地震応答低減機能を有する床構造を適用した1層鋼構造骨組の振動台実験

その1 実験方法および試験体の振動特性

正会員 〇松本 圭太*1 同 矢野 康*2 同 聲高 裕治*3 同 吹田 啓一郎*3

2. 構造 - 2. 振動

床スラブ 粘弾性体 地震応答 振動台実験 時刻歴応答解析

1. はじめに

本研究は図1に示すように、粘弾性体を2枚の 鋼板に接着したものを梁と床スラブの間に挿入し、 粘弾性体のエネルギー吸収により骨組の地震応答を 低減することができる床構造を開発する一環である.

文献1)では、対象骨組(図2(b)参照)の床組の 面内剛性が十分に大きく、床組の面内変形が生じな いと仮定することで、対象骨組を床スラブと骨組に 分解した2自由度系モデル(図2(a)参照)を構築し、 時刻歴応答解析を行った結果、以下の[A]に示す知 見が得られている.他方で、本床構造を適用した骨 組は剛床仮定が成立しないため、各構面が負担する 質量の分布と各構面の層せん断剛性の分布が異なる 場合に、床組に面内変形が生じると考えられる.文 献2)では、床組の面内変形を考慮できる6自由度系 解析モデル(図2(c)参照)を構築し、本床構造を適 用した場合の地震応答に及ぼす床組の面内変形の影 響を時刻歴応答解析を行い確認することで以下の[B]

図1 地震応答低減機能を有する床構造

に示す知見が得られている.

- [A] 粘弾性体のエネルギー消費によって骨組の最 大ベースシアー係数を低減できる.
- [B] 各構面の層せん断剛性の差が大きくなるに 伴って、層せん断剛性の大きい構面における 最大層間変位が減少し、粘弾性体の最大せん 断変形は増加する.

本報では、図1の床構造を適用した1層鋼構造骨 組の振動台実験を通じて、既往の解析的検討で得ら れた知見の妥当性を確認する.その1では、振動台 実験の方法を概説し、試験体の振動特性(層せん断 剛性、減衰定数、および粘弾性体の物性値)の同定 結果を示す.

- 2. 実験方法
- 2.1 試験体

試験体は本床構造を適用した1層1×2スパンの鋼 構造骨組の1/5程度の小型模型骨組(図3参照)であ る. 偏心の影響を避けるために試験体の各構面が負 担する質量,各構面の層せん断剛性,各構面の粘弾 性体の形状係数*S/d(S*:粘弾性体の貼付面積,*d*:粘 弾性体の厚さ)は内側構面に関して対称としている.

大梁と基礎梁の間に骨組の鉛直荷重を支持するた めの柱をピン接合し、骨組に層せん断剛性 *K^F*を付与 するための板バネ(材質:アルミ合金(A7075))を山

Shaking table test of single-story steel structure with isorated floor system Part1 Testing method and identification of structual paramater

MATSUMOTO Keita, YANO Yasushi, KOETAKA Yuji and SUITA Keiichiro

形鋼を介して高力ボルト摩擦接合する.床スラブは 1枚の鋼板とし,粘弾性体とリニアガイドを介して 大梁に取り付けられる.粘弾性体にはアクリル系粘 弾性体を用い,厚さは10mmとする.リニアガイド は床鋼板の重量を支え,粘弾性体の変形を構面方向 のみに許容する役目を担っている.

2.2 実験パラメータ

表1に実験パラメータを示す. 骨組全体が有する 粘弾性体の形状係数S/d, 内側構面の層せん断剛性 $_{in}K^{F}$ と外側構面の層せん断剛性 $_{ex}K^{F}$ の比 $_{in}K^{F}/_{ex}K^{F}$, 内側構面の粘弾性体の貼付面積 $_{in}S$ と外側構面の粘 弾性体の貼付面積 $_{ex}S$ の比 $_{in}S/_{ex}S$, 水平ブレースの 有無を実験パラメータとして採用する. ただし, 各 変数の左下添字 in は図 3(c) における内側構面の諸量

		表1 実験/	バフメ	-g		
	粘弾性体の	粘弾性体の	層せん	ん断岡	世比	→ ₩
	形状係数	貼付面積比	$_{in}K^{F}/_{ex}K^{F}$		小平	
	S/d(m)	$_{in}S/_{ex}S$	2	2/3	0	ノレース
	1, 5, 20, ∞	2	Α	-		有
		2				
5		1	В		無	
		0				

粘弹性体

リニアガイド

を, ex は外側構面の諸量を表している.実験パラメー タのうち_{in} $K^F/_{ex}K^F$ については、板バネの総数を8と して、表1中の値となるように各構面の板バネの設 置枚数を決定している.また、水平ブレースの着脱 により床組を剛または柔とする.

表1中のケースAは粘弾性体の形状係数 S/d を1, 5,20m,∞(床スラブと大梁の相対変位を拘束した 場合)と変化させる試験体であり,前述した[A]の 解析的知見を,同表中のケースBは形状係数 S/d が 5m の試験体であり,[B]の解析的知見の妥当性を確

NII-Electronic Library Service

認するものである.

2.3 加振方法

振動台実験には京都大学防災研究所の強震応答実 験装置(最大加速度1.0G)を使用する.加振方向は 骨組の構面方向(図3参照)としている.入力地震 動は図4に示すホワイトノイズ(最大加速度4.90m/ s²)とBCJL2(最大加速度1.78m/s²)の2波とし,骨 組の層間変位が1/10rad以下,粘弾性体のせん断歪 が300%以下になるように最大加速度を調整した.

3. 骨組の振動特性の同定

3.1 骨組の振動特性

粘弾性体の形状係数 S/d が∞の場合で,ホワイト ノイズ(最大加速度 4.90m/s²)を入力した実験結果に 基づいて,骨組の振動特性を同定する.

3.2 骨組の層せん断剛性

各構面の層間変位の時刻歴データを高速フーリエ 変換(FFT)し、フーリエ振幅スペクトルを求める. ただし、FFTによって求めたフーリエ振幅スペクト ルにはノイズが含まれているため、Parzenのスペク トル・ウインドウ(バンド幅 0.15Hz)³⁾を用いてフー リエ振幅スペクトルを平滑化している.図5に一例 として、ex1構面のフーリエ振幅スペクトルを示す. 図中の*T^F*は固有周期の同定結果である.

以上のように同定した骨組の固有周期 T^F を用いて 骨組の重量 W^F (表 2 参照)より,各構面の層せん断 剛性 K^F を算出する.ここで,骨組の層せん断剛性 K^F には $P\Delta$ 効果による幾何剛性が含まれているので, 板バネ1枚当たりの弾性剛性 k^F を算出するために(1) 式を用いる.ただし, H^F は骨組の高さ(=0.64m), n は各構面の板バネの枚数である.

図5 骨組の層間変位のフーリエ振幅スペクトル

(1) 式に基づいて板バネ 1 枚当たりの弾性剛性 k^{F} を算出した結果, k^{F} =33.80kN/m が得られた.

3.3 **骨組の減衰定数**

骨組の減衰定数の同定には、骨組および振動台の 加速度の時刻歴データを高速フーリエ変換し、骨組 の伝達関数から求めたフーリエ位相を用いる.伝達 関数の位相は(2)式⁴⁾で表すことができる.

$$\theta(T) = \tan^{-1} \left(\frac{2h(T^F / T)^3}{1 - (1 - 4h^2)(T^F / T)^2} \right)$$
(2)

伝達関数のフーリエ位相と(2)式の位相に対して最 少二乗法を適用することで骨組の減衰定数を同定す る.フーリエ位相には固有周期近傍で急激に変化し, 減衰定数が大きくなるに従い傾きが緩やかになると いう特徴を有するため,最小二乗法は固有周期近傍 で行う.減衰定数の同定結果は0.013となる.図6 に一例として,ex1構面(図5と同様)のフーリエ位 相と近似曲線の比較を示す.

3.4 骨組の振動特性の評価

同定した骨組の振動特性を用いて時刻歴応答解析 を行い,実験結果と比較することで同定した振動特 性を評価する.時刻歴応答解析には,板バネ1枚当 たりの弾性剛性 k^Fに基づいて(1)式よりPム効果を 考慮して求めた層せん断剛性 K^Fを用いる.また,1 質点系の解析モデルを適用し,入力波にはホワイト ノイズ(最大加速度 4.90m/s²),および BCJ L2(最 大加速度 0.89m/s²) 加振中の振動台の加速度を用い る.

表2 層せん断剛性の同定結果

0.493

14.92

8

固有周期 T^F(s)

重量 W^F(kN)

板バネの枚数 n

表3に解析結果の最大値と実験結果の最大値の誤 差を示し、図7に一例として、S/dが∞の場合にお ける ex1 構面の骨組の層間変位 δ^F の解析結果と実験 結果を比較して示す.ただし、誤差の値が負であれ ば解析結果の最大値の方が小さいことを表す.表3 および図7より、ホワイトノイズを入力した場合の 層間変位の時刻歴波形は実験と解析でよく対応して いるが、BCJL2を入力した場合は波形の周期とピー ク時の値ともに対応していないことがわかる.これ は、BCJL2を入力したときの骨組の振動特性を前 述した方法で同定すると、 T^F =0.485s、h=0.009 と なり、ホワイトノイズを入力したときの同定結果と 異なっていることが原因であると考えられる.

4. 粘弾性体の物性値の同定

4.1 粘弾性体の応力 - 歪関係

笠井ら⁵⁰は、アクリル系粘弾性体のせん断応力τ とせん断歪γの関係を、次式で表す Voigt モデルで 追跡できることを示している.

$$\tau = G'\gamma + \frac{G'\eta}{\omega}\dot{\gamma}$$
(3)

表3 時刻歴応答解析結果と実験結果の比較

構面	ex1	ex2	in
ホワイトノイズ誤差 (%)	-4.8	-7.2	-6.8
BCJL2 誤差 (%)	-14.1	-18.7	-17.2

1 4 八版工業八月八月脱工 升助九杆建架子手

*3 京都大学大学院工学研究科建築学専攻

ここで, G'は貯蔵せん断剛性, ηは損失係数であり, 以下の提案式⁵⁾を用いる.

$$G' = G \frac{1 + ab\omega^{2a} + (a+b)\omega^{a}\cos(\alpha\pi/2)}{1 + \alpha^{2}\omega^{2a} + 2a\omega^{a}\cos(\alpha\pi/2)}$$
(4)
$$\eta = \frac{(-a+b)\omega^{a}\sin(\alpha\pi/2)}{1 + ab\omega^{2a} + (a+b)\omega^{a}\cos(\alpha\pi/2)}$$
(5)

(4), (5) 式中の a および b は温度依存性を表すパ ラメータであり, 粘弾性体の物性値は α および G で ある.

4.2 粘弾性体の物性値

一定振幅動的載荷実験結果に基づき,粘弾性体の 物性(αおよびG)を同定する.試験体は50mm× 100mm×10mm厚のアクリル系粘弾性体である.試 験条件は,粘弾性体の温度を30℃,入力した正弦 波の振動数を2.0,4.0(Hz),粘弾性体のせん断歪を 50%とする.

材料試験より得られた粘弾性体のせん断歪 γ を用 いて (3) 式よりせん断応力 τ を算出した結果と実験 結果の τ に対して最小二乗法を適用することで粘弾 性体の物性値を同定する.粘弾性体の物性値の同定 結果は α =0.560, *G*=0.0364N/mm² となる.

図8に、せん断応力τとせん断歪γの関係を同定 結果と実験結果の比較を示す.同図より本論におけ る同定結果は実験結果と概ね良い対応を示している ことがわかる.

5. まとめ

本報その1では、地震応答低減機能を有する床構 造を適用した1層鋼構造骨組の振動台実験の方法を 示し、試験体の振動特性を同定した.

参考文献

その2にまとめて示す.

Undergraduate School of Architecture, Kyoto Univ.

Majar in Architecture, Osaka Institude of Technology. Dept. of Architecture and Architectural Engineering, Kyoto Univ.