線形履歴減衰を有する建物の ARX モデルを用いた減衰同定法

正会員 〇南 良忠\* 同 吉富信太\* 同 竹脇 出\*

## 2.構造---2.振動

システム同定,構造ヘルスモニタリング, ARX モデル, 剛性・減衰同定, 地震観測記録

1. 序

建築構造分野においてシステム同定は、実際の 建物と解析モデルとの対応を明らかにする技術と して用いられ、建物動特性の推定を行うことで建 物の耐震性能評価への応用が期待されている。

これまでに限定された層の観測データに基づい て層の剛性、減衰係数、線形履歴減衰を同定する 手法が提案されている<sup>1)</sup>。一般には同定に用いる 観測記録には不可避的にノイズが含まれ、文献 1) の手法もノイズの影響が無視できない。

前田らはこの問題を解決するために ARX モデ ルを有効に利用し、剛性・粘性減衰を ARX モデル パラメターで表現する方法を提案しているが<sup>20</sup>、 線形履歴減衰の直接的な同定は困難であった。

本研究では、前田らによる方法<sup>2)</sup>では扱うこと が困難であった線形履歴減衰の同定法を提案する。 2. 同定理論

## 2.1 応答記録を用いた剛性・減衰同定法 1)

本論の提案手法で利用する文献 1)の定式化について述べる。図 1 の N層せん断モデルを対象とする。地動入力加速度及び、上層側床の絶対加速度のフーリエ変換を $\ddot{Z}(\omega)$ , $\ddot{U}_{j}(\omega)$ として、各層の剛性 $k_{j}$ 、減衰係数 $c_{j}$ 、線形履歴減衰定数 $\beta_{j}$ の同定式(1)~(4)を誘導する手順が文献 1)に示されている。

$$k_j = \lim_{\omega \to 0} \operatorname{Re} \left\{ f_j(\omega) \right\}$$
(1)

$$\beta_j = \frac{\lim_{\omega \to 0} \operatorname{Im} \left\{ f_j(\omega) \right\}}{2k_j} \tag{2}$$

$$c_{j} = \lim_{\omega \to 0} \frac{d}{d\omega} \operatorname{Im} \left\{ f_{j}(\omega) \right\}$$
(3)

$$f_{j}(\omega) = -\frac{\omega^{2}M_{j}}{\frac{U_{j+1}(\omega)}{U_{j}(\omega)} - 1}$$
(4)

以降(4)式で定義される  $f_j(\omega)$ を、既往の同定関数と呼ぶ。 $M_j$ は最上層から第j番目の層(同定対

象層)までの質量の和を示す。

図2に地震時応答観測データを用いた(1)式の同 定関数実部の一例を示す。振動数0の極限値が剛 性に対応するが、低振動数領域でノイズの影響を 受けやすいという問題を有している。



## 2.2 ARX モデルを用いた剛性・減衰同定法<sup>2)</sup>

ARX モデルを用いてノイズの影響を低減する 前田らの方法 <sup>2</sup>について述べる。この方法では(5) 式で表される ARX モデルの伝達関数を用いる。こ こで *a*<sub>*i*</sub>, *b*<sub>*i*</sub> は ARX モデルパラメターである。

$$G(\omega) = \frac{b_1 e^{-i\omega T_0} + \dots + b_{n_b} e^{-n \omega T_0}}{1 + a_1 e^{-i\omega T_0} + \dots + a_n e^{-n \omega T_0}}$$
(5)

(4)式に含まれる $U_j(\omega)/U_{j+1}(\omega)$ を伝達関数とみ なして ARX モデルの伝達関数を代入すると、剛性 と粘性減衰係数を ARX パラメターで表現できる。 極限操作の回避により、ノイズの影響を低減でき る。しかし、同様の方法で履歴減衰定数を表現す ると、対象建物の特性に関わらず、ARX モデルの 性質により常に0となる問題を有する。



Damping Identification of Buildings with Linear Hysteretic Damping Using ARX Models MINAMI Yoshitada, YOSHITOMI Shinta and TAKEWAKI Izuru

## 2.3 ARX モデルを用いた線形履歴減衰同定法

ARX モデルを利用して履歴減衰定数の同定が 可能である新たな関数を提案する。

#### 2.3.1 伝達関数の逆数のテイラー展開

2.2 節で示した伝達関数 *G*(*ω*) を用いて表現した 既往の同定関数は、次式のように伝達関数が逆数 の形で現れる。

$$f_j(\omega) = \frac{M_j(i\omega)^2}{\frac{1}{G_{j,j+1}(\omega)} - 1}$$
(6)

そこで、伝達関数の逆数を $\omega=0$ のまわりでテイ ラー展開すると次式が得られる。

$$\frac{1}{G_{j,j+1}(\omega)} = A_0^R + A_1^R \omega + A_2^R \omega^2 + \cdots + i \{ A_0^I + A_1^I \omega + A_2^I \omega^2 + \cdots \}$$
(7)

ここで、(7)式における $\omega$ の関数の係数 $A^{R}$ , $A^{I}$ の 性質を運動方程式から求めると次のようになる。

$$A_0^R = 1, A_0^I = 0$$
 (8a)

$$A_{l}^{n} = 0 , A_{l}^{i} = 0$$
 (8b)

$$A_{2}^{R} = -\frac{2k_{j}M_{j}}{k_{j}^{2} + (2k_{j}\beta_{j})^{2}}, A_{2}^{I} = \frac{4k_{j}M_{j}\beta_{j}}{k_{j}^{2} + (2k_{j}\beta_{j})^{2}}$$
(8c)

# 2.3.2 履歴減衰定数同定のための関数の導出

伝達関数の逆数をテイラー展開した(7)式を用いて(6)式の同定関数を表現すると次式となる。

$$f_{j}(\omega) = \frac{-M\omega^{2}}{\left(A_{0}^{R}-1\right) + A_{1}^{R}\omega + A_{2}^{R}\omega^{2} + \dots + i\left\{A_{0}^{I} + A_{1}^{I}\omega + A_{2}^{I}\omega^{2} + \dots\right\}}$$
(9)

ここで既往の同定関数による履歴減衰定数の同 定式(2)式に剛性の同定式(1)式を代入し(10)式を 得る。

$$\beta_{j} = \frac{1}{2} \frac{\lim_{\omega \to 0} \operatorname{Im} \left\{ f_{j}(\omega) \right\}}{\lim_{\omega \to 0} \operatorname{Re} \left\{ f_{j}(\omega) \right\}}$$
(10)

(10)式に(9)式を代入して(11)式が得られる。

$$\beta_{j} = -\frac{1}{2} \lim_{\omega \to 0} \left\{ \frac{A_{0}^{\prime} + A_{1}^{\prime} \omega + A_{2}^{\prime} \omega^{2} + \cdots}{\left(A_{0}^{R} - 1\right) + A_{1}^{R} \omega + A_{2}^{R} \omega^{2} + \cdots} \right\}$$
(11)

(7)式の関係を考慮して(11)式から(12)式を得る。

$$\beta_{j} = -\frac{1}{2} \lim_{\omega \to 0} \left( \frac{\operatorname{Im} \left\{ 1 / G_{j,j+1}(\omega) \right\}}{\operatorname{Re} \left\{ 1 / G_{j,j+1}(\omega) \right\} - 1} \right)$$
(12)

ここで B<sup>(0)</sup><sub>i</sub>(ω) を(13)式のように定義する。

$$B_{j}^{(0)}(\omega) = -\frac{1}{2} \frac{\operatorname{Im}\left\{1/G_{j,j+1}(\omega)\right\}}{\operatorname{Re}\left\{1/G_{j,j+1}(\omega)\right\} - 1}$$
(13)

(12)式より、(13)式の $\omega \rightarrow 0$ の極限値が $\beta_j$ である ことが分かる。  $B_{j}^{(0)}(\omega) \, \mathcal{O} \, \omega \to 0 \, \mathcal{O} \, \phi \mathbb{R}$  極限値は(14)式の計算によっ て導かれるが、その値は(8a)式の関係を用いると、 分母、分子がともに 0 となるため、ロピタルの定 理を用いて(15)式を得る。

$$\lim_{\omega \to 0} \mathbf{B}_{j}^{(0)}(\omega) = -\frac{1}{2} \lim_{\omega \to 0} \left\{ \frac{A_{0}^{\prime} + A_{1}^{\prime} \omega + A_{2}^{\prime} \omega^{2} + \cdots}{(A_{0}^{R} - 1) + A_{1}^{R} \omega + A_{2}^{R} \omega^{2} + \cdots} \right\}$$
(14)  
$$\lim_{\omega \to 0} \mathbf{B}_{j}^{(0)}(\omega) = -\frac{1}{2} \lim_{\omega \to 0} \left\{ \frac{A_{1}^{\prime} + 2A_{2}^{\prime} \omega + 3A_{3}^{\prime} \omega^{2} + \cdots}{A_{1}^{R} + 2A_{2}^{R} \omega + 3A_{3}^{R} \omega^{2} + \cdots} \right\}$$
(15)

(15)式は(7)式を微分したものの実部、虚部によって表すことができる。そこで $B_{j}^{(1)}(\omega)$ を次のように定義すると、その $\omega \rightarrow 0$ の極限値は $B_{j}^{(0)}(\omega)$ の $\omega \rightarrow 0$ の極限値と等しい。

$$B_{j}^{(1)}(\omega) = -\frac{1}{2} \frac{\operatorname{Im}\left\{\frac{d}{d\omega}\left(1/G_{j,j+1}(\omega)\right)\right\}}{\operatorname{Re}\left\{\frac{d}{d\omega}\left(1/G_{j,j+1}(\omega)\right)\right\}}$$
(16)

同様に(8b)式の関係より、ロピタルの定理を適 用して(17)式を得る。

$$\lim_{\omega \to 0} \mathbf{B}_{j}^{(1)}(\omega) = -\frac{1}{2} \lim_{\omega \to 0} \left\{ \frac{2A_{2}^{I} + 6A_{3}^{I}\omega + \cdots}{2A_{2}^{R} + 6A_{3}^{R}\omega + \cdots} \right\} \quad (17)$$

(17)式は(7)式を2階微分したものの実部、虚部 によって表現することができる。そこで $B_{j}^{(2)}(\omega)$ を 次のように定義すると、その $\omega \rightarrow 0$ の極限値は  $B_{j}^{(1)}(\omega) の \omega \rightarrow 0$ の極限値と等しい。

$$B_{j}^{(2)}(\omega) = -\frac{1}{2} \frac{\operatorname{Im}\left\{\frac{d^{2}}{d\omega^{2}}\left(1/G_{j,j+1}(\omega)\right)\right\}}{\operatorname{Re}\left\{\frac{d^{2}}{d\omega^{2}}\left(1/G_{j,j+1}(\omega)\right)\right\}}$$
(18)

 $\mathbf{B}_{j}^{(2)}(\omega)$ の $\omega \rightarrow 0$ の極限値は、(8c)式の関係を用いると、(19)式によって計算することができる。

$$\lim_{\omega \to 0} \mathbf{B}_{j}^{(2)}(\omega) = -\frac{1}{2} \lim_{\omega \to 0} \left\{ \frac{2A_{2}^{l} + 6A_{3}^{l}\omega + \cdots}{2A_{2}^{R} + 6A_{3}^{R}\omega + \cdots} \right\}$$

$$= -\frac{A_{2}^{l}}{2A_{2}^{R}}$$
(19)

## 2.3.3 B<sup>(0)</sup>, B<sup>(1)</sup>による粘性減衰係数の同定

 $\mathbf{B}_{j}^{(0)} \ge \mathbf{B}_{j}^{(1)}$ は履歴減衰定数との関係から導いた ものであるが、これらを用いて粘性減衰係数の同 定も可能である。まず、 $\mathbf{B}_{j}^{(0)} \ge c_{j}$ の関係を示す。

(14)式は(9)式を用いると次のように既往の同定 関数で表現できることが分かる。

$$\lim_{\omega \to 0} \mathbf{B}_{j}^{(0)}(\omega) = \lim_{\omega \to 0} \left( \frac{1}{2} \frac{\mathrm{Im}\{f_{j}(\omega)\}}{\mathrm{Re}\{f_{j}(\omega)\}} \right)$$
(20)

(20)式に既往の同定関数による剛性の同定式(1)

式を代入すると、次式が得られる。

$$\lim_{\omega \to 0} \mathbf{B}_{j}^{(0)}(\omega) = \frac{1}{2} \frac{\lim_{\omega \to 0} \mathrm{Im}\left\{f_{j}(\omega)\right\}}{k_{j}}$$
(21)

これを $\omega$ に関して微分し、次の関係を得る。

$$\lim_{\omega \to 0} \frac{d}{d\omega} \mathbf{B}_{j}^{(0)}(\omega) = \frac{\lim_{\omega \to 0} \frac{\omega}{d\omega} \operatorname{Im} \{f_{j}(\omega)\}}{2k_{j}} = \frac{c_{j}}{2k_{j}} \qquad (22)$$

次に、 $\mathbf{B}_{j}^{(0)} \geq c_{j}$ の関係を示す。まず、 $\mathbf{B}_{j}^{(0)} \geq \mathbf{B}_{j}^{(0)}$ の関係は(23)式のように求められる。

$$\lim_{\omega \to 0} \left\{ \frac{d}{d\omega} \mathbf{B}_{j}^{(1)}(\omega) / \frac{d}{d\omega} \mathbf{B}_{j}^{(0)}(\omega) \right\} = \frac{3}{2}$$
(23)

 $\mathbf{B}_{i}^{(0)} \ge c_{i} \ge o$ 関係を示した(22)式に、この関係 を用いると $\mathbf{B}_{i}^{(0)}(\boldsymbol{\omega}) \ge c_{i} \ge o$ 関係が得られる。

$$\lim_{\omega \to 0} \frac{d}{d\omega} \mathbf{B}_{j}^{(1)}(\omega) = \frac{3}{2} \frac{c_{j}}{2k_{j}}$$

$$= \frac{3c_{j}}{4k_{j}}$$
(24)

## 2.3.4 ARX モデルを用いた B(ω)の表現

ここで提案した関数  $B(\omega)$ に ARX モデルを適用 し、ノイズの影響を低減する(図 4 参照)。以降、 伝達関数に ARX モデルを用いない方法をノンパ ラメトリック法と呼び区別する。

2.2 節で示した問題点と同様に、ARX モデルを 用いると、B<sup>(0)</sup>, B<sup>(1)</sup>, B<sup>(2)</sup>の $\omega \rightarrow 0$ の極限値は 0 になるという性質がある。しかし、B<sup>(0)</sup>, B<sup>(1)</sup>は  $\omega = 0$ 近傍で 1 次の勾配のみをもつとみなすこと ができる。そこで低振動数域で、B<sup>(0)</sup>, B<sup>(1)</sup>を直線 近似し極限値を得る方法をとる。

 $B^{(2)}$ については数値の乱れにより近似直線を適切に設定できず、正確な同定が困難であった。そこで、以下では $B^{(0)}$ , $B^{(1)}$ のみを扱う。

#### 3. 数值例題

#### 3.1 シミュレーション手法

数値シミュレーションにより提案手法の精度を 検証する。ここでは線形履歴減衰を含む1層せん 断型モデルを扱うため、時間領域での応答解析は 困難であり振動数領域での解析を行う。

ARX パラメターの個数  $(n_a + n_b)$  はモデル次数と 呼ばれ、同定精度に大きく影響する。本研究では  $n_a = n_b = n$ とするため、モデル次数は 2n である。 3.2 同定結果

モデル諸元・同定結果を表1に示す。モデル次数2*n*=60で得られた同定結果の誤差が大きいた



表1 モデル諸元・同定結果

|           | m  | [ton] | <i>k</i> [kN/r | n] | $c[kN \cdot s/m]$ | $\omega^{(1)}$ | [rad/s]             | h    |         |
|-----------|----|-------|----------------|----|-------------------|----------------|---------------------|------|---------|
|           | 1, | 000   | 100,00         | )0 | 1,000             |                | 10                  | 0.05 |         |
|           |    |       | B(0)によ         | 3  | 司定値               | ]              | B <sup>(1)</sup> に、 | よる同  | 定値      |
| 粘性減       | 衰  | 同     | 定値             |    | 誤差[%]             | 同              | 〕定値                 | Ē    | 誤差[%]   |
| 係数        |    | ç     | 988            |    | -1.2              | 9              | 941                 |      | -5.9    |
| [kN · s/n | n] | (1    | 887)           |    | (88.7)            | (1             | 203)                |      | (20.3)  |
| 履歴減       | 衰  | 0.    | 098            |    | -2.1              | 0              | .100                |      | -0.3    |
| 定数        |    | (-0   | .013)          |    | (-113.3)          | (0             | .080)               |      | (-20.1) |

※括弧外がモデル次数 120、括弧内がモデル次数 60 の場合の同定 結果である。



め、モデル次数を変更し再計算を行っている。こ こで、パラメターの値が未知であったとしても、 B<sup>(0)</sup>, B<sup>(1)</sup>による 2 つの同定値の差により、得られ た数値の精度が低いことを判断することができる。 再計算後の 2 つの同定結果は差が小さくなり、精 度が向上していることが分かる。

#### 4. 実建物における観測記録への適用

関数 B<sup>(0)</sup>, B<sup>(1)</sup>による同定手法を京都大学構内に 位置する免震建物における地震動観測記録に対し

135

て適用する。観測を行った建物は地上3階地下1 階のRC構造で地下1階と耐圧版の間に免震層を 有する。同定対象は耐圧版と地下1階の間の免震 層とする。同定には計測時期の異なる2組の観測 記録(1997.3.16と1999.2.12)を用いる。

また、文献 1)においてこれらの観測記録を用い て同定された物理パラメターの値と比較検証する。

下に同定結果を示す。既往の同定値と大きく異 なるものの、本手法のB<sup>(0)</sup>, B<sup>(1)</sup>によるそれぞれの 結果は近い値を示していることが分かる。

文献 1)の同定法は観測記録に含まれるノイズの



表2 減衰同定結果(1997.3.16の観測記録)

|             | B <sup>(0)</sup> によ | る同定値           | B <sup>(1)</sup> による同定値 |                |  |
|-------------|---------------------|----------------|-------------------------|----------------|--|
| 粘性減衰<br>係数  | 同定值                 | 既同定値<br>との差[%] | 同定值                     | 既同定値<br>との差[%] |  |
| [kN · s/mm] | 0.99                | 44.9           | 0.98                    | 43.4           |  |
| 履歴減衰        | 同定値                 | 既同定値<br>との差[%] | 同定值                     | 既同定値<br>との差[%] |  |
| 走毅          | 0.088               | -37.1          | 0.097                   | -30.6          |  |

■1999.2.12 の地震動観測記録を用いた同定結果 ・既往の同定法による同定値

```
表3 減衰同定結果(1999.2.12の観測記録)
```

|             | B <sup>(0)</sup> によ | る同定値           | B <sup>(1)</sup> による同定値 |                |  |
|-------------|---------------------|----------------|-------------------------|----------------|--|
| 粘性減衰<br>係数  | 同定值                 | 既同定値<br>との差[%] | 同定值                     | 既同定値<br>との差[%] |  |
| [kN · s/mm] | 1.07                | 118.7          | 1.01                    | 108.0          |  |
| 履歴減衰        | 同定値                 | 既同定値<br>との差[%] | 同定値                     | 既同定値<br>との差[%] |  |
| 正毅          | 0.067               | -25.2          | 0.076                   | -15.7          |  |

\* 京都大学大学院 工学研究科建築学専攻

同定値は2つの観測時期によって粘性減衰係数で 影響を受けやすいという問題を有し、さらにその 約40%、履歴減衰定数で約55%の差が見られる。 一方、本提案手法の同定結果において2つの観測 時期による差は粘性減衰係数で約5%、履歴減衰定 数で約23%の差であり、いずれも既往の手法によ る同定値よりも差が小さかった。すなわち、提案 手法は、既往の手法<sup>11</sup>よりもばらつきの少ない安 定した同定が可能であるといえる。

#### 5. 結論

- (1)実測データに含まれるノイズの影響を受けや すい既往の同定法 <sup>1)</sup>を ARX モデルを利用して 改善した同定法 <sup>2)</sup>では、線形履歴減衰の直接的 な同定が困難であった。これを克服するために、 新たな同定関数 B<sup>(0)</sup>(ω), B<sup>(1)</sup>(ω), B<sup>(2)</sup>(ω)を導 出し、さらに B<sup>(0)</sup>(ω), B<sup>(1)</sup>(ω)を用いることで、 線形履歴減衰を含む建物において粘性減衰係 数・履歴減衰定数を同定する方法を提案した。
- (2)既往の同定法 <sup>1)</sup>では、実測データに含まれる/ イズの影響により信頼性の高い同定結果を得る ことが困難であった。一方、提案手法では ARX モデルを適用して得られた関数 B<sup>(0)</sup>(ω), B<sup>(1)</sup>(ω)が安定した値となることによって、それ らに対して適切に近似関数を設定することがで きることを利用し、ノイズの影響を低減した高 い精度の同定が可能であることを明らかにした。
   (3)数値例題により提案手法の妥当性を示した。ま た実建物における観測記録を用いて本手法の精 度を検証した。本手法では、同じ量を2つの関 数 B<sup>(0)</sup>(ω), B<sup>(1)</sup>(ω) で同定できるため、両同定
  - 値の比較により精度検証が可能である。そのた め、本手法はノイズの影響を含む実測記録など に対して、有効かつ実用性の高い手法といえる。

参考文献

- 1) 中村 充,竹脇 出,安井 譲,上谷宏二:限定された地震 観測記録を用いた建築物の剛性と減衰の同時同定,日本建築 学会構造系論文集, No.528, pp.75-82, 2000.2
- 2)前田朋宏,吉富信太,竹脇 出:限定された地震観測記録とARX モデルを用いた建物の剛性・減衰同定法(投稿中).

Dept. of Architecture and Architectural Eng., Kyoto Univ.

 $c = 0.49 \, [\text{kN} \cdot \text{s/mm}], \ \beta = 0.09$