P-Δ効果を考慮した巨大地震に対する超高層建築物の地震応答解析

正会員 ○岡崎 汐里*1 同 永野 康行*2 同 荒木 慶一*3

2.構造-2.振動

P-Δ 効果, 巨大地震, 超高層建築物, 構造設計

1.はじめに

P-Δ 効果とは、水平荷重と鉛直荷重を同時にかけるとき に考慮される効果で、水平力によって発生する水平方向 の変位と軸力の組み合わせにより追加モーメントが発生 する効果である。P-Δ 効果考慮した場合、通常では水平力 による水平方向変位は微小なので、軸方向耐力の低下は 無視することが出来るが、特殊な場合、例えば、柱が長 い場合や、巨大地震による水平力は無視できないほど水 平変位が大きくなり、当然、軸方向耐力の低下も無視で きなくなる。

本論文の目的は, P-Δ 効果を考慮することで, 巨大地震 を受けた時の超高層建築物がどのような層間変形角にな るのか, 質点系モデルを対象に, 解析的に明らかにする ことである。

2. 超高層建物の静的解析

本章では、既往の研究^[1]で使用されている既存超高層建物を汎用構造解析プログラム MIDAS/Gen Ver7.80 を用いて、3 種類の既存超高層建物のフレームモデルを静的解析と P-Δ 効果を考慮した解析の2 つを行う。

解析モデルは20層3スパン平面骨組を解析対象とする。 構面内のスパン長は均等で9.6m,構面直行方向のスパン 長は6.4mとする。第1階の高さを5m,その他の階高を 4m,軒高を81mとする。単位面積当り床荷重を7.84kN/m² とし,層重量は単位面積当たりの床荷重7.84kN/m²である。 各モデルは既往の研究¹⁾より,モデルAが分布中最も固 有周期が長い建物,モデルCが分布中平均の建物,モデ ルBがモデルAとCの中間の建物になる。図1にモデル 建物の形状寸法を示す。表1に内柱の断面表を,表2に 外柱断面表を,表3に梁断面表を示す。

表1 内柱断面表

FI	内柱						
	Model A	Model B	Model C				
19 - 20	500×22	550×25	600×28				
16 - 18	500×28	550×28	600×28				
13 - 15	550×22	550×36	600×36				
10 - 12	550×28	550×36	600×40				
7 - 9	550×32	600×36	600×45				
4 - 6	550×36	600×36	600×45				
1 - 3	550×36	600×40	600×50				

表2 外柱断面表

FI	外柱						
FL.	Model A	Model B	Model C				
19 - 20	500×22	550×25	600×28				
16 - 18	500×28	550×28	600×28				
13 - 15	550×22	550×32	600×36				
10 - 12	550×28	550×36	600×40				
7 - 9	550×28	600×32	600×45				
4 - 6	550×32	600×32	600×45				
1 - 3	550×32	600×32	600×45				

一次設計では、層間変形角の制限値を1/200として、近 似Ai分布に基づく弾性設計を行う。地震力の設定には略 算固有周期T(=0.03H=2.43s)を用いている。層水平力 の求め方として初めに、1階の層せん断力をベースシア係 数に総重量をかけることで算定する。各モデルのベース シア係数は標準せん断力係数に振動特性係数を掛けるこ とで設定した。2階から20階は1階の層せん断力に各階 のAi分布をかけることで求めた。層水平力は層せん断力 と1つ上の層水平力の差で求める。表4に各モデルのベ ースシア係数と標準せん断力を示す。

Structure Design of High Rise Building to Huge Earth Quake Considered P-Delta Effect OKAZAKI Shiori, NAGANO Yasuyuki and ARAKI Yoshikazu

表 3 梁断面表								
FL	Model A	Model B	Model C					
19 - 20	550×250×12×28	650×300×16×25	850×300×16×28					
16 - 18	550×250×12×28	700×300×16×28	850×300×16×28					
13 - 15	650×300×16×22	750×300×16×25	900×300×19×25					
10 - 12	650×300×16×28	850×300×16×25	950×300×19×28					
7 - 9	700×300×14×25	850×300×16×28	1000×300×19×28					
4 - 6	750×300×14×25	850×300×16×28	1000×300×19×28					
1 - 3	750×300×14×25	850×300×16×28	1000×300×19×28					

表4 各モデルのベースシア係数と標準せん断力

	ベースシア係数	標準せん断力
Model A	0.08	0.2
Model B	0.12	0.3
Model C	0.16	0.4

静的増分解析では,設計基準を日本建築学会の鋼構造 設計基準にして梁の横座屈は考慮しない,幅厚比の検討 をしないことにする。静的増分解析は汎用構造解析プロ グラム MIDAS/Gen Ver7.80 を用いる。屋根水平変位が 500cm に至るまで 500 ステップの増分解析を行った。解 析結果の層せん断力—層間変位の関係より,傾き K₁ と K₂の直線を伸ばした時の交点(δ_1 ,Q₁)を設定すること で,バイ・リニア型モデルを設定した。設定したバイ・ リニア型モデルから地震応答解析に必要な初期剛性K₁ と K₂から第2分枝剛性比 α_1 を算定する。図1に層間変位— 層せん断力の関係からバイ・リニア型モデルを設定する 図を示す。

3. 地震応答解析

フレームモデルを基礎固定の20質点系モデルに置換し た。質点系モデルは、質量と初期剛性によって構成され る。質量は1階から20階まで全て147.45t・s²/cmである。 入力地震動は、巨大地震時の解析を行うため、最大速度 100cm/s で基準化した EL Centoro 1940 NS, Taft 1952 EW, Hachinohe 1968 NS を採用する。各モデルの P-Δ を考慮し ない場合 (without P- Δ) と P- Δ 効果を考慮する場合 (with P-Δ)の巨大地震に対する地震応答解析を行う。解析結果 として $P-\Delta$ 効果を考慮しない場合 (without $P-\Delta$) と $P-\Delta$ 効果を考慮する場合 (with P-Δ) の層間変形角を比較する。 比較した結果から, P-Δ 効果が層間変形角にどのような影 響を及ぼすかを明らかにする。図2にフレームモデルか ら置換した質点系モデルを示す。表5にP-Δ効果を考慮 していない場合 (without $P-\Delta$) の各モデルの解析諸元を, 表6に P-Δを考慮する場合(with P-Δ)の各モデルの解析 諸元を示す。図3に巨大地震(最大速度100cm/s)に対す る地震応答解析の結果として P-Δ 効果を考慮しない場合 (without $P-\Delta$) と $P-\Delta$ 効果を考慮する場合 (with $P-\Delta$) の 層間変形角を示す。

0 Hz	Model A			Model B			Model C		
皆	K ₁ (t/cm)	α1	Q1 (t)	K ₁ (t/cm)	α1	Q1 (t)	K ₁ (t/cm)	α1	Q_1 (t)
20	43.83	0.34	110.65	62.85	0.53	155.85	98.32	0.71	177.21
19	49.62	0.21	159.26	76.7	0.26	247.21	117.48	0.3	340.48
18	55.15	0.16	186.96	88.03	0.19	295.74	127.93	0.22	394.49
17	58.42	0.13	221.77	93.23	0.16	316.24	135.24	0.15	450.44
16	66.01	0.12	248.46	98.4	0.15	304.6	142.35	0.12	479.35
15	75.29	0.11	266.64	108.32	0.11	368.1	158.6	0.11	496.83
14	78.3	0.1	285.04	112.32	0.11	382.47	164.14	0.11	526.08
13	82.89	0.1	304.98	121.48	0.11	407.63	174.43	0.11	547.76
12	92.89	0.09	317.59	132.31	0.1	432.35	190.07	0.1	570.83
11	95.14	0.09	326.42	135.84	0.1	439.69	195.39	0.1	602.53
10	98.06	0.09	342.89	140.9	0.1	461.91	203.96	0.1	620.78
9	103.28	0.09	334.85	161.91	0.1	465.65	219.51	0.09	624.33
8	105.69	0.09	345.64	165.64	0.1	471.15	224.28	0.09	643.71
7	111.28	0.09	351.99	168.59	0.09	483.63	228.48	0.09	665.00
6	120.9	0.08	369.1	165.22	0.09	492.88	232.79	0.08	667.37
5	123.49	0.08	370.16	168.1	0.09	499.82	237.34	0.08	670.36
4	125.63	0.08	375.31	171.65	0.08	516.04	242.49	0.11	627.67
3	128.02	0.08	382.32	179.07	0.08	504.31	253.16	0.1	953.28
2	131.47	0.08	399.27	184.55	0.08	522.35	259.45	0.08	698.55
1	131.88	0.07	405.79	183.03	0.07	544.52	246.76	0.07	741.38

表5 without $P-\Delta$ の各モデルの解析緒元

表6 with P-Δの各モデルの解析緒元

74	Model A			Model B			Model C		
皆	K1 (t/cm)	αι	Q1 (t)	K_1 (t/cm)	α1	Q1 (t)	K_1 (t/cm)	α1	Q1 (t)
20	42.92	0.52	101.41	61.94	0.54	158.40	97.26	0.58	212.37
19	48.52	0.22	158.52	75.57	0.27	248.37	116.22	0.31	340.89
18	53.78	0.15	196.66	86.58	0.17	305.90	126.42	0.2	412.25
17	56.77	0.13	222.90	91.52	0.15	330.13	133.47	0.15	451.57
16	64.01	0.12	245.75	96.4	0.13	343.76	140.29	0.13	469.06
15	72.87	0.11	267.82	105.95	0.12	368.64	156.15	0.12	497.44
14	75.57	0.11	286.69	109.65	0.11	395.24	161.39	0.11	516.17
13	79.84	0.1	303.76	118.47	0.11	409.29	171.35	0.11	548.18
12	89.38	0.1	318.91	128.89	0.11	433.66	186.57	0.1	578.84
11	91.35	0.1	328.10	132.11	0.1	447.89	191.57	0.1	594.72
10	93.94	0.1	332.55	136.88	0.11	457.16	199.79	0.1	616.85
9	98.76	0.09	342.02	157.36	0.1	463.85	214.92	0.1	626.33
8	100.87	0.09	353.37	160.81	0.1	470.66	219.35	0.09	634.32
7	106.06	0.09	353.66	163.39	0.1	478.29	223.19	0.09	641.11
6	115.21	0.09	359.35	159.72	0.09	487.27	227.12	0.09	672.30
5	117.48	0.08	388.62	162.21	0.09	492.87	231.29	0.09	672.46
4	119.27	0.09	376.95	165.4	0.09	497.95	236.07	0.08	672.26
3	121.29	0.09	380.81	172.39	0.09	514.11	246.3	0.08	682.17
2	124.41	0.09	394.23	177.55	0.09	517.08	252.23	0.08	704.36
1	125.13	0.08	408.47	176.37	0.08	543.17	240.01	0.07	727.72

階 階 階 20 2020 15 1515 (with P-∆ without 10 with $P-\Delta$ 10 10 -Δ without P-1/2 without 5 5 with P-∆ $\mathbf{P} \Delta$ 0 1/100 1/50 1/33 0 1/100 1/50 1/33 1/100 1/50 1/33 ٦ 階 階 階 2020 20 15 15 15 with P- Δ with $P-\Delta$ without without 10 10 10 ′P-∆ P-/ without 5 0 1/100 1/50 1/33 0 1/100 1/50 1/33 0 1/100 1/50 1/33 階 20 階 階 20 20 15 15 15 with $P-\Delta$ with P vith P-∆ rithout 10 🗶 without 10 without 10 -1/ -A ·-Λ 5 5 0 1/100 1/50 1/33 0 1/100 1/50 1/33 0 1/100 1/50 1/33

図3 層間変形角

4章 結論

P-Δ 効果は、通常、水平力による水平方向変位は微小な ので、軸方向耐力の低下は無視することが出来るが、特 殊な場合、例えば、柱が長い場合や、巨大地震による水 平力は無視できないほど水平変位が大きくなり, 軸方向 耐力の低下も無視できなくなる。

そこで既往の研究で使用されている既存超高層建物を 元に質点系モデルを作成し、地震応答解析行いその結果 から without P- Δ と with P- Δ の層間変形角を比較した。

P-△ 効果は、水平荷重と鉛直荷重を同時にかけるとき に考慮される効果で、水平力によって発生する水平方向 の変位と軸力の組み合わせにより追加モーメントが発生 する効果である。そのため、水平変位は、水平力と圧縮 力をかけると圧縮力によって水平方向の剛性が減少する ことによって、P-Δ効果を考慮していない時よりも水平変 位が大きくなり、水平力と引張力をかけると圧縮力とは 反対に水平方向の剛性が増加することで、P-ム効果を考慮 していない時よりも水平方向が小さくなった。曲げモー メント場合は、水平力と圧縮力をかけると P-Δ 効果を考 慮していない時に比べて最大モーメントが増加し、水平 力と引張力をかけると P-Δ 効果を考慮していない時に比 べて最大モーメントが減少した。

2章では、汎用構造解析プログラム MIDAS/Gen Ver7.80 を用いて、3 種類の既存超高層建物のフレームモデルを静 的解析と P-Δ 効果を考慮した解析の 2 つを行った。解析 結果を元に質点系モデルを生成し、解析し、解析結果か ら剛性を求めた。

3章では、2章で作成したフレームモデルを質点系モデ ルに置換し、入力地震動として、El Centoro1940NS, Taft1952EW, Hachinohe1968NS を採用し、地震応答解析 を行い、地震動における既往研究における層間変形角の 違いを比較した。弾塑性型モデルの解析結果から今回は 上層部に大きな変化が見られた。P-Δ を考慮しない場合

(without P- Δ) に比べて P- Δ を考慮する場合 (with P- Δ) の層間変形角に最も変化が表れたものがモデルAではEl Centoro1940NS で 41.8%, モデル B では Taft1952EW で 23.9%, モデルCではHachinohe1968NSで27.1%の違いが 見られた。

謝辞 本研究は、平成22年度科学研究費補助金基盤研究 (B) 課題番号: 20360254 (代表: 京都大学大学院 教授 上谷宏二)により実施した。福井工業大学 永野研究室 卒研生の山口拓臣氏に解析と論文の作成に協力を頂いた。 ここに記し謝意を表す。

参考文献 [1] 金紋延, 荒木慶一, 山川誠, 田川浩, 五 十子幸樹:極大地震動に対する超高層純ラーメン鋼構造 建物の動的応答に及ぼす P-Δ 効果の影響,日本建築学会 構造系論文集, 第644号, pp.1861-1868, 2009.10

- 福井工業大学デザイン学科 *2
- *3

Graduate Fukui University of Technology

^{*1} 福井工業大学大学院 修士課程

准教授・博士 (工学) Assoc. Prof., Fukui University of Technology, Dr. Eng.

京都大学大学院工学研究科 准教授·博士(工学)Assoc. Prof., Kyoto Univ. Graduate School of Eng.