角形鋼管柱に対するガセットプレート形式の 方杖ダンパー接合部の構面外剛性と構面外座屈防止設計法

2.	構造-	-10.	鉄骨	構造
----	-----	------	----	----

方杖ダンパー	角形鋼管	構面外座屈
構面外剛性	接合部	

1. はじめに

本研究は,柱を従来のH形断面部材から角形鋼管 に変えることで,2方向ラーメンを構成するのに適 した方杖ダンパー接合構造の開発を目指している¹⁾. 柱に角形鋼管を用いた場合の方杖ダンパーの柱側接 合部は,図1に示すように方杖ダンパー芯材端部, 添板,ガセットプレート接合部で構成されるため, これをガセットプレート形式と呼ぶ.これまでの載

荷実験では、2次設計用地震荷重レベルをこえる大変形領域において、ガセットプレート形式の方杖ダンパー接合部に構面外座屈が生じることが確認されている^{1),2)}.また、接合部の構面外変形の増大に伴って曲げモーメントが作用することによって、添板が塑性化することも確認されている²⁾.

方杖ダンパー接合部の構面外座屈を防止するため には、接合部を含む方杖ダンパー全体の座屈荷重に 基づき、接合部に作用する曲げモーメントを元たわ みを考慮して求め、この曲げモーメントを元たわ みを考慮して求め、この曲げモーメントと軸力の相 関のもとで接合部を弾性に留める必要がある.また、 座屈荷重を評価するためには、複雑な形状をした接 合部の構面外剛性を評価しなければならない.本論 では、ガセットプレート形式の方杖ダンパー接合部 の構面外剛性の算定法を提案し、文献 2)に示された 構面外剛性確認実験の結果と比較する.また、添板 を弾性に留め、構面外座屈を防止するための接合部 の設計法を構築する.

正会員	〇 河合 大*1	同	聲高	裕治*2
同	吹田啓一郎* ²	同	井上	一朗*3
同	宇野 暢芳*4			

2. 方杖ダンパー接合部の構面外剛性

2.1 剛体-バネモデル

図1に示すガセットプレート接合部の構面外剛性 を算定するために,剛体-バネモデル³⁾を採用する. 簡単のため,ガセットプレートは2次元部材として 扱い,せん断変形は無視する.文献 3)に基づいて, 以下に剛体-バネモデルの概略を示す.

剛体-バネモデルでは、対象とする板要素を複数の 三角形要素(剛体)に分割し、それらを回転バネで 連結したモデルを構築する.図2に示すように、隣 り合う2つの三角形要素(X・Y)を取り出して考え る.三角形要素の各節点はz方向(面外方向)にの み移動可能とする.このとき、回転バネの回転角 θ_{XY} は各節点の構面外変形を用いて表すことができ、三 角形要素 X・Y の要素境界における各節点の構面外 荷重 $P_1 ~ P_4$ と構面外変形 $w_1 ~ w_4$ に関する剛性マト リックス K_{XY} が求められる. K_{XY} の各成分は図2の 三角形要素の寸法を用いて表され、三角形要素 X・ Y の要素境界における回転バネ剛性 k_{XY} は、(1)式で 求められる.

$$k_{XY} = \frac{2l_{13}}{\sum_{XY} h_X + \sum_{XY} h_Y} \cdot \frac{Et^3}{12(1 - v^2)}$$
(1)

ただし、tは三角形要素の板厚、vはポアソン比である.

図2に示す三角形要素Xについて、辺①③が固定

端の場合は、辺①③で三角形要素 X と接する任意形 状の三角形要素 Y を導入し、回転バネで連結する. このとき、三角形要素 Y の高さ_{xy} h_y を 0 とみなす ことで、上述の要素境界に関する K_{xy} を用いること ができる.回転バネ剛性 k_{xy} は、(2)式で求められる. また、三角形要素 X について、辺①③がピンの場合 は、回転バネ剛性を 0 とすればよい.

$$k_{XY} = \frac{2l_{13}}{_{XY}h_X} \cdot \frac{Et^3}{12(1-v^2)}$$
(2)

2.2 ガセットプレート接合部の構面外剛性

剛体-バネモデルを用いて、ガセットプレート接合 部の構面外剛性 K_cを算定する.図3に示すように、 ガセットプレートを3つの三角形要素(A~C)に 分割する.点線で囲った三角形領域は構面外剛性に 影響を与えないものとして無視する.辺②③はガセ ットプレートと柱スキンプレートの境界であり、辺 ②⑤と辺③④はそれぞれガセットプレートと上側・ 下側の外ダイアフラムの境界である.節点④と節点 ⑤はそれぞれ下側・上側の外ダイアフラムの端部に 連結されている.また、ガセットプレート接合部の 構面外剛性の算定において添板の影響は無視する.

図 3 の分割モデルにおいて,辺②③・辺②⑤・辺 ③④をピンとし,節点②・節点③を不動点とみなす. 節点①の構面外荷重 *P_i*と構面外変形 *w_i*の関係は,全 体剛性マトリックスを *K_g*として(3)式で与えられる.

 ${P_1 P_4 P_5}^T = K_G {w_1 w_4 w_5}^T$ (3) K_Gは,図3で隣り合う三角形要素(AとB,A とC)について、2.1節に示した要素境界に関す る剛性マトリックスを、(3)式中の対応する自由度 に重ね合わせることで求められる.

図4に示すように、下側外ダイアフラムと上側 外ダイアフラムを、図中のハッチング領域を対象 とし、柱スキンプレート位置を固定端とする片持 梁にモデル化する.節点反力-P₄、-P₅がそれぞれ 下側と上側の外ダイアフラム端部に作用すると考 えると、節点④と節点⑤の構面外変形w₄、w₅はそ れぞれ下側と上側外ダイアフラム端部の面内変形 (曲げ変形とせん断変形の和)によって(4)式で表 される.

$$w_4 = -(\frac{l_{dd}^3}{3EI_{dd}} + \frac{1.2l_{dd}}{GA_{dd}})P_4$$
(4.a)

$$w_5 = -(\frac{l_{ud}^3}{3EI_{ud}} + \frac{1.2l_{ud}}{GA_{ud}})P_5$$
(4.b)

ただし、 I_{dd} と A_{dd} は等断面材の曲げ変形、せん断変 形と等しくなるように置換した下側外ダイアフラム の等価断面 2 次モーメントと等価断面積で、 I_{ud} と A_{ud} はそれぞれ上側外ダイアフラムの等価断面 2 次 モーメントと等価断面積である.

(4)式より、(3)式の全体剛性マトリックス K_{G} は節 点①の自由度だけに縮約して表すことができ、節点 ①に作用する構面外荷重 P_{1} と節点①の構面外変形 w_{1} の比をガセットプレート接合部の構面外剛性 K_{G} と定義すると、 K_{G} は(5)式で与えられる.

 $K_G = K_{11} - (\lambda_4 K_{14} + \lambda_5 K_{15})$ (5) ただし、(5)式で K_{11} 、 K_{14} 、 K_{15} は全体剛性マトリッ クス K_G の第1行の成分であり、 λ_4 、 λ_5 はそれぞれ (6)式を満たす係数である.

 $\lambda_4 = -w_4 / w_1$, $\lambda_5 = -w_5 / w_1$ (6.a), (6.b) 2.3 方杖ダンパー接合部の構面外剛性

図5に示すように、ガセットプレート接合部が剛 棒とバネ剛性 $K_{c}l_{F}^{2}$ の回転バネ、芯材端部と添板で構 成される接合部が曲げ剛性 EI_{J} の線材で表されるも のと考え、方杖ダンパー接合部全体を剛棒とバネ剛 性 K_{R} の回転バネで表したモデルに置換する.図5 に示す2つのモデルにおいて、接合部先端に荷重Pが作用したときの構面外変形 δ を等置することで、

図5 方杖ダンパー接合部のモデル化

方杖ダンパー接合部全体を表す回転バネの等価剛性 K_R が(7)式で求められる.

$$K_{R} = \left(\frac{1}{K_{G} l_{F}^{2}} + \frac{l_{J} / (l_{J} + l_{F})}{3EI_{J}}\right)^{-1}$$
(7)

ここで、 I_{J} は芯材端部と添板の断面 2 次モーメントの単純和とする.

5. 方杖ダンパー接合部の構面外剛性算定法の検討 3.1 検討方法

本章では、方杖ダンパー接合部の構面外剛性の算 定結果を、文献 2)に示された構面外剛性確認実験の 結果と比較する.

- ガセットプレート周縁(辺②③・辺②⑤・辺③
 ④)の境界条件(ピン・固定)
- 2) 外ダイアフラム端部(節点④・節点⑤)の構 面外変形の有無

ガセットプレートの周縁(辺②③・辺②⑤・辺③④) の境界条件を固定とする場合の K_{G} は,(5)式における K_{11} , K_{14} , K_{15} に関して,三角形要素A・B・C とそれぞれの固定端を表す任意形状の三角形要素の 境界における回転バネを考慮して求められる.外ダ イアフラム端部(節点④・節点⑤)の構面外変形が 生じないとする場合の K_{G} は,(5)式で λ_{4} , λ_{5} を0と して求められる.

3.2 検討結果

表1にガセットプレート接合部の構面外剛性 K_{g} と方杖ダンパー接合部の構面外剛性 K_{R} の計算結果を示す.比較のため, K_{R} に関して,計算結果を文献2)に示された実験結果で除した値を示す.

表1より、外ダイアフラム端部の構面外変形が生 じる場合の K_R の計算結果は、構面外変形が生じな い場合の計算結果と比べて数%小さい程度であり、 外ダイアフラム端部の構面外変形を考慮しても計算 結果に与える影響が小さいことがわかる.また、境 界条件を固定とした場合の K_R の計算結果は、実験 結果の約2倍となっている.境界条件をピンとした 場合の K_R の計算結果は実験結果を2割程度上まわ るが、固定の場合と比べて実験値に近い計算値を与 えていることがわかる.

以上より,図3に示す分割モデルにおいて,周縁 (辺②③・辺②⑤・辺③④)をピン,節点②〜節点 ⑤を不動点とみなし,ガセットプレート接合部の構 面外剛性 K_Gを次式で求めることを提案する.

$$K_{G} = \left(\frac{\sqrt{l_{23}^{2} - _{AB}h_{A}^{2}}}{l_{13 AB}h_{A}} + \frac{\sqrt{l_{34}^{2} - _{AB}h_{B}^{2}}}{l_{13 AB}h_{B}}\right)^{2}k_{AB} + \left(\frac{\sqrt{l_{25}^{2} - _{AC}h_{C}^{2}}}{l_{12 AC}h_{C}} + \frac{\sqrt{l_{23}^{2} - _{AC}h_{A}^{2}}}{l_{12 AC}h_{A}}\right)^{2}k_{AC}$$

$$(8)$$

$$k_{AB} = \frac{2l_{13}}{{}_{AB}h_A + {}_{AB}h_B} \cdot \frac{Et_g^3}{12(1 - v^2)}$$
(9.a)

表1 7	構面外	ト剛性(の計	·算結果
------	-----	------	----	------

モデル化		S型試験体			D 型試験体		
(1) 境界 条件	(2) 構面外 変形	<i>K</i> _G kN/mm	K _R kNm	計算 実験	<i>K_G</i> kN/mm	K _R kNm	計算 実験
固定	無	136.4	3271	2.21	127.2	2133	2.09
凹た	有	133.6	3226	2.18	124.7	2108	2.07
1°1/	無	58.1	1738	1.17	55.0	1201	1.18
L 🗸	有	56.9	1708	1.15	54.0	1185	1.16

$$k_{AC} = \frac{2l_{12}}{{}_{AC}h_A + {}_{AC}h_C} \cdot \frac{Et_g^3}{12(1 - v^2)}$$
(9.b)

4. 方杖ダンパー接合部の構面外座屈防止設計法

4.1 構面外座屈荷重

図7に方杖ダンパーの構面外座屈に関する力学モ デルを示す.方杖ダンパー芯材の応力-歪関係を完全 弾塑性型と仮定し,芯材の軸力が降伏軸力に到達し, そのときの応力点が降伏曲面上の特異点に位置する ものと考え,座屈拘束材の両端をピンとみなす 4. 回転バネとピンを剛棒で連結した図7の力学モデル より,構面外座屈荷重 N_{cr}は(10)式で求めることが できる²⁾.

$$N_{cr} = \frac{K_R l_B}{l_R (l_B + l_R)} \tag{10}$$

4.2 添板に作用する曲げモーメント

元たわみを有する方杖ダンパーに軸力Nが作用 すると、添板には軸力だけでなく、曲げモーメント も作用する.軸力Nが座屈荷重に近づくと、その座 屈モードと同じ形状のたわみが顕著に現れるため、 添板に作用する最大曲げモーメントM_{max}は、図7 に示す座屈モードと同じ形状の元たわみを想定して (11)式で求められる⁴.

$$M_{\rm max} = \frac{N_{\rm max} l_J \theta_B}{1 - N_{\rm max} / N_{cr}} \tag{11}$$

ここで、 N_{max} は方杖ダンパー接合部の設計用軸力、 θ_B は図 7 に示す座屈モードと同じ形状の元たわみ を与えた場合の方杖ダンパーと元の材軸がなす角度 である.

4.3 方杖ダンパー接合部の設計

方杖ダンパー接合部の構面外座屈を防止するため には、方杖ダンパー接合部を構成する添板を弾性に 保つ必要がある.このためには、図8に示すように、 $N_{\rm max}$ と $M_{\rm max}$ が添板の降伏相関曲線の内部に存在す る必要があり、この条件は(12)式で表される.

$$\frac{N_{\max}}{s_p N_y} + \frac{M_{\max}}{s_p M_y} < 1$$
(12)

ここで、 $_{sp}N_{y}$ は添板の降伏軸力、 $_{sp}M_{y}$ は添板 1 枚の降伏モーメントを 2 倍した値である.

- *1 大阪工業大学大学院工学研究科建築学専攻
- *2 京都大学大学院工学研究科建築学専攻

*3 日本建築総合試験所

*4 日鐵住金建材

5. まとめ

本論では、ガセットプレート形式の方杖ダンパー 接合部の構面外剛性算定法を提案し、方杖ダンパー 接合部の構面外座屈を防止するための設計法を構築 した.

方杖ダンパー接合部の構面外剛性算定法の検討の 結果,提案した(7)式および(8)式で求められる方杖ダ ンパー接合部の構面外剛性の計算結果は,実験結果 を2割程度上まわっていることを確認した.また, 方杖ダンパー接合部の構面外座屈防止設計法の妥当 性の確認は今後の課題とする.

参考文献

- 費高裕治,福智康之,井上一朗,吹田啓一郎,宇野暢芳: 方杖ダンパー接合構造の角形鋼管柱への適用と検証実験, 日本建築学会近畿支部研究報告集,第 50 号・構造系, pp.189-191,2010.6
- 2) 聲高裕治, 吹田啓一郎, 井上一朗, 宇野暢芳: 方杖ダン パー接合構造の角形鋼管柱への適用と検証実験 その3 構面外座屈荷重, 日本建築学会大会学術講演梗概 集, C-1 構造Ⅲ, pp.1117-1118, 2011.8
- 川井忠彦,近藤一夫:新しい離散化モデルによる板の曲 げ崩壊解析,日本造船学会論文集,第142号,pp.190-196, 1977.12
- 4) 聲高裕治,木下智裕:座屈拘束ブレース接合部の構面座 屈防止設計法,日本建築学会構造系論文集,第 641 号, pp.1371-1378,2009.7

Major in Architecture Graduate school of Eng.,Osaka Institute of Technology Dept. of Architecture and Architectural Engineering, Kyoto Univ. General Building Research Corporation of Japan Nippon Steel & Sumikin Metal Products Co. Ltd.