杭基礎で支持された曲げ降伏型連層耐震壁の地震時抵抗機構
その２ FEM解析による実験試験体のパラメトリックスタディ

SEISMIC-FORCE-RESISTING MECHANISMS OF FLEXURAL MULTI-STORY STRUCTURAL WALLS SUPPORTED ON PILES

Part 2 Parametric study on an experimental specimen with FEM analysis

坂下 雅信*, 河野 進**, 西山 峰広**, 田中 仁史***, 渡邊 史夫****
Masanobu SAKASHITA, Susumu KONO, Minehiro NISHIYAMA, Hitoshi TANAKA and Fumio WATANABE

Reinforced concrete multi-story structural walls supported on pile foundations are commonly designed assuming that they stand on solid foundation without considering their interaction. In this study, parametric studies with a two-dimensional finite element model were conducted in order to simulate their seismic procedure for calculating moment acting on the foundation beams in the flexural ultimate state of the structural walls was established.

Keywords: Multi-story structural wall, Foundation beam, Pile, Flexural yielding, FEM analysis

1. はじめに

杭基礎に支持された連層耐震壁架構では、連層耐震壁から杭基礎を介して地盤へと伝達される地震時水平力の経路を明らかにすることが合理的な耐震設計を行う上で重要である。筆者らは、連層耐震壁が1階壁脚で曲げ降伏する事例を対象とし、連層耐震壁、基礎杭および杭の一部を再現した実験試験体を2体製作し、地震力を模擬した水平せん断力で作用させる静的な載荷実験を実施した。前稿 1)では、連層耐震壁の変形が大きくなるにつれて、基礎杭上端部の引張ひずみが増大すること、基礎杭上端部の配筋量が少ないこと、試験体の崩壊機構が、連層耐震壁の曲げ圧壊、連層耐震壁と基礎杭の一部、圧縮杭からなる自由体の剛体回転に変化し、損傷部位や変形性能に差異が生じることを報告した。また、基礎杭を剛構、連層耐震壁を曲げ、せん断要素で置換した抵抗機構と、上述した自由体の剛体回転による抵抗機構をモデル化に比較することで、崩壊機構の判別や、耐震壁の荷重変形関係が予測できることを示した。しかしながら、前稿で対象とした2体の実験試験体は、試験体寸法や載荷条件などに相違点が多いため、基礎杭上端部の配筋量が連層耐震壁の地震時抵抗機構に及ぼす影響について明確に検証できなかった。また、現状では、上部構造杭基礎相互の梁材置換モデルの提案には至っていない。

本稿では、線材置換モデルの提案に必要な情報を集約することを目的とし、基礎杭上端筋の配筋量が連層耐震壁架構の地震時抵抗機構に及ぼす影響について、2次元 FEM解析で検証した。また、検証に先立ち、前稿で実験結果を報告したL試験体のキャリブレーション解析を実施し、構築した FEM解析モデルの妥当性を確認した。

2. 実験試験体を対象としたFEM解析

2.1. 実験概要

前稿 1)では、連層耐震壁、基礎杭および杭の一部からなるS試験体とL試験体の実験結果を報告した。S試験体では、曲げ降伏型で設計した連層耐震壁の側柱主筋が引張降伏した後、圧縮柱の曲げ圧壊によって水平耐力を低下し、脆性的な挙動を示した。また、連層耐震壁を支持する基礎杭の損傷は、壁面と比べて軽微に抑えられた。しかしながら、壁式ラーメン鉄筋コンクリート造設計施工指示 2)に従って、連層耐震壁曲げ終局強度時の抗圧モーメントの曲げ戻し応力M_Mを基礎杭上端引張時の曲げ終局強度M/Mの比率M/Mを、圧縮杭側の崩壊断面において2.2と余裕を持って設定したにも関わらず、連層耐震壁の変形が大きくなると、基礎杭上端筋の引張降伏が見られた。また、M/Mを0.8としたL試験体では、S試験体と同様に側柱主筋や基礎杭上端筋の引張降伏が観測されたが、S

* 京都大学大学院工学研究科 助教・博士(工学)
* 東京工業大学建築工学系 副教授・博士(工学)
** 京都大学大学院工学研究科 教授・博士(工学)
*** 京都大学防災研究所 教授・博士(工学)
**** 京都大学 名誉教授・工博

Assistant Prof., Dept. of Architecture and Architectural Engineering, Kyoto University, Dr. Eng.
Prof., Structural Engineering Research Center, Tokyo Institute of Technology, Ph. D.
Prof., Dept. of Architecture and Architectural Engineering, Kyoto University, Dr. Eng.
Prof., Disaster Prevention Research Institute, Kyoto University, Ph. D.
Prof., Emeritus, Kyoto University, Dr. Eng.
試験体とは異なり、連層耐震壁から基礎梁下部まで曲げせん断ひび割れが発生することにより、図1に示すように、連層耐震壁、基礎梁の一部と圧縮杭からなる自由体が、基礎梁下部で集中して回転するよう抵抗機構（剛体回転機構）が形成された。剛体回転機構は連層耐震壁に抵抗を付与されることで初めて形成される崩壊機構であり、抗基礎によって支蔵される連層耐震壁架構を可能的に設計することには、そのメカニズムの解明が必要である。本章では、剛体回転機構が形成されたL試験体を対象に、有限要素解析ソフトFEMを用いた数値解析を実施し、実験試験設問に耐震壁の荷重変形関係および各部材の損傷状況、剛体回転機構の再現が可能かどうか確認した。表1にL試験体の断面詳細を示す。

![図1 L試験体における剛体回転機構のイメージ](image)

表1 L試験体の断面詳細

<table>
<thead>
<tr>
<th>部材名</th>
<th>厚さ</th>
<th>鋼材</th>
<th>配筋</th>
</tr>
</thead>
<tbody>
<tr>
<td>例柱</td>
<td>260mm×260mm</td>
<td>主筋</td>
<td>8-D13</td>
</tr>
<tr>
<td>柱梁</td>
<td>140mm×200mm</td>
<td>横補強筋</td>
<td>2-D10×100</td>
</tr>
<tr>
<td>壁板</td>
<td>70mm×80mm</td>
<td>矩形筋筋</td>
<td>D6×150</td>
</tr>
<tr>
<td>柱</td>
<td>440mm×480mm</td>
<td>主筋</td>
<td>8-D32</td>
</tr>
<tr>
<td>基礎梁</td>
<td>150mm×880mm</td>
<td>横補強筋</td>
<td>D2-D13×120</td>
</tr>
<tr>
<td>スラブ</td>
<td>70mm×480mm</td>
<td>土補強筋</td>
<td>D6×150</td>
</tr>
<tr>
<td>直交筋</td>
<td>260mm×880mm</td>
<td>土補強筋</td>
<td>D6×150</td>
</tr>
</tbody>
</table>

* スラブ軸方向筋の取付けは、基礎梁上部筋とスラブ軸方向筋の和を、
基礎梁の厚と有効厚で除して得た値である。

2.2. 解析モデルの概要

図2に解析モデルの要素分割図を示す。括弧内の寸法は各部材の厚みを示している。コンクリート部分は四辺形要素で分割し、杭、基礎梁の側柱、柱梁の主筋はトラス要素でモデル化した。また、コンクリートと主筋は完全付着した。各部材の横補強筋や壁面横筋はコンクリート要素内の埋め込み鉄筋としてモデル化した。図3に解析モデルの載荷方法を示す。実験と同様に水平力が3本あたり335kNの長方荷重を鉛直加力点に与えた。水平加力は、実験では各サイクル2回ずつの繰り返し載荷を行ったが、解析では一方向載荷とした。耐震壁脚部におけるせん断スパン比（2.27）を保持するために、実験では鉛直方向の油圧ジャッキを用いて、水平荷重Qに応じた変動軸力を載荷梁に作用させたが、解析では変位制御による水平加力を行うために、載荷梁上部にせん断スパン比に対応した高さの仮想の載荷ブロックを設けた。載荷梁は弾性要素でモデル化した。
化し、仮想の載荷ブロックは剛体として扱うことができるように十分大きな剛性を与えた。2 本の杭は、載荷治具を模した剛なブロックを介して、反曲点位置において片方の杭の節点をピンで、もう一方の杭の節点をローラーで支持した。実験では、油圧ジャッキを用いて、水平荷重 Q に比例する水平反力（圧縮荷：0.7Q, 引張荷：0.3Q）を杭に与えたが、解析では、試験体右側に設けた剛はりと剛パネ（軸方向に十分な剛性を持つ高密度の材料）で構成される仮想の載荷フレームを用いて、杭に水平反力を与えた。載荷フレーム上の点 1 に水平荷重 1.7Q を与えることで、剛パネを介して、載荷ブロックの点 2 には水平荷重 Q が、ローラーで支持された杭の点 3 は水平反力 0.7Q が入力される。

1 階耐震壁の変形角 R_0 は、図 4 に示す A, B, C, D の 4 点の計測点間の距離の変化量 (Δa, Δb, Δc, Δd) から、式(1)に基づいて曲げとせん断の変形成分を足し合わせることで算定した。

$$ R_0 = R_y + R_z $$

$$ R_y = \frac{(\Delta a - \Delta b)}{2l_1} $$

$$ R_z = \frac{\sqrt{h^2 + h_0^2} ((\Delta c - \Delta d))}{2 l_1} $$

変形量 (Δa, Δb, Δc, Δd) は伸びを正、縮みを負とする。

2.3 材料構成則

コンクリート材料要素には、多方向にひび割れが生じる繰り返し載荷時の RC 部材の挙動が検証可能な非直交分散ひび割れモデル 6) を用いた。図 5(a) にコンクリートの応力ひずみ関係を示す。ひび割れ後のコンクリートの応力ひずみ関係には、式(4)に示す出雲らのモデル (C=1.0) 9) を用い、コンクリートの引張応力の負荷を考慮した。

また、圧縮側のコンクリートの応力ひずみ関係には、修正 Ahmad モデル 4) を用い、平面応力下の破壊条件は Kupfer-Gerstle の提案 7) に従った。今回の解析では、ひび割れ発生後の圧縮特性の劣化のうち、圧縮強度の低下のみを考慮し、圧縮強度がひずみの低下は行っていない。ひび割れ後のせん断伝達特性は、平板の面内せん断加力実験の結果を基に提案された長沼によるモデル 5) を用いた。長沼らのモデルでは、ひび割れ面におけるせん断応力せん断ひずみ関係は、コンクリートの一軸圧縮強度、鉄筋比、ひび割れと直交方向のひずみの関数として決まる。表 2 に解析に用いた材料の特性を示す。コンクリートの一軸圧縮強度 σ_o およびヤング係数 E_1 には、標準SECTIONA試験の結果を用い、引張強度 f_y および圧縮強度時のひずみ ε_o は式(5), (6) で計算した 9)。

鉄筋の応力ひずみ関係は図 5(b)に示すように定義し、繰り返し応力下の履歴特性には修正 Menegotto-Pinto Model 10) を用いた。

$$\sigma = f_y (\varepsilon / \varepsilon_o)^C \quad (C \geq \varepsilon_o)$$

$$ f_y = 0.33 \sigma_{y} \quad \text{(MPa)}$$

$$ \varepsilon_{o} = 1.37 \times \sigma_{y} + 1690 \quad \text{(a)}$$

* σ_{y} は標準SECTIONA試験によるコンクリートの一軸圧縮強度で、式(5)では MPa, 式(6)では kgf/cm²の単位で代入する。
2.4. 剛体回転機構の概要

1 試験体を対象とした載荷実験では、逐層耐震壁の変形に伴って、基礎梁上端筋の引張ひずみが増加した。前報 ① で、この挙動を説明するために剛体回転機構を提案した。剛体回転機構では、耐震壁内に発生した曲げせん断ひずみの格子が基礎梁下端部で進展する結果によって、図 6(a)(b)に示すような逐層耐震壁、基礎梁の一部と圧縮杭からなる自由体が形成される。図 6(c)に示すように、基礎梁下端域 \((\text{点 } F)\) を中心に剛体回転する \((\Delta \alpha \approx 4^\circ)\) と仮定。自由体に与えるモデルの約合と、剛体回転に従う変形の適合条件により、水平荷重 \(Q\) に逐層耐震壁変形角 \(\alpha\) の関係が導かれる。モデルの詳細については、前稿を参照された。

2.5. 解析結果の検証

2.5.1 水平荷重 – 1 階耐震壁変形角関係

図 7 に水平荷重 \(Q\) に逐層耐震壁変形角 \(\alpha\) の関係を示す。実験では、側柱主筋の引張降伏後、水平剛性が低下し、水平変位の増大に伴って水平載荷が除荷に影響した。FEM 解析では、耐震壁に曲げせん断ひずみが増加した後の曲げ剛性を除荷まで考慮しているものので、解析結果は実験の実際線上と良く一致している。図中の記号は、側柱主筋または基礎梁上端筋、下端筋の引張降伏点を示している。基礎梁上端筋については圧縮解除が大きいもので、側柱主筋や基礎梁下端筋については実験値が実験値を概ね一致している。また、実験では引張荷重の後、Rw = 4%まで押し切り載荷を行ったが、圧縮柱脚部の損傷は軽微で水平耐力の低下も確認できなかった。解析でも計算を終了した \(Rw = 6%\) まで最大耐力の低下は見られず、実験試験体と同様に高い変形性能を示した。

2.5.2 基礎梁主筋のひずみ分布

図 8 に解析モデルの杭基礎のメッシュ分割と、基礎梁上端筋、下端筋の位置を示す。図 9 に基礎梁上端筋および下端筋のひずみ分布を示す。図 9 の x 軸のひずみは引張を正、圧縮を負とした。図 8 の x 軸は図 9 の横軸の基礎梁軸位置と対応している。実験では基礎梁上端筋のひずみは基礎梁全域に渡って引張となり、1 階耐震壁変形角 \(\alpha\) の増大に伴って引張ひずみが増加した。解析では繰り返し載荷を行わずため、引張荷重における引張ひずみは実験値と比べてやや小さいが、基礎梁上端筋の引張降伏位置で圧縮杭側の危険断面位置 \((x=1370\text{mm})\) より基礎梁中央部に寄る点を除き、解析結果は実験の特徴を捉えている。基礎梁下端筋においても、実験では引張杭側の危険断面位置 \((x=1280\text{mm})\) で引張ひずみが最大となり、圧縮杭側の危険断面位置では圧縮ひずみが観測されたが、解析結果は実験のひずみ分布と良く対応している。

2.5.3 基礎梁断面に作用する軸力、せん断力、モーメント

コンクリート要素や鉄筋要素に作用する応力を積分して、FEM 解析における基礎梁の軸力、せん断力、モーメントの分布を求めた。図 10(a)に軸力 – 基礎梁材軸位置の関係を示す。軸力は引張を正、圧縮を負とした。図中の直線は \(Rw = 0.84%\) 時の FEM 解析の水平荷重 \(Q\) (376kN) から求めた圧縮杭と引張杭の負担する水平せん断力 \(0.7Q\) (263kN), \(0.3Q\) (113kN) を示している。引張杭近傍では引張杭の負担せん断力 \(0.3Q\) とほぼ同じ大きさの引張軸力が基礎梁に作用するが、\(x=300\text{mm}\) 付近を起点とし、基礎梁に水平せん断力が伝達される。図 10(b)にせん断力 – 基礎梁材軸位置の関係を示す。図中の直線は

\[
\begin{align*}
\text{水準荷重 } Q & \text{ は } Q_{1} \text{ に逐層耐震壁変形角 } \alpha \text{ の関係を示す。実験では、側柱主筋の引張降伏後、水平剛性が低下し、水平変位の増大に伴って水平荷重が除荷に影響した。FEM 解析では、耐震壁に曲げせん断ひずみが増加した後の曲げ剛性を除荷まで考慮しているものので、解析結果は実験の実際線上と良く一致している。図中の記号は、側柱主筋または基礎梁上端筋、下端筋の引張降伏点を示している。基礎梁上端筋については圧縮解除が大きいもので、側柱主筋や基礎梁下端筋については実験値が実験値を概ね一致している。また、実験では繰り返し載荷の後、Rw = 4%まで押し切り載荷を行ったが、圧縮柱脚部の損傷は軽微で水平耐力の低下も確認できなかった。解析でも計算を終了した \(Rw = 6%\) まで最大耐力の低下は見られず、実験試験体と同様に高い変形性能を示した。

2.5.2 基礎梁主筋のひずみ分布

図 8 に解析モデルの杭基礎のメッシュ分割と、基礎梁上端筋、下端筋の位置を示す。図 9 に基礎梁上端筋および下端筋のひずみ分布を示す。図 9 の x 軸のひずみは引張を正、圧縮を負とした。図 8 の x 軸は図 9 の横軸の基礎梁材軸位置と対応している。実験では基礎梁上端筋のひずみは基礎梁全域に渡って引張となり、1 階耐震壁変形角 \(\alpha\) の増大に伴って引張ひずみが増加した。解析では繰り返し載荷を行わずため、引張荷重における引張ひずみは実験値と比べてやや小さいが、基礎梁上端筋の引張降伏位置で圧縮杭側の危険断面位置 \((x=1370\text{mm})\) より基礎梁中央部に寄る点を除き、解析結果は実験の特徴を捉えている。基礎梁下端筋においても、実験では引張杭側の危険断面位置 \((x=1280\text{mm})\) で引張ひずみが最大となり、圧縮杭側の危険断面位置では圧縮ひずみが観測されたが、解析結果は実験のひずみ分布と良く対応している。

2.5.3 基礎梁断面に作用する軸力、せん断力、モーメント

コンクリート要素や鉄筋要素に作用する応力を積分して、FEM 解析における基礎梁の軸力、せん断力、モーメントの分布を求めた。図 10(a)に軸力 – 基礎梁材軸位置の関係を示す。軸力は引張を正、圧縮を負とした。図中の直線は \(Rw = 0.84%\) 時の FEM 解析の水平荷重 \(Q\) (376kN) から求めた圧縮杭と引張杭の負担する水平せん断力 \(0.7Q\) (263kN), \(0.3Q\) (113kN) を示している。引張杭近傍では引張杭の負担せん断力 \(0.3Q\) とほぼ同じ大きさの引張軸力が基礎梁に作用するが、\(x=300\text{mm}\) 付近を起点とし、基礎梁に水平せん断力が除荷に影響されることによって、\(x=300\text{mm}\) 付近で軸力が圧縮側に転じ、圧縮杭近傍では圧縮杭の負担する水平せん断力 \(0.7Q\) に近い大きさの圧縮軸力が作用している。

図 10(b)にせん断力 – 基礎梁材軸位置の関係を示す。図中の直線は
2.5.4 引張－基礎梁間の応力伝達機構

2.5.4.1 引張－基礎梁間の応力伝達機構

2.5.4.2 引張－基礎梁間の応力伝達機構

2.5.4.3 引張－基礎梁間の応力伝達機構

2.5.4.4 引張－基礎梁間の応力伝達機構

2.5.4.5 引張－基礎梁間の応力伝達機構

2.5.4.6 引張－基礎梁間の応力伝達機構

2.5.4.7 引張－基礎梁間の応力伝達機構

2.5.4.8 引張－基礎梁間の応力伝達機構

2.5.4.9 引張－基礎梁間の応力伝達機構

2.5.4.10 引張－基礎梁間の応力伝達機構

2.5.4.11 引張－基礎梁間の応力伝達機構

2.5.4.12 引張－基礎梁間の応力伝達機構

2.5.4.13 引張－基礎梁間の応力伝達機構

2.5.4.14 引張－基礎梁間の応力伝達機構

2.5.4.15 引張－基礎梁間の応力伝達機構

2.5.4.16 引張－基礎梁間の応力伝達機構

2.5.4.17 引張－基礎梁間の応力伝達機構

2.5.4.18 引張－基礎梁間の応力伝達機構

2.5.4.19 引張－基礎梁間の応力伝達機構

2.5.4.20 引張－基礎梁間の応力伝達機構

2.5.4.21 引張－基礎梁間の応力伝達機構

2.5.4.22 引張－基礎梁間の応力伝達機構

2.5.4.23 引張－基礎梁間の応力伝達機構

2.5.4.24 引張－基礎梁間の応力伝達機構

2.5.4.25 引張－基礎梁間の応力伝達機構

2.5.4.26 引張－基礎梁間の応力伝達機構

2.5.4.27 引張－基礎梁間の応力伝達機構

2.5.4.28 引張－基礎梁間の応力伝達機構

2.5.4.29 引張－基礎梁間の応力伝達機構

2.5.4.30 引張－基礎梁間の応力伝達機構

2.5.4.31 引張－基礎梁間の応力伝達機構

2.5.4.32 引張－基礎梁間の応力伝達機構

2.5.4.33 引張－基礎梁間の応力伝達機構

2.5.4.34 引張－基礎梁間の応力伝達機構

2.5.4.35 引張－基礎梁間の応力伝達機構

2.5.4.36 引張－基礎梁間の応力伝達機構

2.5.4.37 引張－基礎梁間の応力伝達機構

2.5.4.38 引張－基礎梁間の応力伝達機構

2.5.4.39 引張－基礎梁間の応力伝達機構

2.5.4.40 引張－基礎梁間の応力伝達機構

2.5.4.41 引張－基礎梁間の応力伝達機構

2.5.4.42 引張－基礎梁間の応力伝達機構

2.5.4.43 引張－基礎梁間の応力伝達機構

2.5.4.44 引張－基礎梁間の応力伝達機構

2.5.4.45 引張－基礎梁間の応力伝達機構

2.5.4.46 引張－基礎梁間の応力伝達機構

2.5.4.47 引張－基礎梁間の応力伝達機構

2.5.4.48 引張－基礎梁間の応力伝達機構

2.5.4.49 引張－基礎梁間の応力伝達機構

2.5.4.50 引張－基礎梁間の応力伝達機構

2.5.4.51 引張－基礎梁間の応力伝達機構

2.5.4.52 引張－基礎梁間の応力伝達機構

2.5.4.53 引張－基礎梁間の応力伝達機構

2.5.4.54 引張－基礎梁間の応力伝達機構

2.5.4.55 引張－基礎梁間の応力伝達機構

2.5.4.56 引張－基礎梁間の応力伝達機構

2.5.4.57 引張－基礎梁間の応力伝達機構

2.5.4.58 引張－基礎梁間の応力伝達機構

2.5.4.59 引張－基礎梁間の応力伝達機構

2.5.4.60 引張－基礎梁間の応力伝達機構

2.5.4.61 引張－基礎梁間の応力伝達機構

2.5.4.62 引張－基礎梁間の応力伝達機構

2.5.4.63 引張－基礎梁間の応力伝達機構

2.5.4.64 引張－基礎梁間の応力伝達機構

2.5.4.65 引張－基礎梁間の応力伝達機構

2.5.4.66 引張－基礎梁間の応力伝達機構

2.5.4.67 引張－基礎梁間の応力伝達機構

2.5.4.68 引張－基礎梁間の応力伝達機構

2.5.4.69 引張－基礎梁間の応力伝達機構

2.5.4.70 引張－基礎梁間の応力伝達機構

2.5.4.71 引張－基礎梁間の応力伝達機構

2.5.4.72 引張－基礎梁間の応力伝達機構

2.5.4.73 引張－基礎梁間の応力伝達機構

2.5.4.74 引張－基礎梁間の応力伝達機構

2.5.4.75 引張－基礎梁間の応力伝達機構
に近く、想定する応力状態はFEM解析の応力状態と対応している。算定結果を表3に示す。基礎梁下端筋の鉛直強度は表2(b)より264kNである。一方、上記したストラットの圧縮強度、ストラットの引張力の条件を満たす際に、基礎梁下端筋（2-D22）に作用する引張力Tの範囲は286kN≤T≤316kNとなる。連続耐震壁曲げ終断強度時に基礎梁下端筋は引張降伏していると考えられる。この結果は図9(b)において実験やFEM解析の結果と対応している。本稿では、ストラットが圧縮破壊する場合の検討は省略するが、ストラット・タイモデルを用いることで、杭与基礎梁の接合部が開く方向に変形する場合についても基礎梁の曲げ終断強度が評価できると考えられる。

3. FEM解析によるパラメトリックスタディ

3.1. 解析概要

2章で妥当性を確認したFEM解析モデルを用いて、パラメトリックスタディ実施した。図4に解析パラメータの一覧を示す。解析変数は基礎梁下端筋で、4章の実験結果を1.0倍、2.0倍、4.0倍としたモデル1,2,4を設定した。モデル2,4では、実験結果と同様に、連続耐震壁曲げ終断強度時に基礎梁に作用する杭頭モーメントの曲げ変位応力M_d,基礎梁断面位置における基礎梁の曲げ終断強度M_dが不足している。モデル2,4ではM_dをM_dで長回りしており、入力モーメントに対する曲げ終断強度の余裕度はそれぞれ1.3,2.6である。なお、実験結果と同様に、基礎梁下端筋の引張降伏が見られたが、本稿では基礎梁下端筋に着目した検討を行うため、基礎梁下端筋が引張降伏しないように、基礎梁下端筋を実験試験体の2倍とした。床スラブは簡略化のため省略した。また、図12に示すように、モデル3の杭基礎と床面、側面の全ての筋道をピン支持とすることで、杭基礎の変形を拘束したモデル4を設定した。載荷方法は、モデル1,2,3では2章と同様の曲げ終断強度式

\[M_d = 0.9a_d \sigma_d \] \hspace{1cm} (9)

表3 ストラット・タイモデルを用いた検証結果

<table>
<thead>
<tr>
<th>断面</th>
<th>実験値</th>
<th>仮定値</th>
<th>仮定値/実験値</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>203</td>
<td>194</td>
<td>307</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>194</td>
<td>307</td>
</tr>
<tr>
<td>C3</td>
<td>194</td>
<td>307</td>
<td>307</td>
</tr>
<tr>
<td>T1</td>
<td>298</td>
<td>177</td>
<td>316</td>
</tr>
<tr>
<td>T2</td>
<td>394</td>
<td>232</td>
<td>264</td>
</tr>
<tr>
<td>T3</td>
<td>668</td>
<td>152</td>
<td>109</td>
</tr>
<tr>
<td>T4</td>
<td>862</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>T5</td>
<td>862</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>T6</td>
<td>862</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>T7</td>
<td>862</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>C7</td>
<td>263</td>
<td>154</td>
<td>154</td>
</tr>
</tbody>
</table>

図13にQ-R関係の解析結果を示す。いずれのモデルでも、柱に垂直かつ剛性が発生し、耐震壁内に曲げせん断と斜め割れが発生し、側柱筋の引張降伏した。また、モデル1,2では、R=0.6%～0.8%の間で基礎梁上端筋引張降伏したが、基礎梁上端筋の最大価もモデル3では、基礎梁上端筋引張降伏した。いずれのモデルも初期剛性にばらつきが見られたが、柱に曲げ・垂直割れが発生し、側柱筋引張降伏するまでの二次剛性に関して、杭基礎の変形を拘束したモデル4と比較して、モデル1,2,3の剛性は小さくなっている。また、モデル1,2,3を比較すると、側柱筋の引張降伏までの基礎梁上端筋軟化変形に関連する影響は小さいが、側柱筋の引張降伏後は基礎梁上端筋の多いモデルほど水平剛性が高くなっている。図13a)に示すように、モデル1では2章で検証した実験試験体の解析モデルと同様にR=6%付近の解析終了時に耐力低下は見られなかったが、他のモデルでは最大耐力に到達すると共に急激な耐力低下を起こした。耐力低下開始時の変形角を比較すると、杭基礎を固定したモデル4（1.6%）が最も小さく、杭基礎の変形を許容したモデルでは、基礎梁上端筋の減衰が伴い、モデル3（2.2%）、モデル2（4.4%）の順に耐力低下時の変形角が大きくなった。

3.2. 埋設構造の検証

杭基礎の変形を許容したモデル1,2,3において、剛体回転機構が形成されているかどうかを確認する。図6(c)に示すように剛体回転機構が形成されると、点Fを中心に基礎梁下端筋の一部を圧縮杭が回転するため、剛体の回転角θと1階耐震壁変形角Rの間に幾何学的関係が成立する。θが従来であると仮定すると、本稿ではθ=0.68Rθの関係が得られる。図14ではモデル1,2,3のθ-Rθ関係を示す。剛体回転機構が形成されているかどうかを確認する。図6(c)に示すように剛体回転機構が形成された。点Fを中心に基礎梁下端筋の一部を圧縮杭が回転するため、剛体の回転角θと1階耐震壁変形角Rθの間に幾何学的関係が成立する。θが従来であると仮定すると、本稿ではθ=0.68Rθの関係が得られる。図14ではモデル1,2,3のθ-Rθ関係を示す。剛体回転機構が形成されているかどうかを確認する。
3.3. 崩壊機構の判別手法の提案

3.2 節では、基礎梁上端筋の配筋量によって試験体の崩壊機構が変化し、損傷箇所や変形性能に差異が見られた。したがって、杭基
礎に支持された連続耐震壁の崩壊機構を判別する手法が設計時に必
要となる。前報1)では、剛体回転機構と曲げせん断機構の荷重変形
関係をそれぞれ算定し、両者を比較することで崩壊機構を判別する
手法を提案したが、算定手法が簡単簡単であった。本節では、終局
状態まで剛体回転機構が建築された解析モデルでは、基礎梁上端筋が
引張降伏していることに着目し、基礎梁の入力モーメントと曲げ終
局強度の関係から、便宜的に崩壊機構を判別する手法を提案する。
（1）杭頭モーメントの曲げ戻し応力 σ_{el}
図16にσ_{el}のモーメント分布を示す。σ_{el}は圧縮軸、引張軸に作用する水平せん断応力0.7Qが圧縮側の応力3.0Qから算定される。

（2）壁脚、柱脚に作用する水平荷重によるモーメント σ_{M}
図17(a)にσ_{M}の算定方法を示す。材料位置xにおいて、壁脚や柱脚から単位長さあたりの水平荷重$Q(x')$が伝達されることにより、基盤とモーメント$\sigma_{M}(x')$を作用する。$\sigma_{M}(x')$を基礎梁全長におわたって積分することでσ_{el}のモーメント分布が求められる。

（3）壁脚に作用する鉛直荷重によるモーメント σ_{M}
図17(b)にσ_{M}の算定方法を示す。材料位置xにおいて、壁脚から単位長さあたりの鉛直荷重$Q(X')$が伝達されることにより、基盤とモーメント$\sigma_{M}(x')$が作用する。$\sigma_{M}(x')$を基礎梁全長におわたって積分することでσ_{el}のモーメント分布が求められる。

（4）柱脚に作用するモーメントによるモーメント σ_{M}
図17(c)にσ_{M}の算定方法を示す。σ_{M}のモーメント分布は、圧縮軸、引張軸の柱脚に作用するモーメントσ_{el}、σ_{el}から求められる。

3.3.2 逐層耐震壁曲げ終断時のモーメント分布
逐層耐震壁の曲げ終断時に基礎梁に作用するモーメントの分布を概算する。逐層耐震壁の変形が増大するほど、基礎梁の負担するモーメントも大きくなるので、逐層耐震壁曲げ終断時の基礎梁のモーメント分布が評価できれば、基礎梁上端断の引張降伏が判定でき、崩壊機構を判別できる。モーメント分布の概算にあたり、以下の4つの仮定を導入した。これらの仮定から求められるモーメント分布の形状を図18に示す。

i. 逐層耐震壁曲げ終断強度時の水平せん断力Q_{wall}が圧縮側のみに作用し、基礎梁には引張軸の負担する水平せん断力$0.3Q_{wall}$が引張軸力として作用する。
ii. 引張軸が柱脚における全て引張降伏しており、引張軸はモーメントを負担しない。
iii. 壁脚が壁脚において全て引張降伏している。
iv. 圧縮軸が柱脚の曲げ終断強度σ_{el}に到達している。圧縮軸に作用する軸は長期軸力と引張軸主筋、壁筋筋の降伏強度の和とした。

3.3.3 提案手法の検証
図19にFEM解析の結果から求めたR_{e}=0.25, 0.5, 1.0%時に求めたモデル1, 2, 3の基礎梁の軸力分布を示す。軸力の符号は図10(a)と同様に引張を正、圧縮を負とした。軸力分布により、R_{e}=0.25%では、いずれのモデルでもスパン中央付近から圧縮側の幅の広い範囲にわたって水平せん断力が伝達されていることが分かる。基礎梁の曲げ終断積分モーメントの曲げ戻し応力σ_{el}を下回るモデル1で、R_{e}=0.5, 1.0%と増大しても軸力分布は殆ど変わらず、水平せん断力の伝達機構に変化が見られない。基礎梁の曲げ終断強度がσ_{el}を上回るものの基礎梁上断筋が引張降伏したモデル2では、R_{e}の増大に伴って、圧縮側の危険断面付近（x=750〜1500mm）で基礎梁に作用する圧縮軸力が減少した。これは、水平せん断力の伝達
図20にFEM解析で求めたRw=0.25, 0.50, 1.0%時の基礎梁のモーメント分布を示す。モーメントの符号は図10(c)と同様に上端引張を正、下端引張を負とし、モーメントは材軸を基準に計算した。図20(a)は基礎梁断面に作用している応力から直接算定したモーメントを、図20(b)は、図16、17で示した手法に基づいて算定したモーメントM_p, M_l, M_v, M_c（それぞれの分布は図21に示す）の和を示している。図20(a)と図20(b)のモーメント分布は概ね一致しており、基礎梁に作用するモーメントは4つのモーメントの和として表されることを確認できる。

図19に曲線①、②を示す。曲線の定義は以下の通りである。

曲線① 式(4)の柱の曲げ終局強度式に、図19の軸力を代入して求めた基礎梁の曲げ終局強度の分布
曲線② 3.3.2項の仮定ⅠからⅣに基づいて概算した、連層耐震壁曲げ終局時に基礎梁に作用するモーメントの分布

図20に基礎梁に作用するモーメント【□ R=0.25%, ● R=0.50%, ■ R=1.0%】図20に基礎梁に作用するモーメント【□ R=0.25%, ● R=0.50%, ■ R=1.0%】
4. 結論
基礎梁上端筋の曲げモーメントの変化を解析した結果、曲げモーメントの変化は試験体の曲げ剛性に大きく影響され、曲げるばりの変形による影響が大きい。曲げるばりの変形が小さい場合は、曲げるばりの変形による影響を考慮した解析が必要である。

図21 基礎梁に作用するモーメントとモーメントモーメント

\begin{align}
\sigma_M &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{c}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{d}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{f}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{g}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{h}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{i}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{j}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{k}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{l}}} &= \text{(曲げモーメント)の曲げ強度} \\
\sigma_{M_{\text{m}}} &= \text{(曲げモーメント)の曲げ強度} \\
\end{align}

文献
3) 日本建築学会: 鉄筋コンクリート構造物の設計指針, 日本建築学会, 1999
5) 日本建築学会: 鉄筋コンクリート構造物の設計指針, 日本建築学会, 1999
8) 日本建築学会: 鉄筋コンクリート構造物の設計指針, 日本建築学会, 1999
9) 日本建築学会: 鉄筋コンクリート構造物の設計指針, 日本建築学会, 1999