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We develop a basic formulation of the spin (SU(2)) coherent state path integrals based
not on the conventional highest or lowest weight vectors but on arbitrary fiducial vec-
tors. The coherent states, being defined on a 3-sphere, are specified by a full set of

Euler angles. They are generally considered as states without classical analogues. The
overcompleteness relation holds for the states, by which we obtain the time evolution of
general systems in terms of the path integral representation; the resultant Lagrangian
in the action has a monopole-type term à la Balachandran et al. as well as some addi-

tional terms, both of which depend on fiuducial vectors in a simple way. The process of
the discrete path integrals to the continuous ones is clarified. Complex variable forms
of the states and path integrals are also obtained. During the course of all steps, we
emphasize the analogies and correspondences to the general canonical coherent states

and path integrals that we proposed some time ago. In this paper we concentrate on
the basic formulation. The physical applications as well as criteria in choosing fiducial
vectors for real Lagrangians, in relation to fictitious monopoles and geometric phases,
will be treated in subsequent papers separately.
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1. Introduction

It has been approximately four decades since the “coherent state (CS)” for the

Heisenberg–Weyl group, i.e., the “canonical CS (CCS)” was extended to wider

classes. 1–4 During the period, the broader CS, together with the original one,

have had a great influence on almost every branch of modern physics. 5–9

Since basic properties of CS are that they are continuous functions labeled by

some parameters and that they compose “overcomplete” sets, 5 they provide a nat-
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ural way to perform path integrations. Such “coherent state path integrals (CSPI)”,
i.e., path integrals (PI) via CS, have highly enriched the methods of PI with their

physical applications. 5,8 (In what follows each of the words “CS” and “CSPI” is

used as a plural as well as a singular.)

As stated at the beginning, among all the CS the CCS is the original and the

best-known CS that was introduced by Schrödinger. 10 The CCS is, in the light

of quantum optics, generated by displacing, or driving, the vacuum, i.e., the zero

photon state. 11–13 From the viewpoint of CS in terms of unitary irreducible rep-

resentations of Lie groups à la Perelomov, 2,6,7 the unitary operator is a displacing

operator and a “fiducial vector (FV)” a is the ground state or vacuum.

Some time ago we opened up the CSPI in terms of CCS evolving from an arbi-

trary FV and investigated the associated geometric phases with an application to

quantum optics. 14 Let us look back the results from the physical viewpoint con-

cisely: First, we set the generic CCS by displacing, or driving, not a usual vacuum,

but an arbitrary superposition of photon number states. If we take a single photon

number state as a FV, we find that the CCS reduce to “displaced number states

(DNS)”. 16–18 So we may state that the CCS with a generic FV is an arbitrary

superposition of the DNS. Second, using the general CCS we have performed CSPI

which give a completely general propagator including geometric phase terms cor-

responding to a quantum optical state that has no classical analogue; the resultant

action in the Lagrangian includes extra terms reflecting the entanglements between

the coefficients of FV. Third, particularly we investigated the geometric phase for

DNS; and we found that the condition for the experimental detection of the phase

had changed according to the n-dependence of DNS. Such CCS with a general FV

may propose a clue to a universal language for quantum optics especially when

combined with SU(1,1) case. b

Now, we realize that we have another CS which is of practical importance in

a large variety of physical systems: that is the spin or SU(2) CS. It is one of the

extensions of CS addressed at the beginning. c Hence, following the achievements

for the CCS above mentioned,14 we here endeavor to liberate spin CS from the

conventional choice of FV, |Ψ0⟩ = |s, s⟩ or |s,−s⟩, and perform the path integration

via the CS based on arbitrary FV; the SU(2) CS is, in this case, labeled by a full

set of three Euler angles (ϕ, θ, ψ); it is defined on a 3-sphere S3.

We have several concrete reasons for doing such an extension. First, we know

that DNS turned out to be non-classical quantum states that had various interest-

aIn Refs. 14 and 15 we adopted the term “starting vector” which can be found in, e.g. p 14 of
Ref. 6. The term seems well fit for the situation. However, we use “fiducial vector” in the present
paper since it appears to be more employed in literature. See e.g., Ref. 5. We use also the word

“FV” as a plural as well as a singular.
b“Displaced squeezed number states” have been discussed in literature; see Refs. 16–18 and refer-
ences therein.
cThese two CS are intriguing also from the mathematical viewpoint since each of them is a typical
example of CS for nilpotent Lie groups and semisimple ones respectively.2
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ing properties. 16–18 So the analogous general spin CS may serve new non-classical

quantum states that have not been known. And the PI will provide examples of

propagators for such states. Second, the usual CCS have been employed as logi-

cal gates in quantum computation (QC) .19 And moreover, the superpositions of

DNS, which fall within the CCS with generic FV before mentioned, 14 have already

appeared in the context of QC. 20 Since spin systems as well as optical systems

are probable candidates for exemplifying QC, spin CS with general FV may be

also used in QC. Third, describing geometric phases, which has been one of the

crucial topics in fundamental physics21 in terms of CSPI requires the extension.

Let us put it more concretely: once elsewhere we investigated the geometric phases

for a spin-s particle under a magnetic field in the formalism of SU(2)CSPI with

the conventional FV, i.e., |s,−s⟩.22 In consequence the results give the geometric

phase of a monopole-type that corresponds merely to the adiabatic phase for the

lowest eigenstate. However, it has been known that in the adiabatic phase for the

same physical setting the strength of a fictitious monopole is proportional to the

quantum number m (m = −s,−s + 1, · · · , s) of the adiabatic state .23 We cannot

treat the corresponding case by the conventional SU(2)CSPI. Therefore the usual

SU(2)CSPI is clearly unsatisfactory; and we had better let CS and CSPI prepare

room also for the general cases which are reduced to any mth eigenstate in the

adiabatic limit. Thus physics actually needs some extension of spin CSPI. Fourth,

now geometric phases have been employed in QC 24; and, as stated in the third

reason, geometric phases are closely related to CSPI. Appreciating both areas it

seems that we had better prepare wider CSPI and FV also for QC. Fifth, apart

from the third reason, such a formalism of spin CSPI involving arbitrary FV may

consequently shed a new light in understanding monopoles themselves in turn. For

we have already known that the conventional spin CSPI provide a mathematical

description of monopoles naturally. 22 And the description is common to real and

fictitious monopoles. Hence it is possible that considering general FV in spin CSPI

helps us to understand monopoles deeper. Finally, since the usual spin CS tends to

the usual CCS in the high spin limit,1 we are naturally led to seek the spin CS and

CSPI that are contracted to the CCS and CSPI with arbitrary FV described in Ref.

14. For the above several reasons we take a general FV in this paper.

We may grasp the main results by three theorems. The first one shows that we

have the overcompleteness relation, or the resolution of unity, for the spin CS with

an arbitrary FV. Using the result we obtain the second one as follows: the form of

the generic Lagrangian for the SU(2)CSPI is (32). As the Lagrangian for the usual

CSPI, it consists of two parts: the topological term related to geometric phases and

the dynamical one originating from a Hamiltonian. However, the contents are quite

different; in the present case the former has a monopole-type term à la Balachandran

et al. (hereafter called BMS2), 25,26 whose strength or charge is proportional to the

expectation value of the quantum number m in the state of a FV, |Ψ0⟩, having
(2s + 1)-components; and besides the topological term contains additional terms
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that reflect the effect of interweaving components of a FV with their next ones.

This is also the case for the latter; such interweaving components of a FV appear

in the dynamical term as well. In the previous version we merely showed the above

results from the formal CSPI.27 It can be, however, established from the discrete

CSPI. In the third theorem we prove that the general spin CS and CSPI contract

to the general CCS and CCSPI in Ref. 14.

The plan of the paper is the following. Before going into the spin CS case, we

concisely review the CCS and PI evolving from an arbitrary FV14 in Sec. 2. Next,

we describe the spin CS based on arbitrary FV as well as their various properties

(Sec. 3) and employ them to perform path integration (Sec. 4). Specifically, there

we investigate the process of going from the discrete PI to the continuous ones.

Next, we discuss problems related to the Lagrangians: the problems of topological

terms, the fictitious gauge potentials and semiclassical equations. Complex variable

form of the CS and CSPI are obtained in Sec. 5. The results are applied to the

demonstration that the spin CSPI there contract to the CCSPI in Sec. 2. Section 6

gives the summary and prospects. Mathematical tools necessary in the article are

enumerated concisely in Appendix A.

2. General Canonical Coherent States and the Path Integrals

In this section we briefly revisit the results of the CCS with a generic FV and the

related PI described in Ref. 14. We may compare the expressions in this section with

those in the following Secs. 3–5. Notice that α, in this article, denotes a parameter

specifying the CCS; not an element of Euler angles.

2.1. General CCS

We proceed physically as far as possible.

2.1.1. Definition of the CCS

First, we set the generic CCS, |α⟩, by displacing, or driving, not a usual vacuum,

i.e., the zero photon state, but an arbitrary superposition of photon number states:

|α⟩ = D̂(α)|Ψ0⟩, (1)

where

D̂(α) ≡ exp(αâ+ − α∗â) = exp
(
−(1/2)|α|2

)
exp(αâ+) exp(−α∗â) (2)

and

|Ψ0⟩ =
∞∑

n=0

cn|n⟩ with
∞∑

n=0

|cn|2 = 1. (3)
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Here |n⟩ is the photon number state. From (1)–(3), the general CCS, |α⟩, can be

put into the form:

|α⟩ ≡
∞∑
n

cn|α, n⟩ (4)

with

|α, n⟩ ≡ D̂(α)|n⟩ =
∞∑

m=0

⟨
m|D̂(α)|n

⟩
|m⟩

= exp
(
−(1/2)|α|2

) [ n∑
m=0

(
m!

n!

)1/2

(−α∗)n−m L(n−m)
m (|α|2)|m⟩

+

∞∑
m=n+1

(
n!

m!

)1/2

αm−n L(m−n)
n (|α|2)|m⟩

]
, (5)

where L
(ℓ)
k (x) is the Laguerre polynomials.

We see that |α, n⟩ in (5) is a DNS. d So we may say that CCS with a general FV

is an arbitrary superposition of DNS. However, we will not use the explicit form of

DNS in the present paper.

2.1.2. Resolution of unity

For CCS |α⟩ evolving from an arbitrary FV, we have the “overcompleteness relation”

or “resolution of unity”:

1

π

∫
|α⟩d2α⟨α| = 1 with d2α ≡ d(Reα) d(Imα). (6)

2.1.3. CCS as eigenvectors

It turns out that the CCS |α⟩ is a “generalized eigenvector” 28 of an annihilation

operator:

(â− α)N+1|α⟩ = 0 (N = maxn). (7)

In the case of DNS |α, n⟩ we also have:

(â+ − α∗)(â− α) |α, n⟩ = n |α, n⟩ . (8)

Concerning (8), we apologize for sign errors in the original expressions in Eqs. (20)

and (B1) in Ref. 14.

dWe made no mention of DNS in Ref. 14; since our central concern was CSPI, we were not aware
of it. We appreciate those who contribute to DNS including Refs. 16–18 and 20.
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2.2. General CCS path integrals

2.2.1. CCS path integrals

Invoking the resolution of unity for CCS (6), we can obtain PI expression for the

CCS. We put the results below.

Let us define

A(α̇, α̇∗; {cn}) ≡ 2
∞∑

n=1

n1/2
(
α̇ c∗ncn−1 − α̇∗ cnc

∗
n−1

)
(9)

and

H(α∗, α, t) ≡ ⟨α|Ĥ|α⟩. (10)

Then we find the propagator K(αf , tf ;αi, ti) which starts from |αi⟩ at t = ti ,

evolves under the effect of the Hamiltonian Ĥ(â+, â; t) which is assumed to be a

suitably-ordered function of â+ and â, and ends up with |αf ⟩ at t = tf is:

K(αf , tf ;αi, ti) =

∫
D[α(t)] exp{(i/~)S[α(t)]}, (11)

where

S[α(t)] ≡
∫ tf

ti

Ldt (12)

with

L ≡ i~
2

[
(α∗α̇− α̇∗α) +A(α̇, α̇∗; {cn})

]
−H(α∗, α, t) (13)

and we symbolized

D[α(t)] ≡ lim
N→∞

(
1

π

)N N∏
j=1

d2αj . (14)

As we see in (9), the extra A-term in the Lagrangian (13) represents the entangle-

ments of the coefficients of FV with their next ones. However, even if the A-term

vanishes, since we take a general FV, H(α∗, α, t) in (10) is also different from that

for the usual CCS as we showed in the evaluation of geometric phases for DNS in

Ref.14.

2.2.2. Canonical equations

In the semiclassical limit, i.e., ~ → 0, the Lagrangian (13) yields the Euler-Lagrange

equation:

i~ α̇ =
∂H

∂α∗ , −i~ α̇
∗ =

∂H

∂α
, (15)

which is the generalized canonical equations. Since the A-term (9) is expressed as

a total derivative, it is not involved in (15); and thus Eq. (15) is the same as that

for the usual CCS formally. However, as mentioned above, the meaning of α and

H(α∗, α, t) are different.
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3. SU(2) Coherent State with General Fiducial Vectors

In this section we investigate the explicit form of the SU(2) CS based on arbitrary

FV. And their properties are studied to such extent as we need later. It means

that we will consider the spin states analogous to the CCS with a generic FV in

Sec. 2.1. The results in Secs. 3–5 include those for the conventional SU(2)CS 1,3,6

and their CSPI 30,31; the latter follow from the former when we put cs = 1 and

cm = 0 (m ̸= s), or c−s = 1 and cm = 0 (m ̸= −s) in later expressions.

3.1. Construction of the general SU(2) coherent state

The SU(2) or spin CS are constructed from the Lie algebra satisfying S× S = iS,

where S ≡ (Ŝ1, Ŝ2, Ŝ3) is a matrix vector composed of the spin operators. The

operators in S are also the infinitesimal operators of the irreducible representation

R(s)(g) of SO(3). Since SU(2) ≃ SO(3) locally, we can also use SO(3) to construct

the SU(2) CS. Somewhat similar to the CCS, the SU(2)CS is defined by operating

a rotation operator R̂(Ω) with Euler angles Ω ≡ (ϕ, θ, ψ), e which is the operator

of R(s)(g), on a fixed vector |Ψ0⟩ in the Hilbert space of R(s)(g) 1–3:

|Ω⟩ ≡ |ϕ, θ, ψ⟩ = R̂(Ω)|Ψ0⟩ = exp(−iϕŜ3) exp(−iθŜ2) exp(−iψŜ3)|Ψ0⟩. (16)

The vector |Ψ0⟩, called a FV, is taken as |s,−s⟩ or |s, s⟩ in the conventional choice.
1,3 CS with such FV are closest to the classical states and have various useful

properties.6 We appreciate them truly. According to the general theory of the CS,

however, we have much wider possibilities in choosing a FV; and in fact it permits

any normalized fixed vector in the Hilbert space.2,5,6 Thus we can take |Ψ0⟩ as

|Ψ0⟩ =
s∑

m=−s

cm|m⟩ with

s∑
m=−s

|cm|2 = 1. (17)

Hereafter |m⟩ stands for |s,m⟩. The FV will bring us all the information in later

sections as far as the general theory goes. Looking at the problem in the light

of physical applications, we need to take an appropriate |Ψ0⟩, i.e., {cm}, for each

system being considered. We may consider CS with such FV as quantum states

which have no classical analogues. Exploring them surely enrich the understanding

of the physical world. Eqs. (16)–(17) correspond to (1)–(3) for CCS. From Appendix

A (ii) one can see |Ω⟩ is defined on a 3-sphere S3; it is specified by three real

parameters, for which we takeΩ = (ϕ, θ, ψ). Notice that the reduction of the number

of Euler angles is not always possible for an arbitrary |Ψ0⟩; for any s, |Ψ0⟩ is not

necessarily reached from |m⟩ via R̂(Ω). Hence we use a full set of three Euler angles

and proceed with it in what follows, which seems suitable for later discussions. When

|Ψ0⟩ = |m⟩, we can eliminate ψ from Ω, thus yielding the spin CS with the phase

space of a 2-sphere S2, the Bloch sphere, labeled by two real parameters (θ, ϕ).

eHereafter we adapt the abbreviation Ω ≡ (ϕ, θ, ψ) from Radcliffe1 to describe a set of Euler angles
which specifies the spin CS.
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Having written |Ψ0⟩ in the form of (17), the SU(2)CS is represented by a linear

combination of a set of the vectors {|m⟩} as:

|Ω⟩ =
s∑

m=−s

cm|Ω,m⟩ (18)

with

|Ω,m⟩ ≡ R̂(Ω)|m⟩ =
s∑

m′=−s

R
(s)
m′m(Ω) |m′⟩

=
s∑

m′=−s

exp[−i(m′ϕ+mψ)] r
(s)
m′m(θ) |m′⟩. (19)

See Appendix A (i) for the definitions of R
(s)
m′m and r

(s)
m′m. The form of (18)–(19) is

valuable for later arguments. One may see that Eqs. (18)–(19) are analogues of Eqs.

(4)–(5) for CCS; the ket |Ω,m⟩, which corresponds to DNS |α, n⟩, may be called

the “rotated spin number state”. f We once treated |Ω,m⟩ and its CSPI in Ref. 33.

The state |Ω⟩ may be named the “extended spin CS”, yet we will call it just “the

CS” or the “general spin CS” in this paper since there have been some arguments

about the choice of such a FV 5,6 and the CSPI.34 g We take a simple strategy

for the SU(2)CSPI evolving from arbitrary FV here and we will give their explicit

forms.

3.2. Resolution of unity

The most important property that the CS enjoy is the “overcompleteness relation”

or “resolution of unity” which plays a central role in performing the path integration.

We have the relation (6) for the CCS. In the present spin CS case, it is expressed

as follows.

Theorem 1. For |Ω⟩ with arbitrary FV, we have the resolution of unity:∫
|Ω⟩dµ(Ω)⟨Ω| = 1 (20)

with

dµ(Ω) ≡ 2s+ 1

8π2
dΩ and dΩ ≡ sin θ dθdϕdψ. (21)

fWe may, instead, call it the “rotated magnetic quantum number state” borrowing the term from

spectroscopy. 32 However, we feel that the “rotated spin number state” sounds like a generic term
and appropriate for a wide variety of spin systems.
gIt is reviewed in Ref. 35. The authors of Ref. 34 constructed “universal propagators” for various

Lie group cases, being independent of the representations, which yields a different action from
ours.
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For simplicity, we have neglected the difference between an integer s and a half-

integer s, which is not essential. Concerning the proof, there is an abstract way

making full use of Schur’s lemma. 2,5,6 However, we propose proving it by a slightly

concrete method which is a natural extension of that used for the original spin CS.
1,3 For it indicates clearly what is to be changed when we use a general |Ψ0⟩.

Proof: We see from (18)–(19) ⟨Ω| =
∑s

m̃=−s

∑s
m′′=−s c

∗
m̃

(
R
(s)
m′′m̃(Ω)

)∗
⟨m′′|.

Then, with the aid of (A.10) we have:

∫
|Ω⟩dΩ⟨Ω| =

s∑
m=−s

s∑
m̃=−s

cmc
∗
m̃

{ s∑
m′=−s

s∑
m′′=−s

[∫ π

0

dθ sin θ

×
∫ 2π

0

dϕ

∫ 2π

0

dψ
(
R
(s)
m′′m̃(Ω)

)∗
R
(s)
m′m(Ω)

]
|m′⟩⟨m′′|

}
=

s∑
m=−s

s∑
m̃=−s

cmc
∗
m̃

( s∑
m′=−s

s∑
m′′=−s

8π2

2s+ 1
δm′′,m′δm̃,m|m′⟩⟨m′′|

)
=

8π2

2s+ 1

s∑
m=−s

cmc
∗
m

( s∑
m′=−s

|m′ ⟩⟨m′|
)

=
8π2

2s+ 1

( s∑
m=−s

|cm|2
)
1 =

8π2

2s+ 1
1, (22)

which is exactly what we wanted.

3.3. Overlap of two coherent states

The overlap of two CS |Ωℓ⟩ ≡ |ϕℓ, θℓ, ψℓ⟩ =
∑s

mℓ=−s cmℓ
|ϕℓ, θℓ, ψℓ;mℓ⟩ (ℓ = 1, 2) is

one of those important quantities which we employ for various calculations in the

CS. It can be derived, with the help of (16), (A.1) and (A.9), as:

⟨Ω2|Ω1⟩ =
s∑

m1=−s

s∑
m2=−s

cm1c
∗
m2

⟨m2|R̂(−ψ2,−θ2,−ϕ2)R̂(ϕ1, θ1, ψ1)|m1⟩

=
s∑

m1=−s

s∑
m2=−s

cm1
c∗m2

R(s)
m2m1

(Ω3)

=
s∑

m1=−s

s∑
m2=−s

cm1c
∗
m2

exp[−i(m2φ+m1χ)] r
(s)
m2m1

(ϑ), (23)

where (A.2) gives the form of r
(s)
m2m1(ϑ) and Ω3 ≡ (φ, ϑ, χ) is determined by (A.11)

if we replace Ω̃ with Ω3. It is easy to see that any state |Ω⟩ is normalized to unity,

as conforms to our construction of the CS.
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3.4. Typical matrix elements

Typical matrix elements that we may employ in later are:{
⟨Ω|Ŝ3|Ω⟩ = A0({cm}) cos θ −A1(ψ; {cm}) sin θ
⟨Ω|Ŝ+|Ω⟩ = A0({cm}) sin θ exp(iϕ) +A2(Ω; {cm}) = ⟨Ω|Ŝ−|Ω⟩∗,

(24)

where Ŝ± = Ŝ1 ± iŜ2 and
A0({cm}) =

∑s
m=−sm|cm|2

A1(ψ; {cm}) = 1
2

∑s
m=−s+1 f(s,m)[c∗mcm−1 exp(iψ) + cmc

∗
m−1 exp(−iψ)]

A2(Ω; {cm}) = 1
2

∑s
m=−s+1 f(s,m) exp(iϕ){(1 + cos θ) exp(iψ)c∗mcm−1

−(1− cos θ) exp(−iψ)cmc∗m−1}
f(s,m) = [(s+m)(s−m+ 1)]1/2.

(25)

By {cm} we mean a set of the coefficients of a FV. We can easily verify (24) by (16)

and (A.8).

Generating functions for general matrix elements exist as in the original CS

cases. 3 In the normal product form it reads

XN (z+, z3, z−) ≡ ⟨Ω2| exp(z+Ŝ+) exp(z3Ŝ3) exp(z−Ŝ−) |Ω1⟩
= ⟨Ψ0|R̂+(Ω2)R̂(Ω)R̂(Ω1)|Ψ0⟩ = ⟨Ψ0|R̂(Ω

′′
)|Ψ0⟩, (26)

whereΩ is related to zℓ (ℓ = +, 3,−) through (A.7); andΩ
′′
is determined by (A.12)

with suitable changes. In principle any matrix elements can be obtained from (26)

via partial differentiations with respect to appropriate variables zi (i = ±, 3).

4. Path Integral via the General Spin CS

We now give the PI expressions in terms of the general spin CS evolving from an

arbitrary FV defined in Sec. 3. In Sec. 4.1 the PI form is given. It is proved in the

following Sec. 4.2. Some specific aspects of the Lagrangian are discussed in Secs.

4.3–4.5.

4.1. Path integrals

In this section we will give the explicit PI expression of the transition ampli-

tude by means of the CS discussed in Sec. 3. What we need is the propagator

K(Ωf , tf ;Ωi, ti) which starts from |Ωi⟩ at t = ti, evolves under the effect of the

Hamiltonian Ĥ(Ŝ+, Ŝ−, Ŝ3; t) which is assumed to be a function of Ŝ+, Ŝ− and Ŝ3

with a suitable operator ordering and ends up with |Ωf ⟩ at t = tf :

K(Ωf , tf ;Ωi, ti) = ⟨Ωf , tf |Ωi, ti⟩ = ⟨Ωf |Texp
[
−(i/~)

∫ tf

ti

Ĥ(t) dt
]
|Ωi⟩, (27)

where T denotes the time-ordered product. The overcompleteness relation (20) af-

fords us the well-known prescription of formal CSPI 5,8 to give:

K(Ωf , tf ;Ωi, ti) =

∫
exp{(i/~)S[Ω(t)]}D[Ω(t)], (28)
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where

S[Ω(t)] ≡
∫ tf

ti

[
⟨Ω|i~ ∂

∂t
|Ω⟩ −H(Ω, t)

]
dt ≡

∫ tf

ti

L(Ω, Ω̇, t) dt (29)

with

H(Ω, t) ≡ ⟨Ω|Ĥ|Ω⟩ (30)

and we symbolized

D[Ω(t)] ≡ lim
N→∞

N∏
j=1

dµ(Ωtj ) ≡
∏
t

8π2

2s+ 1
[sin θ(t)dθ(t)dϕ(t)dψ(t)]. (31)

The explicit form of the Lagrangian yields

L(Ω, Ω̇, t) = ~
[
A0({cm})(ϕ̇ cos θ + ψ̇) +A3(Ω, Ω̇; {cm})

]
−H(Ω, t), (32)

where

A3(Ω, Ω̇; {cm}) ≡ −A1(ψ; {cm}) ϕ̇ sin θ +A4(ψ; {cm}) θ̇ (33)

with A1(ψ; {cm}) in (25) and

A4(ψ; {cm}) ≡ 1

2i

s∑
m=−s+1

f(s,m)[c∗mcm−1 exp(iψ)− cmc
∗
m−1 exp(−iψ)]. (34)

The formal proof of (32) is best carried out by the use of the identity:

R̂+(Ω)
∂

∂t
R̂(Ω) = R̂+(Ω)

(
ϕ̇
∂

∂ϕ
+ θ̇

∂

∂θ
+ ψ̇

∂

∂ψ

)
R̂(Ω)

= −i(ϕ̇ cos θ + ψ̇)Ŝ3 +
1

2
(iϕ̇ sin θ − θ̇) exp(iψ)Ŝ+

+
1

2
(iϕ̇ sin θ + θ̇) exp(−iψ)Ŝ− (35)

and (24). Since the relation (35) is independent of s, it can be readily verified by

the use of a 2× 2 matrix (A.4). The detailed and substantial proof of (32) is given

in the following subsection Sec. 4.2.

4.2. From discrete to continuous path integrals

We can justify the spin CSPI in Sec. 4.1 by showing the process from the discrete

PI to the continuous ones. The proof is a straightforward generalization of that in

Ref. 33. The method below may be applied to other CSPI; for example, the SU(1,

1) or SU(3) cases.

Theorem 2. The quantum evolution of a physical system in terms of the general

SU(2) CS is represented by (28)–(34).
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Proof: By dividing the time interval into infinite numbers of an infinitesimal one

ϵ in (27) and the successive use of the overcompleteness relation, i.e., Eq. (20) in

Theorem 1, we obtain:

K(Ωf , tf ;Ωi, ti) = ⟨Ωf |Texp
[
−(i/~)

∫ tf

ti

Ĥ(t) dt
]
|Ωi⟩

= lim
N→∞

∫
dµ(Ω1) · · ·

∫
dµ(ΩN )⟨Ωf , tf |ΩN , tN ⟩ · · ·

×⟨Ωj , tj |Ωj−1, tj−1⟩ · · · ⟨Ω1, t1|Ωi, ti⟩, (36)

where ϵ = [1/(N + 1)](tf − ti) and tj = ti + jϵ. It is clear that we only have to

consider a propagator during an infinitesimal time interval, which gives

⟨Ωj , tj |Ωj−1, tj−1⟩ ≡ ⟨Ωj |Texp
[
−(i/~)

∫ tj

tj−1

Ĥ(t) dt
]
|Ωj−1⟩

≃ ⟨Ωj |
(
1− (i/~)

∫ tj

tj−1

dt Ĥ(Ŝ+, Ŝ−, Ŝ3; t)
)
|Ωj−1⟩

= ⟨Ωj |Ωj−1⟩
(
1− (i/~) ϵH(Ωj ,Ωj−1; tj−1)

)
≃ exp[ln ⟨Ωj |Ωj−1⟩] · exp

[
−(i/~) ϵH(Ωj ,Ωj−1; tj−1)

]
,(37)

where

H(Ω
′′
,Ω

′
; t) ≡

⟨
Ω

′′
∣∣∣Ĥ(Ŝ+, Ŝ−, Ŝ3; t)

∣∣∣Ω′
⟩

⟨Ω′′ |Ω′⟩
. (38)

Our next task is to compute the infinitesimal overlap ⟨Ωj |Ωj−1⟩ in (37). Repre-

senting |Ωj⟩ =
∑

m cmR̂(Ωj)|m⟩ and |Ωj−1⟩ =
∑

m′ cm′R̂(Ωj−1)|m′⟩, we see from

(23)

⟨Ωj |Ωj−1⟩ =
s∑

m=−s

s∑
m′=−s

c∗mcm′⟨m|R̂(Ω̃j)|m′⟩

=
s∑

m=−s

s∑
m′=−s

c∗mcm′ exp[−i(mϕ̃j +m′ψ̃j)] rmm′(θ̃j), (39)

where Ω̃j ≡ (ϕ̃j , θ̃j , ψ̃j) satisfies the same relation (23) as Ω3 if we put Ω2 = Ωj =

(ϕj , θj , ψj) and Ω1 = Ωj−1 = (ϕj−1, θj−1, ψj−1). Searching for concrete relations

between Ω̃j ,Ωj andΩj−1, we are brought to (A.11). Then, by the use of the relation:

∆θj ≡ θj − θj−1 ≃ θ̇jϵ,∆ϕj ≡ ϕj − ϕj−1 ≃ ϕ̇jϵ and ∆ψj ≡ ψj − ψj−1 ≃ ψ̇jϵ we

have, to O(ϵ),
θ̃j ≃ ∆θj , cos( 12 θ̃j) ≃ 1, sin(12 θ̃j) ≃

1
2 sin(θ̃j) ≃ O(ϵ),

sin θ̃j exp(iϕ̃j) ≃ − exp(−iψj)(∆θj + i∆ϕj sin θj),

exp[i(ϕ̃j + ψ̃j)] ≃ 1− i(∆ϕj cos θj +∆ψj).

(40)
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The relation (40) above is the master key to the proof which we invoke implicitly

in (42)–(44) below. Now we have from (A.2)

rmm′(θ̃j) =
∑
t

N(s,m,m′; t) · [cos(θ̃j/2)](s+m−t)+(s−m′−t)

×[sin(θ̃j/2)]
(t)+(t−m+m′). (41)

From the restrictions on the factorials in N(s,m,m′; t) in (A.3) all the terms in

the parentheses in the exponents in (41) have to be zero or more. Then it becomes

apparent that we only need to pick up, to O(ϵ), the terms fulfilling the combinations

(t, t −m +m′) = (0, 0), (0, 1), (1, 0), from which the following three cases appear:

(i) t = 0,m = m′, (ii) t = 0,m′ = m + 1, (iii) t = 1,m′ = m − 1. Evaluating

terms in (39), the following expressions for each case are derived by (40), (41) and

(A.3). First, consider the case (i). Notice that N(s,m,m′ = m; t = 0) = 1 and

rmm(θ̃j) ≃ 1 + O
(
[∆(θj)]

2
)
. The relevant terms are:

s∑
m=−s

|cm|2 exp[−im(ϕ̃j + ψ̃j)] rmm(θ̃j)

≃ 1 + i A0({cm})(∆ϕj cos θj +∆ψj). (42)

Second, for the case (ii) N(s,m,m′ = m + 1; t = 0) = f(s,m′); see (25) for the

definition of f(s,m). So one finds that the corresponding terms become:

1

2

s∑
m′=−s+1

cm′c∗m′−1 exp[−im′(ϕ̃j + ψ̃j)]f(s,m
′) · [sin θ̃j exp(i ϕ̃j)]

≃ 1

2

s∑
m=−s+1

cmc
∗
m−1[1 + im(∆ϕj cos θj +∆ψj)]

×f(s,m)[− exp(−iψj)(∆θj + i∆ϕj sin θj)]

≃ −1

2

s∑
m=−s+1

cmc
∗
m−1f(s,m) exp(−iψj)(∆θj + i∆ϕj sin θj) + O(ϵ2), (43)

where we have renamed m′ m. Third, we can deal with the case (iii) just in the

same manner as (ii). With N(s,m,m′ = m−1; t = 1) = −f(s,m) the corresponding

terms become:

− 1

2

s∑
m=−s+1

c∗mcm−1f(s,m) exp[−i (m− 1)(ϕ̃j + ψ̃j)] · [sin θ̃j exp(−i ϕ̃j)]

≃ −1

2

s∑
m=−s+1

c∗mcm−1[1 + i (m− 1)(∆ϕj cos θj +∆ψj)]

×f(s,m)[− exp(iψj)(∆θj − i∆ϕj sin θj)]

≃ 1

2

s∑
m=−s+1

c∗mcm−1f(s,m) exp(iψj)(∆θj − i∆ϕj sin θj) + O(ϵ2). (44)
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Eventually, putting the above results all together, we obtain the infinitesimal over-

lap:

⟨Ωj |Ωj−1⟩ ≃ 1 + iA0({cm})(∆ϕj cos θj +∆ψj)

−1

2

s∑
m=−s+1

f(s,m)[cmc
∗
m−1 exp(−iψj)(∆θj + i∆ϕj sin θj)

−c∗mcm−1 exp(iψj)(∆θj − i∆ϕj sin θj)]. (45)

Substituting (45) into (37) and then (37) into (36), we finally arrive at the

expression to O(ϵ):

K(Ωf , tf ;Ωi, ti) = lim
N→∞

∫
dµ(Ω1) · · ·

∫
dµ(ΩN ) exp[(i/~)S1,N+1] (46)

with

S1,N+1 =
N+1∑
j=1

{
~
[
A0({cm})(∆ϕj cos θj +∆ψj)

−A1(ψj ; {cm})∆ϕj sin θj +A4(ψj ; {cm})∆θj
]

−ϵH(Ωj ,Ωj−1; tj−1)
}
. (47)

See (25) and (34) for the definitions of A1 and A4 respectively. Hence, it is easy to

see that the expressions (46)–(47) agree with those of (28)–(34) in the ϵ→ 0 limit.

We have thus arrived at the generic expressions of the PI via the SU(2)CS,

i.e., (28)–(34), which constitute one of the main results of the present paper. They

correspond to (9)–(14) for the CCS. The complex variable forms of spin CS and

CSPI are presented Sec. 5. There, with the aid of the form, we can easily see the

above correspondence by the contraction procedure. The special case when cm = 1

(for a sole m), which includes the conventional SU(2)CSPI, was once treated in

Ref. 33.

The transition amplitude between any two states |i⟩ at t = ti and |f⟩ at t = tf
can be evaluated by:∫∫

dµ(Ωf )dµ(Ωi) ⟨f |Ωf ⟩(Ωf , tf ;Ωi, ti)⟨Ωi|i⟩. (48)

Finally, we will make an auxiliary discussion on the derivation of CSPI. We often

see a slightly different approach to PI in literature 36–38; it is essentially after an

original one due to Dirac. 39,40 Now let us proceed with it. Define a “moving frame”

state vector, 36,37 which represents an intermediate state, as:

|Ωj , tj⟩ ≡ Û+(tj)|Ωj⟩ with Û(tj) ≡ Texp
[
−(i/~)

∫ tj

ti

Ĥ(t) dt
]
. (49)
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Then the resolution of unity also holds for |Ωj , tj⟩ whose successive use leads us

formally to the same expression as (36). However, this time we have, as a consequence

of (49),

⟨Ωj , tj |Ωj−1, tj−1⟩ = ⟨Ωj |Texp
[
−(i/~)

∫ tj

tj−1

Ĥ(t) dt
]
|Ωj−1⟩. (50)

In contrast the same expression is used as a definition in (37). Note that in Û+(tj)

the order of a set of operators {exp[(i/~)
∫ tj
tj−1

Ĥ(t)dt]} is reversed to that in Û(tj);

it becomes anti-chronological. The residuary procedure to CSPI is the same as the

former.

In the phase space PI “moving frame” vectors {|qj , tj⟩} are defined as the eigen-

states of the operators q̂(tj) ≡ Û+(tj)q̂Û(tj) in the Heisenberg picture, 37,38 from

which |qj , tj⟩ = U+(tj)|qj⟩ results. They are truly the precise descriptions of in-

termediate states. In the present spin PI case we can do the same thing for a

simple FV |Ψ0⟩ = |m⟩: |Ωj , tj⟩ may be defined as the eigenstate of the operator

[R̂(Ω)Ŝ3R̂
+(Ω)]t=t ≡ Û+(t) · [R̂(Ω)Ŝ3R̂

+(Ω)]t=0 · Û(t) which is in the Heisenberg

picture. It corresponds to (8) for the CCS. However, for a generic FV, we are not

able to interpret |Ωj , tj⟩ as eigenvectors of some operators no more. And thus we

have adopted the former approach which seems more plausible to the generic CSPI

in the sense. Of course, for any FV CS are clearly defined and the overcompleteness

relation holds as (20); indeed it is almost the only relation that CS enjoy. 5 So we

can perform PI as we saw it. The relation is the fundamental feature of CS that

makes CS such a flexible tool for PI and that makes CSPI so fascinating.

4.3. The topological term

The term with the square brackets in the Lagrangian (32),

A0({cm})(ϕ̇ cos θ + ψ̇) +A3(Ω, Ω̇; {cm}), (51)

stemming from ⟨Ω|(∂/∂t)|Ω⟩, may be called the “topological term” that is related to

the geometric phases. h Here the A3-term is given by (33). And one can see that the

first term in the topological term gives a description of monopoles à la BMS2.25,26,42

The fictitious gauge potentials corresponding to the whole topological term are also

nonsingular as Refs. 25, 26 and 42; see Sec. 4.5 for the point.

In the differential 1-form, the whole topological term κ reads:

κ = A0({cm}) (cos θ dϕ+ dψ)−A1(ψ; {cm}) sin θ dϕ+A4(ψ; {cm}) dθ (52)

hThe significance of the term was once recognized by Kuratsuji, who called it the “canonical term”,
in relation to the semiclassical quantization; note that the geometric phase associated with the

term was called the “canonical phase” in Ref. 22 and Ref. 41; see Ref. 41 and references therein.
We call them just the geometric phases in the present paper.
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and in the 2-form:

dκ = −
[
A0({cm}) sin θ +A1(ψ; {cm}) cos θ

]
dθ ∧ dϕ

−A4(ψ; {cm}) sin θ dϕ ∧ dψ +A1(ψ; {cm}) dψ ∧ dθ. (53)

One may see that the strength of the well-known monopole-type term depends on

A0, i.e., the expectation value of the quantum number m in the state of |Ψ0⟩.
In addition we have other fields with A1 and A4-terms describing the effects of

interweaving coefficients of |Ψ0⟩ with their next ones. We have thus obtained the

general expressions of the topological term in the SU(2)CSPI, i.e., (52)–(53), which

are also one of the main results of the present paper.

For a FV with cm = 1 (for a sole m), since A1 and A4-terms vanish we have

κ = m (cos θ dϕ+ dψ), dκ = −m sin θ dθ ∧ dϕ, (54)

which represents a monopole with the strength m.

4.4. Semiclassical limit

In this subsection we will investigate what information the semiclassical limit of

CSPI brings. In the situation where ~ ≪ S[Ω(t)], the principal contribution in

(28) comes from the path that satisfies δS = 0, which requires the Euler-Lagrange

equations for L(Ω, Ω̇, t). Then we obtain
~{[A0({cm}) sin θ +A1(ψ; {cm}) cos θ]ϕ̇+A1(ψ; {cm})ψ̇} = −(∂H/∂θ)

~{[A0({cm}) sin θ +A1(ψ; {cm}) cos θ]θ̇ − [A4(ψ; {cm}) sin θ]ψ̇} = ∂H/∂ϕ

~{[A4(ψ; {cm}) sin θ]ϕ̇+A1(ψ; {cm})θ̇} = ∂H/∂ψ,

(55)

where A0 and A1 are given by (25) and A4 is defined by (34).

The expressions in (55) are the variational equations for the spin CS parameters

Ω, which may be compared with (15) in CCSPI.

The special case, i.e., that for SU(2)CS with a FV |Ψ0⟩ = |m⟩, was once treated
in Ref. 33; putting |Ψ0⟩ = |−s⟩ brings us back to the results for the original case.30,31

4.5. The nature of fictitious gauge potentials

We now investigate the nature of fictitious gauge potentials corresponding to the

whole topological term κ in (52). We follow the strategy in Ref. 42.

Using the orthogonal coordinates:

ξ = ϕ+ ψ, η = ϕ− ψ (56)

with (A.5), the metric is:

ds2 = dx2 =
1

4
[dθ2 + cos2(θ/2) dξ2 + sin2(θ/2) dη2] ≡ dn2, (57)
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where n stands for a unit vector in the (θ, ξ, η)-coordinates. Now let us call the

fictitious gauge potential Ã = (Ãθ, Ãξ, Ãη); we use Ã so as not to confuse them

with Ai (i = 1, · · · , 4)-terms in Secs. 3 –4. Then we have:

κ = Ã·dn = Ãθ
1

2
dθ + Ãξ

1

2
cos(θ/2)dξ + Ãη

1

2
sin(θ/2)dη. (58)

Thus we obtain:
Ãθ = 2A4

(
1
2 (ξ − η), {cm}

)
,

Ãξ = 2A0({cm}) cos( 12θ)− 2A1

(
1
2 (ξ − η), {cm}

)
sin(12θ),

Ãη = −2A0({cm}) sin(12θ)− 2A1

(
1
2 (ξ − η), {cm}

)
cos( 12θ),

(59)

which are evidently nonsingular.

5. Complex Variable Parametrizations of the Spin CS

The generic spin CS and CSPI in Secs. 3 and 4 can be put into complex variable

forms like the conventional ones. 1–3 The number of complex variables is, however,

twice. This causes a need for a supplementary condition to recover the proper de-

grees of freedom of Ω. These problems are discussed in Sec. 5.1. Next, we employ

the complex variable form to illustrate the contraction procedure from the generic

spin CS and PI to the corresponding CCS and PI (Sec. 5.2). Besides we add another

complex variable form (Sec. 5.3).

5.1. Complex variable form via Gaussian decomposition

We can parametrize the spin CS, |Ω⟩, by a pair of complex variables z ≡ (z+, z−)

and its complex conjugate z∗ ≡ (z∗+, z
∗
−) via the “Gaussian decomposition” of the

operator R̂(Ω), i.e., (A.6)–(A.7):

|Ω⟩ = |z⟩ ≡ R̂(z)|Ψ0⟩ ≡ R̂(z+, z3, z−)|Ψ0⟩. (60)

We put R̂(z) = R̂(z+, z3, z−) since from (A.7) z3 is a function of z:

exp(−z3/2) = i { z∗+z∗− / [ |z+|2(1 + |z+|2)2 ] }1/2. (61)

However, we know that the degrees of freedom of the CS, i.e., those of Ω, are three;

and thus it is clear that the representation by z and z∗ is still redundant. We may

remedy the problem by reducing the degrees of freedom with the aid of a subsidiary

condition: |z+| = |z−| from (A.7).

For the resolution of unity we have:∫
|z⟩dν(z)⟨z| = 1, (62)

where

dν(z) =
2s+ 1

2π2

δ(|z+| − |z−|)
|z+| (1 + |z+|2)2

d2(z+)d
2(z−) (63)
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and d2(zℓ) ≡ d(Rezℓ)d(Imzℓ) (ℓ = +,−).

The propagator reads:

K(zf , tf ; zi, ti) =

∫
exp{(i/~)S[z(t)]}D[z(t)], (64)

where

S[z(t)] ≡
∫ tf

ti

[
⟨z|i~ ∂

∂t
|z⟩ −H(z, t)

]
dt ≡

∫ tf

ti

L(z, ż, t) dt (65)

with

H(z, t) ≡ ⟨z|Ĥ|z⟩ and D[z(t)] ≡ lim
N→∞

N∏
j=1

dν(ztj ). (66)

The explicit form of the Lagrangian yields

L(z, ż, t) = i~
{ 1

2|z+|2
[
A0({cm})

( 1− |z+|2

1 + |z+|2
(z∗+ż+ − ż∗+z+) + (z∗−ż− − ż∗−z−)

) ]
+A3(z, ż; {cm})

}
−H(z, t), (67)

where

A3(z, ż; {cm}) ≡ 1

|z+|2(1 + |z+|2)

s∑
m=−s+1

f(s,m)(cmc
∗
m−1z+ż

∗
+z− − c.c.). (68)

One can obtain the above relations (62)–(68), via (60)–(61) and (A.6)–(A.7), from

the Euler angle parametrization forms in Secs. 3 and 4. Or one may confirm them

by calculating ⟨z|(∂/∂t)|z⟩ directly. The formulae for the conventional CS, |z⟩ =

(1 + |z|2)−1/2 exp(zŜ+)|Ψ0⟩ with |Ψ0⟩ = |−s⟩, follow by putting z− = −z∗+ and

neglecting or integrating out |z−|-variable and then replacing z+ with z.

5.2. High spin limit: contraction to the canonical CS

It is well-known that in the high spin limit, i.e., s → ∞, the conventional spin CS

with |Ψ0⟩ = |s⟩ or |−s⟩ approaches to the the usual CCS. 1,3,6 However, as we saw

in Sec. 2, the CCS and CCSPI has been extended to an arbitrary FV case; and

thus, as we put in Sec. 1, it is natural to ask whether there exits any spin CS and

CSPI that tends to the CCS and CCSPI with an arbitrary FV. This has been one

of the motivations mentioned in Sec. 1 to construct such general spin CS and CSPI

as described in Secs. 3–5.1. The answer is affirmative:

Theorem 3. The spin CS |Ω⟩ and CSPI with a generic FV in Secs. 3–5.1, in the

high spin limit, tend to the CCS |α⟩ and CCSPI described in Sec. 2.

Proof: We adapt the method of Radcliffe1 and Arecchi et al.3 for a generic FV

case. Following the high spin limit of the transformation à la Holstein-Primakoff,43

let us put:

Ŝ+ → (2s)1/2 â+, Ŝ− → (2s)1/2 â, Ŝ3 → −s1+ â+â. (69)
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We also set:

z+ → α (2s)−1/2, z− → − z∗+, (70)

which, with (61), gives:

z3 → |α|2/(2s). (71)

Then the combination of (69)–(71) with (A.6)–(A.7) and (2) produces

R̂(Ω) = R̂(z) −→ exp(αâ+) exp
(
−(1/2)|α|2

)
exp(−α∗â) = D̂(α). (72)

Besides since from (69)

â+â|n⟩ = n|n⟩,
(
n ≡ m+ s, |n⟩ ≡ lim

s→∞
|m⟩

)
, (73)

we obtain:

|Ψ0⟩ =
s∑

m=−s

cm|m⟩ −→
∞∑

n=0

cn|n⟩, (74)

where the numbering of the coefficients has been shifted. From (72) and (74) we

obtain that:

|Ω⟩ = |z⟩ = R̂(z)|Ψ0⟩ −→ D̂(α) ·
∞∑

n=0

cn|n⟩ = |α⟩, (75)

which is precisely (1) in Sec. 2.1: the definition of the CCS with a generic FV.

Next, with the aid of (63), (70) and (75), we find that the left side hand of (62)

becomes:∫
|z⟩dν(z)⟨z| = 2s+ 1

2π2

∫
|z⟩⟨z| · δ(|z+| − |z−|)

|z+| (1 + |z+|2)2
· |z+| |z−|

× d(|z+|)d(arg z+) d(|z−|)d(arg z−)

→ 2s+ 1

2π2

∫
|z⟩⟨z| · |z+|

(1 + |z+|2)2
· 2π · δ

(
arg z− − (arg z+ − π)

)
× d(|z+|)d(arg z+) d(arg z−)

=
2s+ 1

π

∫
|z+⟩⟨z+| ·

|z+|
(1 + |z+|2)2

d(|z+|)d(arg z+)

→ 1

π

2s+ 1

2s

∫
|α⟩⟨α| · |α|

[1 +
(
|α|2/(2s)

)
]2
d(|α|)d(argα)

→ 1

π

∫
|α⟩d2α⟨α|, (76)

which shows that the resolution of unity for the spin CS, (20) or (62), tends to

that for CCS (6). The arguments in the δ-function in (76) should be interpreted as

“modulo 2π”.

Now that we have both Eqs. (75) and (76), we see that all the results of the spin

CS and CSPI here approach to those in Sec. 2, which completes the proof.
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We may also see the results from the complex variable PI expression (64)–(68)

with the help of (70) and (71). To this end, notice that we have in s→ ∞ limit

A0({cm}) =
m=s∑
m=−s

m|cm|2 =
m=s∑
m=−s

(n− s)|cm|2 −→ −s (77)

and

f(s,m) −→ n1/2(2s)1/2 . (78)

Then we find that the Lagrangian (67), which is equivalent to (32), for the generic

spin CSPI tends to (13) for the CCSPI. And the results in Secs. 3–5.1 are converted

to those in Sec. 2. Especially, we see that the A3-term in (33) and (68) corresponds

to the A-term in (9).

The A3-term is not represented as a total derivative; and thus the A1- and A4-

terms in the A3-term take part in variational equations (55) for the spin CS. It is

merely in the high spin limit that the A3-term, approaching to the A-term, becomes

a total derivative and its effect disappears in the variational equations. Revisit Secs.

2.2.2 and 4.4 for the point.

5.3. Another complex variable form

We have another complex variable representation of the CS.44 To this end we write

R̂(1/2)(Ω) in (A.4), using a new pair of complex variables a = (a1, a2), in the form

of

R̂(1/2)(Ω) = R̂(1/2)(a) =

(
a1 −a∗2
a2 a∗1

)
with |a1|2 + |a2|2 = 1, (79)

which is often used for the SU(2) group. We see from (A.4) and (79)

a1 = cos(θ/2) exp[−i(ϕ+ ψ)/2], a2 = sin(θ/2) exp[i(ϕ− ψ)/2]. (80)

The spin CS, in this case, is specified by

|a⟩ = R̂(a)|Ψ0⟩ ≡ R̂(Ω)|Ψ0⟩, (81)

where a is related to Ω via (80).

The resolution of unity becomes:∫
|a⟩dλ(a)⟨a| = 1, (82)

where

dλ(a) =
4(2s+ 1)

π2
δ(a2 − 1) d2a and d2a ≡ d2a1d

2a2. (83)

with d2(aℓ) ≡ d(Re aℓ) d(Im aℓ) (ℓ = 1, 2). The δ-function leaves the degrees of

freedom being three as (63).
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The propagator reads:

K(af , tf ;ai, ti) =

∫
exp{(i/~)S[a(t)]}D[a(t)], (84)

where

S[a(t)] ≡
∫ tf

ti

[
⟨a|i~ ∂

∂t
|a⟩ −H(a, t)

]
dt ≡

∫ tf

ti

L(a, ȧ, t) dt (85)

with

H(a, t) ≡ ⟨a|Ĥ|a⟩ and D[a(t)] ≡ lim
N→∞

N∏
j=1

dλ(atj ). (86)

The explicit form of the Lagrangian yields:

L(a, ȧ, t) = i~
[
A0({cm})

(
(a∗1ȧ1 − ȧ∗1a1) + (a∗2ȧ2 − ȧ∗2a2)

)
+A3(a, ȧ; {cm})

]
−H(a, t), (87)

where

A3(a, ȧ; {cm}) ≡
s∑

m=−s+1

f(s,m)[cmc
∗
m−1(a1ȧ2 − ȧ1a2)− c.c.]. (88)

We may also put the results in a real variable form using x ≡ (x1, · · · , x4) via

(79) and (A.5). In the case the restriction x2 = 1 keeps the degree of freedom of

the CS being three.

6. Summary and Prospects

We have investigated a natural extension of the spin or SU(2)CS and their PI forms

by using arbitrary FV, which turns out to be performed successfully.

In the present paper we have worked on the basic formulation. The physical ap-

plications, in relation to fictitious monopoles and geometric phases, will be treated

in subsequent papers separately. We will discuss criteria in choosing FV for real

Lagrangians. The problem has a close link to that of the semiclassical versus full

quantum evolutions of CS and FV. It was Stone45 who first raised the problem

commenting on the previous version of our article. 27 He pointed out that an arbi-

trary FV is not always realized and that there may be restrictions on FV so that

quantum evolutions are consistent with the semiclassical ones. The formal CSPI

themselves do not give answers to it; and thus, one may ascribe the fault to the

formal CSPI. We have resolved, in the present article, the mysteries posed in Ref. 45

to some extent by proving the process from discrete CSPI to the continuous ones as

described in Sec. 4.2. The fact that the spin CSPI in Secs. 4–5.1 certainly contract

to the CCSPI in Sec. 2 strengthens the validity of the formulation. We will clarify

the riddle more deeply the next time around. However, the whole problem seems to

have rather profound nature and we will still need much further investigations.
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Next, from a broader viewpoint let us put the prospects of the future below.

First, conventional CCS and spin CS have been playing the roles of macroscopic

wave functions in vast fields from lasers, superradiance, superfluidity and super-

conductivitiy to nuclear and particle physics. 5 CS have such potential. And thus

we may expect that by choosing appropriate sets of {cm} the CS evolving from

arbitrary FV will serve as approximate states or trial wave functions for the collec-

tive motions, having higher energies in various macroscopic or mesoscopic quantum

phenomena such as spin vortices46 and domain walls, which may not be treated by

the former. We hope that numerous applications of the CS and CSPI will be found

in the near future. Second, from the viewpoint of mathematical physics as well as

physical applications, it is desirable that the present CS and CSPI formalism is ex-

tended to wider classes. The generalization to the SU(1, 1) CS case, which is closely

related to squeezed states in lightwave communications and quantum detections,
47,48 is one of the highly probable candidates. We also have another candidate,

i.e., the SU(3)CS case. Remembering that the SU(2)CS with a general FV here

extends the SU(2) BMS2 Lagragngian and gives a clear insight into the topological

terms, the SU(3)CS case may also shed a new light on the original SU(3) Wess–

Zumino term. 49,50 Finally, as we put in Sec. 1, we may regard CS with arbitrary

FV as quantum states without classical analogues. We have already known some

of such states. 16–18,20 It is true that CS with the conventional FV are closest to

classical states and have useful properties.7 However, since “the physical world is

quantum mechanical”, 51 it seems definitely right to search boldly new quantum

states whether their classical counterparts exist or not.
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Appendix A. Some Formulae for Rotation Matrices

Some basic formulae on the properties of the rotation matrices are enumerated.
53–56 We employ them in Secs. 3–5. We mainly follow the notation and convention

of Messiah. 53

(i) Matrix elements

A rotation with Euler angles Ω ≡ (ϕ, θ, ψ) of a spin-s particle is specified by an

operator R̂(Ω) = exp(−iϕŜ3) exp(−iθŜ2) exp(−iψŜ3); it has a (2s + 1) × (2s + 1)

matrix representation whose (m,m′)-entry is:

R
(s)
mm′(Ω) ≡ ⟨m|R̂(Ω)|m′⟩ = exp(−iϕm) r

(s)
mm′(θ) exp(−iψm′). (A.1)

Here r
(s)
mm′(θ) ≡ ⟨m| exp(−iθŜ2)|m′⟩ is determined by the formula due to Majorana

57 and to Wigner53:

r
(s)
mm′(θ) =

∑
t

N(s,m,m′; t) · [cos(θ/2)]2s+m−m′−2t · [sin(θ/2)]2t−m+m′
(A.2)

with

N(s,m,m′; t) ≡ (−1)t
[ (s+m)! (s−m)! (s+m′)! (s−m′)! ]1/2

(s+m− t)! (s−m′ − t)! t! (t−m+m′)!
, (A.3)

where the sum runs over any integer t by which all the factorials in (A.3) make

sense. In particular, if s = 1
2 , r

(s)
mm′ is extremely simple to give:

R̂(1/2)(Ω) =

(
cos( 12θ) exp[−

1
2 i(ϕ+ ψ)] − sin(12θ) exp[−

1
2 i(ϕ− ψ)]

sin(12θ) exp[
1
2 i(ϕ− ψ)] cos( 12θ) exp[

1
2 i(ϕ+ ψ)]

)
. (A.4)

Most of the following relations, being independent of s, can be readily verified by

the use of (A.4). For a higher spin s one can find explicit expressions of r
(s)
mm′ in

Refs. 54 and 55.

(ii) Group manifold

Introducing the real variables x ≡ (x1, · · · , x4) via

R̂(1/2)(Ω) =

(
x1 + i x2 −x3 + i x4
x3 + i x4 x1 − i x2

)
≡ R̂(1/2)(x), (A.5)

we see that x2 = x21+x
2
2+x

2
3+x

2
4 = 1 results; thus the SO(3) manifold is isomorphic

to a 3-sphere S3.

(iii) Gaussian decomposition3,6,7,58

The rotation matrix R̂(Ω) can be put into the normal or anti-normal ordering form

in which R̂ is specified by a set of complex variables:

R̂(Ω) = R̂(z+, z3, z−) ≡ exp(z+Ŝ+) exp(z3Ŝ3) exp(z−Ŝ−)

= exp(z−Ŝ−) exp(−z3Ŝ3) exp(z+Ŝ+) (A.6)

The relation between the Euler angles and the complex parameters is given by:
z+ = − tan(12θ) exp(−iϕ)
z3 = −2 ln{cos( 12θ) exp[

1
2 i(ϕ+ ψ)]}

z− = tan( 12θ) exp(−iψ).
(A.7)
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(iv) Combinations with S53
R̂+(Ω)Ŝ3R̂(Ω) = cos θŜ3 − 1

2 sin θ[exp(iψ)Ŝ+ + exp(−iψ)Ŝ−]

R̂+(Ω)Ŝ±R̂(Ω) = exp(±iϕ){sin θŜ3 +
1
2 [(cos θ ± 1) exp(iψ)Ŝ+

+(cos θ ∓ 1) exp(−iψ)Ŝ−]}.
(A.8)

(v) Inverse

R̂(Ω) is unitary and its inverse matrix is given by:

R̂+(ϕ, θ, ψ) = R̂−1(ϕ, θ, ψ) = R̂(−ψ,−θ,−ϕ). (A.9)

(vi) Orthogonality relation

The relation stems from integrating the products of the unitary irreducible repre-

sentations of a compact group over the element of the group; thus it is a generic

relation for the representations. In the present case it reads 54,56:∫ 2π

0

∫ π

0

∫ 2π

0

(
R
(s)
mm′(Ω)

)∗
R
(s′)
nn′(Ω) sin θ dϕdθdψ =

8π2

2s+ 1
δm,nδm′,n′δs,s′ . (A.10)

(vii) Two successive rotations

Two successive rotations specified by Euler angles Ωℓ ≡ (ϕℓ, θℓ, ψℓ) (ℓ = 1, 2) pro-

duce R̂(Ω̃) ≡ R̂(Ω2)R̂(Ω1), where Ω̃ ≡ (ϕ̃, θ̃, ψ̃) obeys:

cos θ̃ = cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ1 + ψ2)

sin θ̃ exp(iϕ̃) = exp(iϕ2)
[
cos θ1 sin θ2 + sin θ1 cos θ2 cos(ϕ1 + ψ2)

+i sin θ1 sin(ϕ1 + ψ2)
]

cos( 12 θ̃) exp[
1
2 i(ϕ̃+ ψ̃)]

= exp[ 12 i(ϕ2 + ψ1)]
{
cos( 12θ1) cos(

1
2θ2) exp[

1
2 i(ϕ1 + ψ2)]

− sin( 12θ1) sin(
1
2θ2) exp[−

1
2 i(ϕ1 + ψ2)]

}
.

(A.11)

(viii) Three successive rotations

In a similar manner to that in (vii), the Euler angles made of three successive rota-

tions can be calculated. Assuming that the rotations are specified by Euler angles

(ϕ1, θ1, ψ1), (ϕ, θ, ψ) and (ϕ2, θ2, ψ2), which happen in this order, the composed

rotation yields R̂(Ω′) ≡ R̂(Ω2)R̂(Ω)R̂(Ω1), where Ω′ ≡ (ϕ′, θ′, ψ′) obeys:

cos θ′ = [cos θ1 cos θ − sin θ1 sin θ cos(ϕ1 + ψ)] cos θ2

+{sin θ1[sin(ϕ1 + ψ) sin(ϕ+ ψ2)− cos(ϕ1 + ψ) cos θ cos(ϕ+ ψ2)]

− cos θ1 sin θ cos(ϕ+ ψ2)} sin θ2 (A.12)

and two additional equations that we omit here; they describe sin θ′ exp(iϕ′) and

cos(θ′/2) exp[i(ϕ′ + ψ′)/2] in terms of Ω1, Ω and Ω2 as in (A.11).
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