免震層と上部構造の両性能を向上させる複合ダンパーシステムの開発

正会員 〇合田圭吾* 同 吉富信太* 同 计 聖晃* 同 竹脇 出*

2.構造---2.振動

免震建物、制振、居住性、変位・加速度制限、高硬度ゴムダンパー

1. 序

免震構造は、一般に中低層建物を対象として用いられ てきたが、超高層建物に対してもその有用性が明らかに されつつあり、現在わが国では住宅から超高層ビルまで 幅広い範囲で免震構造が実用化されている。免震建物を 設計する場合,免震装置の変形限界の問題や大都市など 建物が密集しているような場所ではクリアランスの ための十分な空間を確保することができないという 問題が存在する。その問題を克服するために免震層 に通常より多くダンパーを配置するなどして免震装 置の可動域を制限する対策が考えられている。しか しながら、過度なダンパー配置は上部構造の応答の 増大につながるという問題が存在する¹⁾。免震層にダ ンパーを過度に挿入し、上部構造の応答量が増大し ても躯体にはあまり支障はない。しかしながら、建 物内の人や物に大きな影響を与える場合がある。

図1は安心性能グレード図の一例であり、横軸は 地面の揺れの度合いを,縦軸は建物上層階の揺れの 程度を表す。図12から、耐震建物や制震建物に比べ 免震建物は地面の揺れに対して、建物上層階の揺れ を大きく低減する一方で、震度5を超える地震が発 生した場合は建物内部で家具の移動や転倒が起こる ことがわかる。

本研究では,免震装置の変形を抑制し,同時に上部 構造の居住性を向上させるシステムとして免震と制 震を組み合わせたハイブリッドシステムを提案する。 本研究の目的は以下の2点である。

- 1) 免震層および上部構造に設置するダンパー量 が、免震層の変位と頂部絶対加速度に及ぼす影 2.2 解析法について 響を明らかにすること

建物上層隘 の揺れ 業度7 影りなく行動できなし 震度63 耍心的 鶯度6♥ **業度5%** 震度5署 震度4 黨度3 揺れる 雷度3 堂座5% 奮度6^篇 震度7 地面の揺れ 図1 安心性能グレード図案²⁾

2. モデル設定と応答評価法

2.1 免震建物のモデル化

10 層鉄骨造免震建物(基礎免震:平面 20mx20m) をせん断型モデルにモデル化し解析を行う(図 2)。免 震層は天然ゴム系アイソレーターとオイルダンパー で構成されるものとする。上部構造各層の剛性、減 衰係数は免震層を固定し、表1の諸元を用いて1次 モードを直線形と仮定して算出する。また、免震層 の剛性と減衰係数は上部を剛体と仮定し、表 2 の諸 元により求める。

表1 上部構造諸元		表 2 免震層諸元		
上部各層の質量	$4.0 imes 10^{5}$ (kg)	免震層の質量 1.2×10 ⁶ ()	kg)	
1 次固有周期	1.05(s)	1 次固有周期 4.0(s)		
減衰定数	0.02	減衰定数 0.05		

頂部最大絶対加速度応答、免震層の最大変位応答 2) 上部構造に付加するダンパー種別による応答 を複素固有値解析を用いた応答スペクトル法(拡張 特性の違いとそのメカニズムを明らかにする CQC 法)³⁾によって算出する。応答スペクトルとして 安全限界スペクトルを用いる。

New Combined Damper System for Higher Performances of Both Base-isolation Story and Building Story GODA Keigo, YOSHITOMI Shinta, TSUJI Masaaki and TAKEWAKI Izuru

2.3 制振ダンパーについて

本研究では免震層にはオイルダンパーを付加し, 上部構造にはオイルダンパーまたは高硬度ゴムダン させたときの頂部最大絶対加速度を表す。 パーやを付加する。オイルダンパーは付加した層の減 また、リリーフ機構は作動させず、減衰力は相対変 また、図 2(b)より、グラフに極小値が存在すること 位速度に比例するものとする。

り、ゴムの変形量によって剛性や減衰係数が変化す 合わせが存在することがわかる。 るひずみ依存性を有する。しかしながら、通常の粘 弾性体よりもかなり小さな温度・振動数依存性を有 している。以下に等価剛性kea (N/mm)と等価減衰係数 c_{eq} (Ns/mm)を求める式を示す⁴。

$$k_{eq} = \frac{S}{d} \left(\frac{0.32 + 0.11\varepsilon^{0.38}}{1 + \varepsilon} \overline{\gamma}_{max}^{-0.62} + \frac{0.32\varepsilon - 0.11\varepsilon^{0.38}}{1 + \varepsilon} \frac{\overline{\gamma}_{max}^{-0.38}}{\gamma_{max}} + \frac{S}{d} 0.10\gamma_{max}^{-0.66} \right)$$
(1)

$$c_{eq} = \frac{S}{d} \frac{0.64\varepsilon - 0.22\varepsilon^{0.38}}{\pi\omega} \frac{\overline{\gamma}_{\max}^{0.38}}{\gamma_{\max}} + \frac{S}{d} \frac{0.306}{2\pi^2} \left(\frac{\omega}{2\pi}\right)^{-0.75} \gamma_{\max}^{-0.7}$$
(2)

$$\varepsilon = \frac{0.94 |\gamma_u|^{0.73}}{|\gamma_u|^{0.73} + 0.01}$$
(3)

ここで、 $\bar{\gamma}_{max}$ は過去に経験した最大ひずみ、 γ_{max} は現 在のループの最大ひずみ, γ, は除荷時のひずみであ る。本研究では簡単のためすべて γ_{max} とする。

上部構造に粘性ダンパーを付加する場合の解析 3.

3.1 特性解析の方針

上部構造に付加するダンパー量の程度を表す指標 としてh_sを用いる。h_sは免震層固定時の上部構造の 1次減衰定数を表す。本論文では上部構造各層の減衰 係数が剛性比例型になるようにダンパー量を増加さ せる。また、免震層のダンパー量の程度をあらわす 指標として h,を用いる。 h,は上部を剛体とし,1 質 点モデルに仮定したときの減衰定数である。

3.2 ダンパー量と頂部最大絶対加速度の関係

図 2(a)はh,を0.05,0.125,0.2 とし,それぞれの場 合でh_sを0.02から0.08まで変化させたときの頂部最

大絶対加速度を表す。図2(b)はhsを0.02,0.05,0.08 とし, それぞれの場合でh,を 0.05 から 0.2 まで変化

図 2(a)より、上部構造に挿入するダンパー量を増や 衰係数だけを増加させ、剛性は増加させないとする。すほど頂部最大絶対加速度は減少することがわかる。 がわかり, 上部構造のダンパー量と免震層のダンパ 高硬度ゴムダンパーは粘弾性ダンパーの一種であ 一量には最も頂部加速度応答を低減する最適な組み

⁷⁵3.3 ダンパー量と免震層の最大変位の関係

図3は図2と同様の操作による免震層の最大変位 についてのグラフである。図 3(a), (b)から, 免震層 の最大変位はほぼ免震層のダンパー量のみで決まる と言える。

図 4(a)は縦軸にh, 横軸にh,をとり, 頂部最大絶 対加速度について描いた等高線図である。図 4(b)は 縦軸にh_s, 横軸にh_iをとり, 免震層の最大変位につ いて描いた等高線図である。等高線図を組み合わせ ることで、頂部加速度と免震層の変位の要求を同時 に満たすダンパー量をどの程度にすれば良いかが視 覚的に理解できるといえる。また、加速度について は最適な免震層ダンパー量が存在することがわかる。

4. 上部構造に高硬度ゴムダンパーを付加する場合の解析

高硬度ゴムダンパー量をあらわす指標としてゴム の断面積Sを用いる(厚さは15mm)。ただし,付加 する高硬度ゴムダンパーのゴムの断面積は上部構造 の全層で同じとする。免震層のダンパーを表す指標 としては3節と同様に,*h*,を用いる。図5(a)は縦軸 にゴムの断面積を,横軸に*h*,をとり,頂部最大絶対 加速度について描いた等高線図である。図5(b)は免 震層の最大変位についての等高線図である。粘性ダ ンパーと同様に,加速度については最適な免震層ダ ンパー量が存在することがわかる。

(a)頂部最大絶対加速度 (b)免震層の最大変位 図 5 等高線図(高硬度ゴムダンパー)

5. 上部構造に付加するダンパー種別が頂部加速度 応答に及ぼす影響

ここでは、上部構造に粘性ダンパーを付加した場 合と高硬度ゴムダンパーを付加した場合の比較を行 う。 $h_i = 0.2$,上部構造の全層に S=0.46(m²)の高硬度 ゴムダンパーを一様配置した時の各層の減衰係数の 分布を基準とする。減衰係数がこの分布に比例し, 減衰定数が一致するように上部各層に粘性ダンパー を配置したモデルを作成して比較を行う。図 6 に各 モデルの減衰係数と剛性の分布を示す。

図 7(a)は免震層のダンパー量h,を 0.2 に固定し,各 モデルの上部構造のダンパー量を変化させたときの 頂部最大絶対加速度を表す。減衰係数分布が比例す るように粘性ダンパーの量を増やしたモデルのグラ フは高硬度ゴムダンパーを付加した場合のグラフと ほぼ一致している。また,図 7(b)は設定した 2 つの モデルに対して,入力レベルを徐々に小さくしたと きの頂部最大絶対加速度を示した図である。入力レ ベル 1 が安全限界を表している。入力レベルを小さ くしていくと高硬度ゴムダンパーを付加したモデル の方が加速度をより効果的に低減していることがわ かる。入力レベルが小さくなることで,高硬度ゴム の変形が抑えられ,(1)-(3)式で示したひずみ依存性に より付加減衰・剛性が大きくなったことが両者の差 にあらわれたと考えられる。

6. ダンパー付加による頂部加速度応答低減メカニ ズムの解明

6.1 剛性の影響について

ここでは高硬度ゴムダンパーを挿入したとき,付 加される剛性が頂部加速度に与える影響について解 明する。図 8(a)は上部にダンパーを付加していない 状態で,各層の剛性を初期の状態の3倍になるまで 増加させたときの頂部最大絶対加速度のグラフであ る。剛性の増加に伴って加速度が小さくなっている。 また,図 8(b)はそのときの減衰定数の変化を表す。1 次の減衰定数が増加傾向にあることが免震建物の大 きな特徴といえる。図 8(c)は固有周期と加速度応答 スペクトルの変化を示した図であり,矢印の終点が 剛性を3倍にした状態を表している。2次,3次の応 答スペクトルが大きく増加しているのがわかる。一 方,図 8(d)は最上層の刺激関数を表した図である。 特に2次の刺激関数が大きく減少しており,これが 図 8(a)の加速度低減の原因であると考えられる。

6.2 免震層の減衰の影響について

6.1 節と同様に免震層の減衰の増加が加速度応答 スペクトル(図 9(a))と刺激関数(図 9(b))にどのような 影響を与えるかを検討する。図 9(a)より 1,2次の加 速度応答スペクトルが減少傾向にある。一方,図 9(b) より特に2次の刺激関数が増加傾向にある。頂部最 大絶対加速度のグラフが極小値をもつのは,初めは 加速度応答スペクトルの減少の影響が大きいが,免 震層の減衰が大きくなるにつれて,刺激関数の増加 の影響が大きくなることが原因であることがわかる。

7. 結論

免震構造と制振構造のハイブリッドシステムを提 案し,その特性解析を行った。また,粘性ダンパー と高硬度ゴムダンパーをある入力レベルで同じ性能 を持つように設計したとき(減衰定数が同程度になり, 減衰係数の分布が同じ形になるように設計した場合), それより低いレベルの地震動に対しては高硬度ゴム ダンパーを用いた方が頂部加速度の低減効果が大き いことを明らかにした。さらに,加速度応答スペク

トルと刺激関数を用いて,上部構造の剛性の増加や 免震層の減衰の増加による頂部加速度の変化のメカ ニズムを解明した。

謝辞 西村勝尚氏(大林組)より貴重な情報の提供 を受けた。ここに記して謝意を表する。

参考文献

- J.M. KELLY, THE ROLE OF DAMPING IN SEISMIC ISOLATION, *Earthquake Engng. Struct. Dyn.* 28, 3-20(1999).
- 2) 濱口弘樹他,人の心理・感覚を考慮した耐震性能評価法の 提案,日本建築学会東日本大震災シンポジウム論文集, 2012.3.2.
- 3) 辻聖晃, 応答スペクトル法,「空間構造の動的挙動と耐震 設計」4.3節, 日本建築学会,2006.
- 4) 谷 翼他, 高硬度ゴム粘弾性体の力学モデルの構築(その1), 学会構造系論文集,第 629 号, pp1079-1086, 2000.

*京都大学工学研究科建築学専攻

Dept of Architecture and Arch. Eng., Kyoto Univ.