直接基礎-複合地盤の非線形相互作用と応答低減効果に関する実験研究
（その3）遠心載荷装置を用いた砂質地盤上の建物模型の振動台実験

複合地盤材料 地震応答低減 直接基礎
非線形相互作用 遠心載荷装置 砂質地盤

1. はじめに
本報では、砂質地盤上における改良地盤も含めた基礎-地盤系の非線形相互作用効果を調べるため行った、遠心振動実験について報告する。

2. 実験方法
2.1 試験体
実験は遠心載荷装置を用いて40G場で行っており、プロトタイプに対する建物模型の相似比は1/40である。実験モーダルの平面図と断面図を図1に示す。実験に用いられた断土槽は幅450mm、高さ150mm、深さ200mmである。建物模型の平面図と立軸図を図2に示す。以下の計測結果の長さ及び時間は全てプロトタイプスケールで表記する。

建物模型の固有振動数はプロトタイプで3.7Hzである。建物上部、板板、基礎の上から3分の1は真縦材（密度8.4g/cm^3）で、基礎の下3分の2の部分は超ジュラルミン材（密度2.8g/cm^3）である。

改良地盤（その1）の表2に示した高減衰ゴムチップと繊維材を配合したNo.2の複合地盤で、建物模型の基礎周囲を厚さ20mm（プロトタイプで800mm）で囲っている。周辺地盤は乾燥した豊浦砂を空中落下法で製作した。地盤の相対密度はDr=90%に設定した。

2.2 計器配置
実験では加速度計を図1(b)の図印で示す位置に配置した。建物模型については、建物上部の1点（ABL）、基礎の1点（AFT）を設置した。地盤は、地表面に1点（ASR1）、地中に1点（ASR2）を設置した。地表面のASR1は建物から十分離れて設置し、ASR2はASR1の直下に設置した。

2.3 加振ケースと入力地震波
加振は、基礎底面位置の埋め込み深さ45mmと15mm（プロトタイプで1800mmと600mm）で、テフロンシートにより基礎底面の滑りの有無無しの場合について行った。入力波は、加速度振幅を2種類（大、小）に変化させた八戸波（1968NS）と臨海波である。図3に加速度時刻波形をそれぞれ示す。小加振は大加振の約1/8の振幅として入力している。

Experimental Study on the Response Reduction Considering Nonlinear Composite Geomaterials - Foundation Interaction - Part 3
MOTOMURA Tomokazu, FUJI Satoru, SHIMAMURA Atsushi, KASHIWA Hisatoshi, TAMURA Syjii and MIYAMOTO Yuji

---199---
3. 実験結果と考察

表1に、建築物上部、基礎部、地表面、入力地震動の最大加速度を一覧にして示す。入力動と地表面の最大加速度を比較すると、八戸波、臨海波の小加振時には共通して地表面の方が大きくなり、地盤による地震動の增幅効果が認められる。大加振時には地表面の最大加速度の方が小さくなっている。テフロンシートの有無で比較すると、テフロンシートを底面に貼り付けた場合の方がほとんどケースで、建築物上部、基礎の加速度が小さくなる。また、この傾向は大加振入力時の方が顕著である。

大加振と小加振を比較するため、埋め込み1800mmの八戸波入力時の地表面に対する建築物上部の伝達関数図4に示す。小加振に比べ大加振の方が卓越振動数は小さくなり、応答倍率も小さい。この傾向は、埋め込み深さ、テフロンシートの有無に関わらず見られた。この原因としては、周辺地盤の塑性化が一因に挙げられる。

4. まとめ

本研究では、複合地盤を用いた埋め込み基礎が入力レベルや基礎底面の接触条件の違いで建築物応答にいかなる影響を及ぼすかを検討した。下記にまとめを示す。

① 大加振により直接基礎周辺の地盤が塑性化したことによって、応答振幅が小さくなり、連成系の固有振動数は低くなることが確認できた。

② テフロンシートを底面に貼り付け、改良地盤と基礎底面間の摩擦を小さくし、側面の複合地盤の抵抗に期待した基礎構造は、建築物応答を低減することを確認した。今後、研究を進め、さらに応答低減効果を発揮する基礎構造の開発を行う。

<table>
<thead>
<tr>
<th>入力波</th>
<th>埋込み深さ (mm)</th>
<th>テフロンなし</th>
<th>上部</th>
<th>基礎</th>
<th>地表面</th>
<th>入力</th>
</tr>
</thead>
<tbody>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>なし</td>
<td>117.3</td>
<td>113.2</td>
<td>164.4</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>なし</td>
<td>101.0</td>
<td>93.6</td>
<td>94.1</td>
<td>70</td>
</tr>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>あり</td>
<td>206.7</td>
<td>109.7</td>
<td>145.5</td>
<td>77.3</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>あり</td>
<td>196.1</td>
<td>109.7</td>
<td>128.8</td>
<td>74.5</td>
</tr>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>なし</td>
<td>514.8</td>
<td>510.1</td>
<td>626.3</td>
<td>667.5</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>あり</td>
<td>420.4</td>
<td>445.8</td>
<td>504.4</td>
<td>605</td>
</tr>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>なし</td>
<td>863.9</td>
<td>529.7</td>
<td>794.4</td>
<td>661.8</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>あり</td>
<td>683.7</td>
<td>430.7</td>
<td>663.1</td>
<td>615.4</td>
</tr>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>なし</td>
<td>233.1</td>
<td>192.9</td>
<td>240.3</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>あり</td>
<td>227.4</td>
<td>209.6</td>
<td>248.7</td>
<td>122.5</td>
</tr>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>なし</td>
<td>371</td>
<td>211.3</td>
<td>221.8</td>
<td>123.6</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>あり</td>
<td>349.8</td>
<td>224.8</td>
<td>219.4</td>
<td>139.1</td>
</tr>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>なし</td>
<td>664.9</td>
<td>918.2</td>
<td>979.3</td>
<td>1140</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>あり</td>
<td>544.8</td>
<td>771.4</td>
<td>858.5</td>
<td>1115</td>
</tr>
<tr>
<td>八戸波</td>
<td>1800</td>
<td>なし</td>
<td>1097</td>
<td>904.2</td>
<td>1058.9</td>
<td>1069.2</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>あり</td>
<td>972.6</td>
<td>834.6</td>
<td>1054.2</td>
<td>1091.7</td>
</tr>
</tbody>
</table>

図4 伝達関数の比較（八戸波、テフロンあり）

図5 応答最大値比較（テフロンなし・あり）

図6 伝達関数比較（テフロンなし・あり）