFKM, FPCK, and tandem
analysis; a value in a parenthesis denotes a value of ARI; symbols of plots denote the
estimated clusters of objects, and the colors denote the true cluster structure.

can be seen that the weight functions have large values in the region where
the frequency is between 10 and 50 and in the last region. This implies
that the cluster structure is determined by the behavior of the data in these
regions, and this is reasonable considering the original data that is shown
in Figure 9. Note that the component scores shown in the right pannel of
Figure 12, calculated using these estimated weight functions, may be a little
bit different from the original subspace representation shown in Figure 11. In
this case, however, the cluster structure seems to be the same as the original
one shown in Figure 11. This difference is due to the method of estimating
the weight functions in the two-step approach described in Appendix B.

Note that most of the solutions of FFKM analysis given by initial random
starts attained the same values for the loss functions. Thus, in this case, the
number of initial random starts is sufficient to obtain the global solution.

6. Discussion

In this article, we explained the drawbacks of the FPCK method and pro-
posed a new method, FFKM analysis, to overcome the problem. The FFKM
method aims to simultaneously classify functional objects into optimal clus-
ters and find a subspace that best describes the classification and dimension
reduction of the data. The ALS algorithm was proposed to efficiently solve
the minimization problem of the least-squares objective function. Analyses
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Figure 12: Estimated weight functions (left) by the FFKM method and the plot of corre-
sponding component scores (right); the black and red curves correspond to the first and
second components, respectively.

of artificial data reveal that the FFKM method can give an optimal clus-
ter structure when both the coefficient matrix, G1, which is related to the
true cluster structure, and a non-informative part, G2, have no substantial
correlation.

However, the simulation study in Section 4 showed that when either G1

or G2 is rank deficient, FFKM failed in providing an optimal cluster struc-
ture. To avoid the negative effect of correlation among GH = (G1,G2), the
two-step approach to FFKM was also described. Two-step FFKM aims to
eliminate trivial dimensions followed by applying the FFKM algorithm to
the reduced functional data. The simulation study showed that when G1

was full rank and G2 was rank deficient, two-step FFKM recovered a clus-
ter structure well. Furthermore, when G1 was rank deficient, it worked well
under the mild conditions regardless of the rank of G2. Thus, in practice, it
is recommended to use two-step FFKM instead of simple FFKM.

The simulation study also showed that whenG1 was rank deficient, FPCK
worked well regardless of the rank of G2. However, it did not work very
well when G1 was full rank. Specifically, if G1 was full rank and G2 was
rank deficient, it did not recover the true cluster structure at all. On the
other hand, in the situation, only two-step FFKM worked well. This fact
shows that FFKM has a mutually complementary relationship with FPCK.
In practical situations, G2 often has a substantial correlation, that is, G2

is likely to be rank deficient. Therefore, it is recommended that first the
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two-step FFKM method is implemented. If the result does not seem to be
good, then FPCK is implemented.

Both the FFKM and FPCK methods need several initial random starts
for the parameters in order to avoid local optima. In our limited experience,
this problem seems to be more serious for the FFKM method. Thus, a more
efficient algorithm for this model is needed.

In our approach, the tuning of the smoothing parameter, λ, is done by
applying the GCV criterion to each curve, and the real data example in-
troduced in Section 5 shows that this approach works well for finding the
cluster structure. Another approach can also be adopted. For example,
Gattone and Rocci (2012) proposed an automatic smoothing algorithm in
which the smoothing is carried out within the clustering, and the amount of
smoothing is determined adaptively. Recently, Wang (2010) has proposed a
method based on clustering instability for selecting the number of clusters.
These approaches may be applicable to the selection of the model in FFKM.
This is an area of future research that we intend to pursue.
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Appendix A: FFKM for multivariate functional data

The method for the univariate case has been described above. Here, we
explain our method for the multivariate case. Let L P be the Cartesian
product of P sets of L = L2(T ). Then, subject n has P functions, xn =
(xn1, . . . , xnP ) ∈ L P , and an inner product for x, y ∈ L P is redefined as

⟨x, y⟩P,λ =
P∑

p=1

(∫
T

xp(t)yp(t)dt+ λ

∫
T

D2xp(t)D
2yp(t)dt

)
. (A.1)

Note that the norm ∥ · ∥P,λ is given by the inner product, i.e., ∥x∥P,λ =

⟨x, x⟩1/2P,λ. Then, the objective function in Eq. (4) will be optimized as in the

univariate case, with PPv for Pv, where P
P
v is an orthogonal projection operator

from L P onto the subspace S P
v , and the weight functions vPl ∈ L P span
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S P
v . That is, the loss function for the multivariate regularized case can be

written as

Lffkm(U, V ) =
N∑

n=1

K∑
k=1

unk∥PvS2λxn − PvS
2
λx̄k∥2P,λ.

Here, we can consider the basis function expansion for S2λxn as

S2λxn = (g′
n1ϕ, . . . , g

′
nPϕ), (A.2)

where gnp is a coefficient vector for the basis function expansion of S2λxnp.
Then, the criterion Lffkm can be derived by

Lffkm(U, V ) =
N∑

n=1

K∑
k=1

unk

P∑
p=1

∥(PvS2λxn)− (PvS
2
λx̄k)p∥2P,λ

=
N∑

n=1

K∑
k=1

unk

P∑
p=1

{
L∑
l=1

(
P∑

p′=1

a′
lp′Hλgnp′

)
alp −

L∑
l=1

(
P∑

p′=1

a′
lp′Hλḡkp′

)
alp

}′

Hλ

{
L∑
l=1

(
P∑

p′=1

a′
lp′Hλgnp′

)
alp −

L∑
l=1

(
P∑

p′=1

a′
lp′Hλḡkp′

)
alp

}
.

The algorithm to minimize the objective function for multivariate func-
tional data is the same as that for univariate functional data described
above, i.e., the ALS algorithm can be applied, although there are some dif-
ferences between these cases. In STEP2, the basis function expansion of a
projected object PPv Sλxn can be applied as in the case of univariate data.
Thus, the cluster parameters U are estimated using the k-means algorithm
for a parameter vector d∗ = (d′

1, . . . ,d
′
N)

′, where dnp = (dnp1, . . . , dnpM)′ and
dn = (d′

n1, . . . ,d
′
nP )

′, which is the parameter vector for the basis function
expansion of PPv Sλxn.

Next, we consider the optimization over V . Let an integral operator FP

be defined, for any y ∈ L P , as

FPy := (F(1)y, . . . , F(P )y),

where

(F(p)y)(t) := −
N∑

n=1

K∑
k=1

unk(xnp(t)−x̄kp(t))
P∑

p′=1

⟨xnp′−x̄kp′ , yp′⟩ (p = 1, . . . , P ).
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Then, to estimate an optimal V in STEP3 of the above ALS algorithm, the
following optimization problem is considered:

max
V

L∑
l=1

⟨vl, FPvl⟩P,λ.

As with the univariate case, it can be verified that the operator FP is self-
adjoint and compact. Thus, optimizing the criterion is equivalent to solving
the following eigenvalue equation,

FP ξl = ρlξl, subject to ⟨ξl, ξl′⟩P,λ = δll′ .

Let Gp = (g1p, . . . , gNp)
′ and GHp = GpH

1
2
λ . Let GP

H be the block
diagonal matrix that has GHj for the jth diagonal block, and let aP

Hl =
(a′

Hl1, . . . ,a
′
HlP )

′. Then, the above eigenvalue equation reduces to

GP
H

′(1P1
′
P ⊗ (PU − IN))G

P
Ha

P
Hl = ρaP

Hl,

where ⊗ denotes the Kronecker product. Finally, the estimated weight func-
tion can be calculated as vlp = a′

HlpH
− 1

2ϕ.

Appendix B: Two-step approach for FFKM

As described in Section 4.1, when an empirical covariance operator of
functional data has excessively small eigenvalues compared with the others,
the subspace spanned by eigenfunctions corresponding to the small eigen-
values provides the smallest value of loss function of FFKM; this results in
poor recovery of the true cluster structure. Actually, this problem also oc-
curs in the factorial k-means (Vichi and Kiers, 2001) for a usual data matrix,
and it is recommended that such trivial dimensions could be first eliminated
from the data. Thus, it is inferred that the direct use of the FFKM method
may fail to find an optimal cluster structure. To overcome this problem, we
propose the two-step approach described below. Note that this two-step ap-
proach has a completely different aim from that of tandem analysis: tandem
analysis finds a low-dimensional subspace regardless of the cluster structure,
whereas the two-step approach just eliminates the trivial dimensions and
finds a low-dimensional subspace where a cluster structure exists.
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First, we conduct FPCA (Ramsay and Silverman, 2005) based on the
basis function expansion using the basis function {ϕm}m=1,...,M of the raw
data. This gives the principal curves {wr}r=1,...,R, where R is the number
of principal components. The number R should be selected so that princi-
pal components contain sufficiently high variances for the data. The usual
selection rules described by Jolliffe (2002) may work well. Let Pw be the oper-
ator that projects functional objects onto the space spanned by the principal
curves, and we then obtain the projected functional data Pwxi. As described
in Eq. (1), the FFKM method requires a basis function expansion of the
data. Here, using the basis functions ϕm used in the FPCA, the reduced
functional data can be expressed as

(Pwx1, . . . , PwxN)
′ = GHBHB

′
HH

− 1
2ϕ, (B.1)

where BH = (bH1, . . . , bHR) denotes the coefficient matrix in the basis func-
tion expansion of the principal curves, such that wr = b′HrH

−1/2ϕ. In this no-
tation, the principal component score matrix is calculated as Fpca = GHBH .

Thus, the optimization problem of the FFKM method with basis function
expansions of the reduced functional data is defined as

min
AH ,U

∥FpcaB
′
HAH −PUFpcaB

′
HAH∥2. (B.2)

We can see that FpcaB
′
H corresponds toGH , which is the coefficient matrix of

the basis function expansion of the reduced functional data. Clearly, the rank
of FpcaB

′
H is R, i.e., the coefficient matrix is rank deficient. Here, according

to the recommendation by Vichi and Kiers (2001), we consider eliminating
the trivial dimensions of the coefficient matrix. In the case of FFKM analysis,
we can use Fpca as the full-rank (neither singular nor near-singular) matrix
to be analyzed.

Therefore, instead of the optimization problem in Eq. (B.2), the following
optimization problem is considered,

min
A∗

H ,U
∥FpcaA

∗
H −PUFpcaA

∗
H∥2, (B.3)

where A∗
H is an R×L orthogonal matrix that spans an optimal subspace for

representing the cluster structure. This optimization problem can be solved
by the same algorithm described in Section 3.2. That is, we just have to use
Fpca and A∗

H as GH and AH , respectively, in the algorithm for the FFKM
method.
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Using this two-step approach, we can obtain the cluster structure in the
low-dimensional subspace. However, this procedure does not provide the
weight functions vl that span the subspace of the functional data. The
weight functions are often useful to interpret the estimated subspace and
cluster structure. Thus, we consider estimating the weight functions from
the estimates A∗

H .
To obtain the coefficient matrix AH of the weight functions vl, the fol-

lowing optimization problem is considered,

min
AH

∥FpcaB
′
HAH − FpcaA

∗
H∥2. (B.4)

Note that AH is an orthogonal matrix. This is the well-known orthogo-
nal Procrustes rotation problem (ten Berge, 1993), and it can be solved
easily. The singular value decomposition BHF

′
pcaFpcaA

∗
H = PDQ′ yields

AH = PQ′ as the optimizing solution, where P′P = Q′Q = IL and D is
a diagonal matrix whose diagonal element is a singular value. Then, us-
ing AH = (aH1, . . . ,aHL), the estimated weight function is calculated as
vl = a′

HlH
−1/2ϕ. Furthermore, we can obtain the component score matrix F

as F = GHAH .
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