限定された観測データを用いた ARX モデルによる剛性・減衰同定法

正会員 〇前田朋宏* 同 吉富信太* 同 竹脇 出*

2.構造—2.振動

システム同定,構造ヘルスモニタリング,ARX モデル

1. 序

地震時の応答や常時微動等を観測し,構造物の固有 モード特性や物理パラメターを同定するシステム同定 技術が盛んに研究されている^{1,2}. これらの研究は,建 物の構造ヘルスモニタリング技術に応用され,その需 要がますます増大している.

本論文は中村,竹脇らによる物理パラメターの同定 手法 3.4に基づき,その短所を克服したものである.こ の手法では,建物応答の ω→0 における特性を利用し て剛性・減衰が同定される.しかしながら,実際の計 測データを適用した場合,振動数 0 近傍では応答値の レベルが下がり,同定精度が低下する.本論文では, この困難点を克服するために時系列モデルである ARX モデル 5を有効に利用し,建物の物理パラメター (剛性・減衰)を ARX パラメターで表現する.

2. 地動入力時の応答を用いた剛性・減衰の同定法

本論文は文献 3)に基づくため、その内容を本節で簡 潔に説明する.この手法では、図1に示すような線形 弾性剛性、線形粘性減衰、線形履歴減衰を有するせん 断型構造物モデルに対して、同定対象層の直上及び直 下の層の水平変位(あるいは加速度)のみから、対象 層の層剛性と層減衰係数が同定可能である.本論文で は便宜上、同定関数を(1)式で定義する. M_j は最上層 から第j層までの質量の和を示す.同定関数の実部、 虚部及び虚部の勾配についてそれぞれ $\omega \rightarrow 0$ における 極限値を計算することで、層剛性 k_j 、履歴減衰定数 β_j 及び粘性減衰係数 c_i が同定される.

$$f_{j}(\omega) = -\frac{\omega^{2} M_{j}}{\{U_{j+1}(\omega)/U_{j}(\omega)\} - 1}$$
(1)

$$k_{j} = \lim_{\omega \to 0} \operatorname{Re}\left\{f_{j}(\omega)\right\}$$
(2)

$$\beta_{j} = \frac{1}{2k_{j}} \lim_{\omega \to 0} \operatorname{Im} \left\{ f_{j}(\omega) \right\}$$
(3)

図1 せん断型モデル

同定に際しては、(1)式の $U_{j+1}(\omega)/U_j(\omega)$ に観測データの離散フーリエ変換データを代入する. これは有限 個のパラメターでは表現されない数値データであるた め、文献 3)の手法を以降ではノンパラメトリック法と 呼ぶことにする. それに対して、次節で提案する手法 は、 $U_{j+1}(\omega)/U_j(\omega)$ の部分に有限個の ARX パラメタ ー (ARX モデルを記述するパラメター)で表現される 伝達関数が代入されるパラメトリックな手法である. ノンパラメトリック法では、振動数0近傍で同定関数 の値が乱れるため、近似関数を設定して極限値を評価 する必要がある³⁾. この場合、建物層数やノイズレベ ルに応じた適切な近似関数の設定が問題となる.

- 3. ARX モデルを用いた剛性・減衰同定法
- 3.1 伝達関数のテイラー展開と制約条件

G_{*j*,*j*+1}(ω)を同定対象層の直下(第*j*+1床:上層から 番号付け)の応答に対する同定対象層の直上の応答の 伝達関数として(5)式のように表すと,(1)式の同定関数 は(6)式のように書き換えられる

$$G_{j,j+1}(\omega) = \frac{U_j(\omega)}{U_{j+1}(\omega)}, f_j(\omega) = -\frac{\omega^2 M_j}{\{1/G_{j,j+1}(\omega)\} - 1}$$
(5, 6)

第 j+1 床と第 j床の応答をそれぞれ入力と出力とみな した ARX モデルを導入すれば、伝達関数 $G_{i,j+1}(\omega)$ は

Stiffness-Damping Identification of Buildings Using Limited Earthquake Records and ARX Model MAEDA Tomohiro, YOSHITOMI Shinta, and TAKEWAKI Izuru ARX パラメター a_k , b_k (k=1,...,n)を用いて(7)式で表 現できる.尚,出力と入力のパラメター数 n_a e_n_b はい ずれもn とする.本提案手法ではノンパラメトリック 法と同様に $\omega \rightarrow 0$ の極限を扱うためARX パラメター で表現された伝達関数の $\omega=0$ 周りのテイラー展開を 考える.(7)式のテイラー展開により(8)式が得られる.

$$G_{j,j+1}(\omega) = \frac{b_1 e^{-i\omega T_0} + \dots + b_n e^{-ni\omega T_0}}{1 + a_1 e^{-i\omega T_0} + \dots + a_n e^{-ni\omega T_0}}$$
(7)

$$G_{j,j+1}(\omega) \simeq A_0 + A_1 \omega + A_2 \omega^2 + \cdots$$
 (8)

$$A_{0} = \sum_{k=1}^{n} b_{k} \left/ \left(1 + \sum_{k=1}^{n} a_{k} \right) \right.$$
(9)

$$A_{1} = iT_{0} \frac{\sum_{k=1}^{n-1} (n-k)b_{k} \left\{ 1 + \sum_{k=1}^{n} a_{k} \right\} - \sum_{k=1}^{n} b_{k} \left\{ n + \sum_{k=1}^{n-1} (n-k)a_{k} \right\}}{\left\{ 1 + \sum_{k=1}^{n} a_{k} \right\}^{2}}$$
(10)

(9),(10)式のようにテイラー展開の係数を計算する ことにより、 ω の偶数次の係数は実数となり、 ω の奇 数次の係数は純虚数となることがわかる.従って係数 $A_j を実部の係数 A_j^{R} と虚部の係数 A_j' に分けると、(8)$ 式は(11)式のように書き換えられる.

$$G_{j,j+1}(\omega) \simeq \left(A_0^R + A_2^R \omega^2 + \cdots\right) + i \left(A_1^I \omega + A_3^I \omega^3 + \cdots\right)$$
(11)

ここで文献3)の式展開を用いると、せん断型モデル において連続2層を入出力とした伝達関数は、次の (12)、(13)式を満たすことが理論的に証明できる.(12) 式は伝達関数実部が $\omega \rightarrow 0$ において1に収束すること を表し、伝達関数のテイラー展開では(14)式に対応す る.同様に(13)式は伝達関数虚部の勾配が $\omega \rightarrow 0$ にお いて0に収束することを表し、(15)式に対応する.

$$\lim_{\omega \to 0} \operatorname{Re}\left\{G_{j,j+1}(\omega)\right\} = 1 \tag{12}$$

$$\lim_{\omega \to 0} \frac{d}{d\omega} \operatorname{Im} \left\{ G_{j,j+1}(\omega) \right\} = 0$$
(13)

$$A_0^R = 1, A_1^I = 0 \tag{14.15}$$

さらに(9), (10)式を(14), (15)式に代入して ARX パラ メター間の関係式である(16), (17)式が得られる.

$$\sum_{k=1}^{n} a_k + 1 = \sum_{k=1}^{n} b_k \tag{16}$$

$$\sum_{k=1}^{n-1} (n-k)b_k \left\{ 1 + \sum_{k=1}^n a_k \right\} = \sum_{k=1}^n b_k \left\{ n + \sum_{k=1}^{n-1} (n-k)a_k \right\}$$
(17)

(16), (17)式を制約条件として ARX パラメターの推定 を行うことが本提案手法の特徴の一つである.

3.2 同定関数の極限値の ARX パラメター表現

伝達関数のテイラー展開である(11)式及び制約条件 (14), (15)式を用いて(12)式を計算すると、その実部の 極限値から、層剛性同定値が(18)のように表現できる. また虚部の勾配の極限値から、粘性減衰係数の同定値 が(19)式のように表現できる.

$$k_{j} = \lim_{\omega \to 0} \operatorname{Re}\left\{f_{j}(\omega)\right\} = \frac{M_{j}}{A_{2}^{R}}$$
(18)

$$c_{j} = \lim_{\omega \to 0} \frac{d}{d\omega} \operatorname{Im} \left\{ f_{j}(\omega) \right\} = -\frac{A_{3}^{T} M_{j}}{\left(A_{2}^{R}\right)^{2}}$$
(19)

ここで*A*^{*R}</sup>, <i>A*^{*I*} は ARX パラメターを用いて表されるた め, (18), (19)式を用いれば物理パラメター同定問題は ARX パラメターの推定問題に帰着される. すなわち本 提案手法では, ノンパラメトリック法で困難であった 近似関数の設定を回避した同定が可能となる.</sup>

3.3 制約条件付きの ARX パラメター推定法

本手法では制約条件(16),(17)式を満足する ARX パ ラメターを推定する必要がある.(16)式の制約条件は ARX パラメターについて線形であり,(17)式の制約条 件は非線形である.制約のない ARX パラメター推定 問題は一括最小二乗法を用いることで連立方程式を解 くことに帰着される ⁵⁾. ラグランジュの未定乗数法を 適用すれば,線形の制約条件については一括最小二乗 法に容易に組み込むことができる.この伝達関数実部 の制約のみを考慮した推定法を**手法(I)**とする.また伝 達関数の実部虚部両方の制約条件を考慮する場合を**手** 法(II)とし,数値的な探索法(逐次2次計画法)を用 いてパラメターを推定する.

手法(II)は伝達関数実部を安定して同定可能である が、虚部は制約条件がないため誤差を生じる.一方、 手法(II)は伝達関数の実部と虚部両方を精度良く表現 できるが、最適化問題を解くため計算負荷が大きく、 また局所解に陥る可能性もある.ここで(18)式の剛性 同定値は伝達関数実部のテイラー展開係数のみで表さ れるので、剛性同定については手法(I)を用いるのが望 ましい.また(19)式の粘性減衰係数同定値は伝達関数 虚部のテイラー展開係数も含むため、手法(II)を用いる 必要がある.

4. 数値シミュレーション

3節で示した同定手法の妥当性を数値シミュレーションにより検証する.図2に示す4層せん断型構造物

模型と対応するシミュレーションモデルを設定した. バンドリミテッドホワイトノイズを地動入力加速度と して与えて、時刻歴応答解析を行い、得られた各層の 加速度応答を提案手法に適用する.尚、モデル次数は 下層から 300, 300, 260, 200 とした.

4.1 剛性の同定

本手法では、ARX パラメターが推定されれば物理パ ラメターが直接同定されるため、同定関数に近似関数 を設定する必要はない.しかし、ここではノンパラメ トリック法との比較により精度を検証するために同定 関数を示す.本手法により近似関数を設定することな く、同定関数実部の $\omega \rightarrow 0$ における極限値が求められ ることが図3から理解される.本手法を適用して同定 関数の実部の $\omega \rightarrow 0$ における極限値、すなわち剛性の 同定値を求めると第1層で37.6(0.2%)、第2層で 33.5(2.1%)、第3層で25.0(0.2%)、第4層で15.6(1.1%) となる(単位 N/mm,括弧内の数値は誤差).本手法 により概ね精度良く剛性が同定されているといえる.

4.2 減衰係数の同定

手法(II)を用いて求めた同定関数の虚部を図 4 に示 す.同定関数の虚部では低振動数領域で値が大きく乱 れている.図中の「設定値による解析」とは、図 4 の 設定値を用いた運動方程式を振動数領域で解いたもの であり、正解値を表す.図4は手法(II)により同定関数 が表現できることを定性的に示している.定量的には 第1層で49.4%,第2層で15.0%,第3層で4.9%, 第4層でほぼ0%の誤差がある.本手法における伝達 関数は、連続2層の下層応答を入力、上層応答を出力 として定義されており、最上層の伝達関数は上層から の影響を受けない単純な伝達特性を有するのに対し、 最下層の伝達関数は建物層数分の固有モードが影響す る複雑な伝達特性を有する.このことが上層ほど精度 が高い原因であると考えられる.

5.4層模型実測データへの適用

手法(I)を、図2に示すようなオイルダンパー付き4 層せん断型構造物模型の実測データに適用する.模型 の剛性及び減衰係数は予め別の手法により求めてある. 模型を振動台に固定し、最大変位が5[mm]であるよう なランダム波を入力として与えて模型床板上の加速度 応答と振動台上の加速度応答を収録した.データ収録 は500[Hz]で約10[s]実施した.模型実験により計測さ れたデータを用いて図3と同様の同定関数実部をプロ ットしたものが図5である.

さらに本手法を適用して同定関数実部の*ω*→0にお ける極限値である剛性の同定値を求めると第1層で 36.7(0.6%),第2層で31.6(5.6%),第3層で24.4(3.9%), 第4層で13.3(5.5%)となった.

6. 実建物における地震観測記録への適用

3 節の手法を,免震建物における地震観測結果 に対して適用する.地震観測を行った建物は京都 大学構内に位置する免震建物で,地下1階と耐圧 版の間に免震層を有する地上3階地下1階の RC 造建物である³⁾.本節の検討においては耐圧版と 地下1階の間の免震層を同定対象とする.

提案手法を観測データに適用した場合の同定関 数を図 6,7に示す.ここではモデル次数は 42 と した.剛性については既同定値と対応しており, 同定精度は比較的高いといえる.一方減衰係数に ついては観測した建物が履歴減衰を有しており適 切に同定できていない.既往の同定法では(3)式に 示すように履歴減衰定数の同定が可能である.し かし,提案手法においては,ARXモデルに基づく 伝達関数を用いて同定関数を算出しており,同定 関数虚部の *ω*→0 における極限値は 0 となる特徴 を有している.このことから,同定関数虚部勾配 の極限値が適切に算定されず,減衰係数が適切に 同定できていないと考えられる.履歴減衰を考慮 した取り扱いについては今後の課題としたい.

*京都大学大学院工学研究科

7. 結論

- (1) 同定対象層の上下層における地震時応答観測 結果のみから層の物理パラメターを同定する 問題に対して,既往の同定法³⁾の課題であった 低振動数域データのノイズの影響を考慮した 手法を提案した.
- (2) ARX モデルを記述するパラメターを用いて伝 達関数を表現し、伝達関数をテイラー展開する ことにより、建物の物理パラメターを ARX パ ラメターで表現することを可能とした。
- (3) せん断型モデルの伝達関数の ω→0 における 極限値が満たすべき条件として,実部が1に収 束すること及び虚部の勾配が0 に収束するこ との2つを導き,剛性と粘性減衰係数の同定値 を ARX パラメターで表現した.
- (4) 数値例題を通じて本手法の妥当性を示した. また,模型実験の実測データ及び実建物における観測記録を用いた検証により,その精度を明らかにした.本手法は実測データに含まれるノイズの影響を考慮した同定が可能であり,実用性の高い手法である.

本手法では、剛性と粘性減衰を同定することが 可能である.しかしながら、剛性の同定精度に比 べて減衰の同定精度はモデルにより異なり安定し ていない.履歴減衰を考慮した同定手法について は今後の課題としたい.

参考文献

- G.Housner, et al. Special issue; Structural control: past, present, and future. J. Engng. Mech., ASCE; 123(9), pp.897-971, 1997.9.
- 2) Proc. of the Fifth World Conference on Structural Control and Monitoring (5WCSCM), Tokyo, 2010.7.
- 中村 充,竹脇 出,安井 譲,上谷宏二:限定された 地震観測記録を用いた建築物の剛性と減衰の同時同定, 日本建築学会構造系論文集,No.528, pp.75-82, 2000.2.
- I.Takewaki and M.Nakamura: Stiffness-damping simultaneous identification under limited observation, *J. Engng. Mech.*, ASCE; 131 (10), pp.1027-1035, 2005.10.
- 5) 足立修一:システム同定の基礎,東京電機大学出版局, 2009.9

Graduate School of Eng., Kyoto Univ.