方杖ダンパー接合構造の角形鋼管柱への適用と検証実験

その3 構面外座屈荷重

			шAЯ		1-1	мпам,
方杖ダンパー	角形鋼管	外ダイアフラム	同	井上 一朗 *2,	同	宇野 暢芳*3
載荷実験	構面外座屈					

1. はじめに

本研究では、柱に角形鋼管を用い、2 方向ラーメンを構 成するのに適した方杖ダンパー接合構造の開発をめざし ている¹⁾.これまでに、柱フランジの面外変形を抑制し、 柱と梁ならびに柱と方杖ダンパーを高力ボルト接合する ための接合詳細を提案し、載荷実験によって2次設計地 震荷重レベルまでの接合部の力学挙動を確認している¹⁾. また、上記のレベルをこえる大変形領域では、方杖ダン パーの柱側接合部(芯材端部,ガセットプレート,添板 で構成される接合部)に,図1に示す構面外座屈が生じ ることも確認された.本論では、構面外座屈の防止設計 法を構築するために座屈荷重の理論式を導出し、座屈荷 重の計算結果と載荷実験の結果を比較・考察する.

2. 方杖ダンパーの構面外座屈荷重

図1に、方杖ダンパーの構面外座屈に関する力学モデ ルを示す. 図中のK は柱の材軸まわりのねじりに伴う回 転角θ。を表す回転ばねの剛性, K,は方杖ダンパー柱側接 合部の構面外変形に伴う回転角母」を表す回転ばねの剛性 である. 方杖ダンパー芯材の応力-歪関係を完全弾塑性 型と仮定し、芯材の軸力が降伏軸力に到達し、そのとき の応力点が降伏曲面上の特異点に位置するものと考え, 座屈拘束材の両端をピンとみなす²⁾. これらの回転ばねと ピンを剛棒で連結した図1の力学モデルより、構面外座 屈荷重 N_{cr} は(1)式で求めることができる.

正 日 ○ 殿 古 次 込 *1

ただし,

$$A_{1} = (l_{B} + l_{J} + d_{c}^{*})(l_{J} + d_{c}^{*})K_{J} + (l_{B} + l_{J})l_{J}K_{c}$$
(2)

$$A_{2} = 4 \left(l_{B} + l_{J} + d_{c}^{*} \right) l_{B} l_{J} d_{c}^{*} K_{J} K_{c}$$
(3)

3. 実験方法

試験体は、図2に示すように柱と梁を反曲点位置で取 り出した部分ト字形骨組で、図3に示すように梁の下側 に方杖ダンパーを配置した S 型試験体と梁の上下に方杖 ダンパーを配置した D 型試験体の各1体である。接合部 詳細は文献 1)と同様であるが, 既報¹⁾で抽出された問題 点を解消するために、試験体の設計時に以下の2点を変 更している.

 ・アルミ溶射添板を用いた1面摩擦接合部(S型試験体) の梁上フランジ)では、早期のすべりを抑制するため に、すべり係数を0.55とする.これ以外のアルミ溶 射添板のすべり係数は、文献 3) に基づいて既報¹⁾と 同様に 0.70 とする.

表1 使用鋼材の機械的性質

使用部位	鋼種	板厚 (mm)	降伏点 ^{*1} (N/mm ²)	引張強さ (N/mm²)	伸び (%)
方杖ダンパー (S 型)	SN400B	24.9	277	426	34
方杖ダンパー(D 型)	51N400D	21.9	288	437	33
角形鋼管 ^{※2}	BCR295	16.2	364	427	48
梁フランジ		24.6	339	510	29
梁ウェブ	SM490A	11.7	341	522	23
かダイアフラム		15.5	328	197	97

※1:0.2% オフセット耐力を採用. ※2:JIS5号試験片による.

Experimental study on mechanical behavior of weld-free steel structure with knee brace damper using RHS-column Part 3 Out-of -plane buckling load

KOETAKA Yuji, SUITA Keiichiro, INOUE Kazuo and UNO Nobuyoshi

 ・梁フランジおよび方杖ダンパー芯材端部の早期塑性化を防止するために、有効断面積を文献4)に基づいて 算定する。

表2に鋼材の機械的性質を示す.

4. 実験結果

図4に,梁端曲げモーメントMと梁の相対回転角θの 関係を示す.縦軸は,梁端曲げモーメントMを方杖ダン パー降伏時の梁端曲げモーメントM_p(全塑性モーメント) で除した値である.いずれの試験体も▼印の点で最大曲 げモーメントM_{max}に到達し,方杖ダンパー接合部に構面 外座屈が生じた.この時点を終局状態と定め,終局状態 までの実験結果一覧を表2にまとめる.

図5に、方杖ダンパーの軸力Nと柱側接合部の構面外 変形に伴う回転角 θ_J (図1参照)の関係を示す. 図中の 細点線は、表2に示す構面外座屈荷重の計算値 N_{cr} であり、 (1)式中の $K_c \geq K_J$ には別途実施した構面外剛性確認実験 の結果(表2参照)を用いている. 図5より、方杖ダンパー の軸力Nが構面外座屈荷重 N_{cr} に漸近すると θ_J が急増し ていることがわかる.

図6に、方杖ダンパー接合部のアルミ溶射添板に作用 する軸力Nと曲げモーメント。M(方杖ダンパーの軸力 の水平成分Nθ_Bに、図7の。*l*を乗じた値)の関係を示 す. 図6の縦軸は軸力Nを添板の降伏軸力。N,で除した 値, 横軸は。Mを添板の降伏モーメント。M,で除した値で ある. ただし, N_{max} 到達時において接合部にすべりが生 じていたため, $_{s}M_{y}$ には1枚の添板の降伏モーメントを2 倍した値を用いている. また, 図6中の●印は, 図7に 示す歪ゲージ貼付位置で塑性歪に到達した時点を表して いる. 図6より, アルミ溶射添板に作用する応力が降伏 相関曲線に到達した付近で, 終局状態に至っていること がわかる. また, 3章で示した接合部の設計法の変更点に ついては, 終局状態まで安定した挙動を呈していること を確認している.

5. まとめ

本論では、方杖ダンパーの構面外座屈荷重N_{cr}を導出し、 載荷実験結果と比較した.その結果、方杖ダンパーの軸 力が(1)式の座屈荷重N_{cr}に漸近すると、柱側接合部の構 面外変形が急増することが確認された.方杖ダンパーの 構面外座屈を防止するためには、上記の構面外変形に伴 う付加曲げと軸力の作用下で、アルミ溶射添板を弾性に 保つ必要がある.

謝辞 本研究の実施にあたって,合田弘樹君(元・大阪 工業大学)に多大なる御尽力をいただいた.

参考文献

1) 聲高裕治,福智康之,井上一朗,吹田啓一郎,宇 $M_{\rm max} = 1935 ({\rm kNm})$ **Y**. 野暢芳:方杖ダンパー接合構造の角形鋼管柱への $1.5 \top M/M$ 1.5 T M/M適用と検証実験,日本建築学会大会学術講演梗概 1.0 集, C-1 構造 III, pp.731-734, 2010.9 2) 木下智裕, 聲高裕治, 井上一朗, 飯谷邦祐: 接合 θ (rád) θ (rad) 部を含む座屈拘束ブレースの構面外座屈防止条件, 日本建築学会構造系論文集, 第 621 号, pp.141-0.06 0.04 0.04 0:02 0/02 12 148, 2007.11 3) 高田遼太, 東清三郎, 松尾真太朗, 井上一朗: 添 板にアルミ溶射を施した高力ボルト接合部のすべ S型 D型 り試験,日本建築学会近畿支部研究報告集,第48 1.51.5号·構造系, pp.409-412, 2008.6 = 1803(kNm)М 4) 日本建築学会:鋼構造接合部設計指針, 2006.3 図4 梁端曲げモーメント M-相対回転角θ関係 2000 T N(kN) $_{\rm s}=1254({\rm kN})$ $1_{\rm N}N_sN_y$ S \mathbbm{B} 1 $2000 \, \mathrm{T}$ $N(\mathbf{kN})$ V $N/N_y | D 型$ $N_{\rm max} = 1752 ({\rm kN})$ 1000 1000 $N_{cr} = 1501(kN)$ $N_{cr} = 1755 (kN)$ N_{-} $M = N \theta_{Bs} l$ N $\theta_J(rad)$ $\theta_J(\text{rad})$ 歪ゲージ _sl 0.02 0.04 0.02 0.04 ി 貼付位置(2 アルミ -1000-1000溶射添板 0 $M/_{s}M_{y}$ 1 0 1 M/MS型 D 型 -2000-2000-アルミ溶射添板の 図7 柱側接合部 図 6 方杖ダンパー軸力 N ー接合部構面外変形θ₁関係 (D 型試験体) 図 5 軸力Nー曲げモーメント_sM関係</sub> 表 2 実験結果一覧

試験体	最大曲げモーメント		累積塑性変形倍率		構面外座屈荷重			
	$M_{\rm max}/M_p$	サイクル	η	$\eta_{\scriptscriptstyle E}$	$N_{\rm max}$ (kN)	N_{cr} (kN)	K_{c} (kNm)	K_J (kNm)
S型	1.45	0.03 rad(-1)	142	149	1752	1755	4822	1481
D型	1.47	0.04rad(+1)	222	244	1254	1501	4745	1020

*1 京都大学

*2 日本建築総合試験所

*3 日鐵住金建材

Kvoto University

General Building Research Corporation of Japan Nippon Steel & Sumikin Metal Products Co., Ltd.