角形鋼管柱を用いた方杖ダンパー接合構造の試設計と地震応答解析

正会員	\bigcirc	河合 大*1	同	聲高裕治*1
同		吹田啓一郎*2	同	井上一朗*3

2.構造—10.鉄骨構造

方杖ダンパー,角形鋼管,塑性設計法,試設計,地震応答解析

1. はじめに

方杖ダンパー接合構造は,座屈拘束型の方杖(以下, 方杖ダンパー)を介して柱と梁を高力ボルト接合する ことにより,鋼構造建築物に安定した施工品質と高い 塑性変形能力を付与することを意図して開発された柱 梁接合形式である¹⁾.これまでに柱にH形断面部材を 用いた場合の構造性能を実験と解析によって確認し,

一部実用に供されている.H形断面柱を用いた方杖ダンパー接合構造では、高力ボルト接合部のおさまりや柱の設計の簡便化のために、柱弱軸曲げ方向の梁をピン接合としている.このため、本接合形式を適用した骨組は、溶接接合形式の2方向ラーメンと比べて水平力に抵抗する部材が少なくなり、鋼材重量が約2割増加することが確認されている²⁾.

本研究では、柱に角形鋼管を用い、2 方向ラーメン を構成するのに適した方杖ダンパー接合構造の開発を 目指している.これまでに、図1の柱と梁ならびに柱 と方杖ダンパーを高力ボルト接合するための接合詳細 を提案し、その基本的な力学的挙動を確認している³⁾. 本論では、この接合形式を適用した骨組の設計法を提 案し、試設計例題を通じて骨組の鋼材重量および地震 応答性状を確認する.

2. 方杖ダンパー接合構造の部材断面算定法

2.1 方杖ダンパー接合構造の設計概要

方杖ダンパー接合構造を適用した骨組(以下,方杖 接合骨組)では,崩壊機構形成時の塑性化部位を方杖 ダンパーと最下層柱脚だけに限定し,柱と梁を弾性に 保つことを前提としている¹⁾.角形鋼管柱を用いた方 杖接合骨組では,すべての柱梁接合部に方杖ダンパー を設置することが可能であり,2 方向ラーメンが構成 される.次節に示す角形鋼管柱を用いた方杖接合骨組 の初期断面算定手順は,文献4)で提案されたH形断面 柱を用いた方杖接合骨組の初期断面算定手順に,45° 方向地震入力時における柱の2軸曲げを考慮した断面 算定の考え方を加えたものである.

2.2 塑性設計法による初期断面算定手順

崩壊機構形成時の各部材の曲げモーメントを算定す るために下記の仮定・条件を用いる⁴⁾.

- 1) 方杖ダンパー,大梁せいは各床レベルで同一とし,
 図 2 に示す方杖ダンパーの寸法 *l_a*, *h_a*はすべて同じとする.
- 2) 崩壊機構形成時の方杖ダンパー軸力は公称降伏軸 力_aN_w(基準強度×断面積)の1.1倍とする.

崩壊機構形成時の骨組の層せん断力(保有水平耐力) の算定は以下による.まず,方杖ダンパーの降伏軸力 $_{d}N_{y}$,梁・柱せいを仮定し,i床の梁の節点モーメン ト $_{b}M_{i}^{end}$ (図2参照)を図3に示す方杖ダンパーの降 伏軸力 $_{d}N_{vi}$ との釣合より求める.

D 型:
$$_{b}M_{i}^{end} = 1.1_{d}N_{y,i}\cos\varphi(_{b}d_{i}+2h_{d})\frac{l}{l-k_{c}d}$$
 (1)

$$S \cong : {}_{b} M_{i}^{end} = 1.1_{d} N_{y,i} \cos \varphi({}_{b} d_{i} + h_{d}) \frac{l}{l - k_{c} d}$$
(2)

ここで,(1),(2)式のkには,図2に示す G_A 梁では1 を, G_B 梁では1/2を用いる.次に,得られたi床の節 点モーメントを柱頭と柱脚に分割して,i層の柱の節

Design method and dynamic analysis of weld-free steel structure with knee brace damper using square tube column

KAWAI Dai, KOETAKA Yuji, SUITA Keiichiro and INOUE Kazuo

点モーメント。 $M_i^{end,T}$, $M_i^{end,B}$ (図4参照)を求める. ただし、D型の場合は節点モーメントをi+1層とi層の層モーメント比で分割し、S型の場合は。 M_{i+1}^f と。 $M_i^{max,T}$ (図4参照)の比がi+1層とi層の層モーメント比と一致するものと仮定する.各柱の節点モーメントより、保有水平耐力 $Q_{u,i}$ が次式で求められる.

 $Q_{u,i} = (\sum_{c} M_{i}^{end,T} + \sum_{c} M_{i}^{end,B})/h_{i}$ (3) 方杖ダンパーは,上述のように算出した骨組の保有 水平耐力が2次設計用地震荷重を上まわるように選定 する.また,梁にはボルト孔欠損を考慮した降伏曲げ 耐力が保有水平耐力到達時の最大曲げモーメント M_{i}^{max} (図2参照)以上となる断面を選定する.

柱の選定では 45° 方向地震入力を想定する.2 軸曲 げを受ける柱(方杖が両方向に取り付く柱)には,軸 力を考慮した全塑性曲げモーメントが各方向の保有水 平耐力到達時に生じる柱の最大曲げモーメント $_{c}M_{i}^{\max,T}$, $_{c}M_{i}^{\max,B}$ (図4参照)の1.5倍以上となる断 面を選定する.2軸曲げを受けない柱には,軸力を考 慮した降伏曲げモーメントが各方向の保有水平耐力到 達時に生じる最大曲げモーメント以上となる断面を選 定する.

2.3 層剛性改善法

初期断面算定手順に基づく部材断面を適用した骨組 (以下,初期断面骨組)が1次設計の層間変位角制限 値 R_{req} を満たさない場合は,その層の2次設計用地震 荷重を₁ R_i^e/R_{req} 倍(ここで, 1 R_i^e は初期断面骨組の1 次設計用地震荷重に対する*i*層の層間変位角である) し,再度,初期断面算定手順に基づき部材断面を選定 する.

3. 骨組の試設計

3.1 対象骨組と設計条件

試設計の対象は、文献2)に示された8層骨組とする.
図5に基準階伏図,図6に内部構面軸組図を示す.
方杖ダンパーの配置は、外周構面のすべての柱梁接合部でD型(ただし、8床はS型)、内部構面の8床以外の柱梁接合部でS型とする.

設計条件を以下に示す.

- 1) 1 次設計用地震荷重(C₀=0.2)に対して方杖ダン パーは弾性で,層間変位角が 1/180rad 以下とする.
- 保有水平耐力が2次設計用地震荷重(C₀=1.0, D_s=0.25)を上まわることを確認する.保有水平

耐力はある層の層間変位角が 1/100rad に達したと きの層せん断力とする.

3) 方杖ダンパーの寸法は l_d=1000mm, h_d=600mm (図2参照)とし,標準ラインアップ5)より選定する. 4) 最下層柱脚の境界条件は固定とする.

3.2 静的增分解析

解析には、図7に示す解析モデルを用いる. 剛床仮 定を適用し,同一床レベルの各柱梁節点の水平変位を 等置する.また,柱の支配床面積より算出した鉛直荷 重を各柱梁節点に作用させる. 各部材の降伏応力は基 準強度の 1.1 倍, 材料特性は歪硬化係数が 1%の Bi-Linear 型とする.

図8に初期断面骨組の層せん断力と層間変位角の関 係(Y方向)を示す. 解析結果より, 初期断面骨組は 層間変位角制限を満たしていないことがわかる.図9 に層剛性改善法に基づく部材断面を適用した場合の層 せん断力と層間変位角の関係(Y方向)を示す. 層剛

表	1	方枝	丈ダンパーリ ン	スト (SN400)B)
	床	No.	厚さ×幅(mm)	降伏軸力	
	8	No.1	$16{ imes}105$	395 kN	
	7	No.2	16 imes 120	451 kN	
	6	No.3	16×135	508 kN	
	5	No.5	19×160	714 kN	
	4				
	3	No.6	19×180	804 kN	
	2				
	1				

性改善法に基づく部材断面を適用した骨組(以下,補 正断面骨組)は、前節に示す1)および2)の設計条 件を満たしている.

3.3 設計結果

表1~表3に補正断面骨組の各部材リスト,表4に 補正断面骨組の鋼材重量を示す.比較のため,文献 2) の H 形断面柱を用いた方杖接合骨組と溶接接合形式 の従来型骨組の鋼材重量を併記する.本試設計骨組の 鋼材重量は,H形断面柱を用いた方杖接合骨組と比べ て約1割低減し,従来型骨組と比べて約1割増加して いる.

表 2 柱リスト (BCR295)

C1,C2	C3	C4	C5	C6	C7
\Box -450 \times 12	\square -450 \times 9	\square -450 \times 9	\Box -450 \times 9	\Box -450 \times 9	□-450× 9
\Box -450×16	\Box -450 \times 12	\Box -450×12	\Box -450 \times 16	\Box -450×16	
	\Box -450×16	\Box -450×16		1	\Box -450×12
			\Box -450×19	\Box -450×19	
\Box -450×19				\Box -450 \times 22	\Box -450×16
			\Box -450 \times 22		\Box -450×19
\Box -450 \times 22	\Box -450×19				\Box -450×22

表3 大梁リスト (SM490A)

床	G1		G2	G3
8	$H-400 \times 200 \times$	9×12		
7	$ m H{-}450{ imes}200{ imes}$	9×22	$H-450 \times 200 \times 9 \times 12$	$H-450 \times 200 \times 9 \times 16$
6	m H-500 imes 200 imes	9×22	$H-500 \times 200 \times 9 \times 12$	$H-500 \times 200 \times 9 \times 16$
5	$H-550 \times 250 \times$	9×22	$H-550 \times 200 \times 9 \times 16$	$H-550 \times 200 \times 9 \times 22$
4				
3	H-600×200×1	12×28	$H-600 \times 200 \times 9 \times 19$	$H-600 \times 200 \times 12 \times 22$
2				
1				

表 4 鋼材 重量 (ton)

部位	角形鋼管	を行って	H 形断面柱の 古社接合骨組		従来型骨組	
	鋼種	重量	<u> </u>	重量		重量
柱	BCR295	103.7	SM490A	107.6	BCP325	110.2
訒	SM490A	119.6	SM490A	105.0	SN490B	172.2
*	SS400	54.2	SS400	115.9	SS400	44.7
方杖		76.5		67.0		
計		354.0		395.5		327.1

С 層 0-4 8 7 6 **□**-4 $\mathbf{5}$ 4 □-4 3 $\mathbf{2}$ 1

3.4 時刻歴応答解析

角形鋼管柱を用いた方杖接合骨組の地震応答性状を 把握するため,補正断面骨組の時刻歴応答解析を行う. 粘性減衰を1次の減衰定数が0.02の初期剛性比例型と し,解析の時間増分を0.01秒とする.表5に入力地震 動を示す. BCJ L2 以外の地震動は最大速度が0.5m/s となるように最大加速度を調整している.

図 10 に最大層間変位角の高さ方向分布,図 11 に方 杖ダンパーの累積塑性変形倍率の高さ方向分布,図 12 に方杖ダンパーの最大歪の高さ方向分布を示す.比較の ため,文献 2)に示されている H 形断面柱を用いた方杖 接合骨組の解析結果を併記する.角形鋼管柱を用いた方 杖接合骨組の最大層間変位角が,H 形断面柱を用いた 方杖接合骨組よりわずかに大きくなる傾向が見られる が,大略的にこれらの応答には顕著な差異が見られない. 他の地震動に対する応答においても,同様の傾向が見ら れた.

4. まとめ

本論で得られた知見を以下に示す.

- [1]本論で対象とした角形鋼管柱を用いた方杖接合骨 組は,層剛性改善法に基づき2次設計用地震荷重を 割り増すことで,文献4)の初期断面算定手順を活用 して,設計条件を満たす部材断面を選定できる.
- [2] 角形鋼管柱を用いた方杖接合骨組の鋼材重量は、H 形断面柱を用いた方杖接合骨組と比べて約1割低 減し、従来型骨組と比べて約1割増加する.
- [3] 角形鋼管柱を用いた方杖接合骨組と H 形断面柱を 用いた方杖接合骨組の地震応答性状には,顕著な差 異が見られない.

参考文献

- 吹田啓一郎,井上一朗,竹内一郎,字野暢芳:座屈拘 束された方杖ダンパーによる柱梁高力ボルト接合構造 の力学挙動,日本建築学会構造系論文集,第571号, pp.153-160,2003.9
- 2) 貝谷淳一,張シシュン,白髪誠一,椿英顕,多賀謙蔵, 北條稔郎,永谷芳郎,井上一朗:方杖ダンパー接合構 造の設計例(その2),日本建築学会近畿支部研究報告 集,第46号・構造系,pp.249-252,2006.6
- 3) 聲高裕治,福智康之,井上一朗,吹田啓一郎,宇野暢芳:方杖ダンパー接合構造の角形鋼管柱への適用と検証実験,日本建築学会近畿支部研究報告集,第50号・

- *2 京都大学大学院工学研究科建築学専攻
- *3 岡山理科大学総合情報学部建築学科

表 5 入力地震動

地震波	最大加速度(m/s²)	解析時間(s)		
El Centro NS	5.11	50		
Taft EW	4.96	50		
Hachinohe NS	3.30	50		
BCIT2	3 56	120		

構造系, pp.189-191, 2010.6

- 4)多賀謙蔵, 張シシュン, 貝谷淳一, 白髪誠一, 椿英顕, 北條稔郎, 永谷芳郎, 井上一朗: 方杖ダンパー接合構 造の設計例 (その1), 日本建築学会近畿支部研究報告 集, 第46号・構造系, pp.245-248, 2006.6
- 5) 井上一朗, 寺島雄一郎, 聲高裕治, 吉田文久: 方杖ダ ンパーの標準仕様と性能確認実験, 日本建築学会近畿 支部研究報告集, 第46号・構造系, pp.241-244, 2006.6

Dept. of Architecture, Osaka Institute of Technology Dept. of Architecture and Architectural Engineering, Kyoto Univ. Dept. of Architecture, Okayama Univ. of Science