1	Cytonuclear Discordance and Historical Demography of Two Brown Frogs, Rana tagoi
2	and R. sakuraii (Amphibia: Ranidae)
3	
4	KOSHIRO ETO and MASAFUMI MATSUI*
5	
6	Graduate School of Human and Environmental Studies, Kyoto University, Yoshida
7	Nihonmatsu-cho, Sakyoku, Kyoto 606-8501, Japan
8	
9	*Corresponding author. Phone: +81-75-753-6846;
10	FAX: +81-75-753-6846;
11	E-mail: fumi@zoo.zool.kyoto-u.ac.jp
12	
13	Abstract
14	Prior studies of mitochondrial genomic variation reveal that the Japanese brown frog Rana
15	tagoi comprises a complex of cryptic species lineages, and that R. sakuraii arose from within
16	this complex. Neither species forms a monophyletic group on the mitochondrial haplotype tree,
17	precluding a simple explanation for the evolutionary origins of <i>R. sakuraii</i> . We present a more
18	complete sampling of mitochondrial haplotypic variation (from the ND1 and 16S genes) plus
19	DNA sequence variation for five nuclear loci (from the genes encoding NCX1, NFIA, POMC,
20	SLC8A3, and TYR) to resolve the evolutionary histories of these species. We test hypotheses of
21	population assignment (STRUCTURE) and isolation-with-migration (IM) using the more
22	slowly evolving nuclear markers. These demographic analyses of nuclear genetic variation
23	confirm species-level distinctness and integrity of R. sakuraii despite its apparent polyphyly on
24	the mitochondrial haplotype tree. Divergence-time estimates from both the mitochondrial
25	haplotypes and nuclear genomic markers suggest that R. sakuraii originated approximately one
26	million years ago, and that incomplete sorting of mitochondrial haplotype lineages best explains

non-monophyly of *R. sakuraii* mitochondrial haplotypes. Cytonuclear discordance elsewhere in *R. tagoi* reveals a case of mitochondrial introgression between two species lineages on Honshu.
The earliest phylogenetic divergence within this species group occurred approximately four
million years ago, followed by cladogenetic events in the Pliocene and early Pleistocene
yielding 10–13 extant species lineages, including *R. sakuraii* as one of the youngest.

Key words: species complex; incomplete lineage sorting; introgression; isolation with migration

35 **1. Introduction**

36 Japanese brown frogs Rana tagoi and R. sakuraii are known to show a complicated 37 genealogical relationship (Tanaka et al., 1996; Eto et al., 2012, 2013). Rana tagoi occurs widely 38 on the main and peripheral islands of the Japanese archipelago except for Hokkaido and the 39 Ryukyus. While most brown frogs breed in open, still waters, R. tagoi breeds in subterranean 40 streams where the larvae can metamorphose without feeding (Matsui and Matsui, 1990; Maeda 41 and Matsui, 1999). These distinctive traits might be the product of adaptation to the 42 mountainous environments of the Japanese archipelago. Conversely, R. sakuraii, occurring only 43 on Honshu sympatric with R. tagoi, breeds under rocks in open streams, and adult frogs have 44 several characters suitable for a lotic environment (e.g., they possess fully developed toe webs, 45 which are less well developed in R. tagoi), although its eggs and larvae share traits with those of R. tagoi. From these facts, Matsui and Matsui (1990) postulated that R. sakuraii speciated from 46 47 a *R. tagoi*-like ancestor when it adapted to stream environments. This hypothesis is supported by phylogenetic analyses of mitochondrial haplotypes, in which R. sakuraii is embedded in R. 48 49 tagoi lineages (Tanaka et al., 1996; Eto et al., 2012). However, neither of the species is 50 monophyletic on the mitochondrial haplotype tree (Eto et al., 2012). Mitochondrial haplotype 51 variation reveals that R. tagoi is divided into numerous species lineages, and some of these 52 lineages are reproductively isolated from each other (Eto et al., 2012, 2013). As is clear from

53 these studies, *R. tagoi* contains multiple cryptic species, one of which is the sister taxon to *R*. 54 sakuraii. Two hypotheses potentially explain polyphyly of R. sakuraii haplotypes on the 55 mitochondrial haplotype phylogeny. Incomplete lineage sorting (ILS), retention of disparate 56 haplotype lineages from an R. tagoi-like ancestor, is the simplest explanation if R. sakuraii 57 originated very recently, within the past approximately one million years. Alternatively, 58 introgression of mitochondrial haplotypes resulting from gene flow between R. sakuraii and a 59 sympatric lineage of *R. tagoi* could explain the anomalous phylogenetic distribution of *R*. 60 sakuraii mitochondrial haplotypes.

In this study, we analyse sequence data for two mitochondrial and five nuclear loci to test these hypothesis and to estimate divergence times and demographic patterns of these two species. Expanded sampling of mitochondrial haplotype variation relative to earlier studies yields increased precision of the mitochondrial phylogenetic analysis. We test hypotheses of population assignment (Pritchard et al, 2000) and isolation-with-migration (IM; Hey, 2010) using the more slowly evolving nuclear markers to verify inferences made from the mitochondrial haplotype phylogeny.

68

69 2. Materials and Methods

70 2.1. Sampling strategy

For each species, we chose samples belonging to representative localities/mt-lineages based on previous studies (e.g., Eto et al., 2012). We analysed 107 samples of *R. tagoi* (including three samples each of the subspecies *R. t. yakushimensis* and *R. t. okiensis* from peripheral islands) and 21 of *R. sakuraii* from 81 localities (Fig. 1, Table S1). To the mtDNA phylogenetic analysis, we added GenBank data for *R. kobai* (AB685768), *R. sauteri* (AB685767), *R. tsushimensis* (AB639592, AB639752), and *R. ulma* (AB685780) as outgroup taxa based on known phylogenetic relationships (Tanaka-Ueno et al., 1996, 1998).

79 2.2. Sequencing of DNA

80 Total DNA was extracted from frozen or ethanol-preserved tissues using standard phenol-81 chloroform extraction procedures. Then, we amplified fragments containing the target region 82 (two mitochondrial genes, 16S ribosomal RNA [16S] and NADH dehydrogenase subunit 1 83 [ND1]; and five nuclear genes, sodium-calcium exchanger 1 [NCX1=SLC8A1], nuclear factor 84 I/A [NFIA], pro-opiomelanocortin [POMC], sodium-calcium exchanger 3 [SLC8A3], and 85 tyrosinase [TYR]) by polymerase chain reaction (PCR). The experimental conditions and PCR 86 techniques were essentially identical to those reported previously (Eto et al., 2012). The 87 amplified PCR products were purified by polyethylene glycol (PEG) precipitation. The cycle 88 sequence reactions were performed out with an ABI PRISM Big Dye Terminator ver. 3.1 Cycle 89 sequencing Kit (Applied Biosystems) and sequenced on an ABI 3130 automated sequencer. We 90 used the primers listed in Table S2 for PCR and sequencing, and all samples/loci were 91 sequenced in both directions.

92

93 2.3. Alignment of DNA, haplotype determination, and data characteristics

94 Sequence alignment was conducted using MUSCLE (Edgar, 2004). For heterozygous 95 nuclear genes, we used PHASE ver. 2.1 (Stephens et al., 2001) to determine haplotypes. In this 96 analysis, the threshold of probability was set to small values (0.5–0.6) following Garrick et al. 97 (2010). Before analysing the historical demography, we also used IMgc (Woerner et al., 2007) 98 to detect the largest non-recombining block of nDNA for IM analysis, because IMa2 assumes 99 no intra-locus recombination (Hey and Nielsen, 2004). As data parameters, we calculated the 100 summary statistics of variable sites (vs), number of haplotypes (h), haplotype diversity (H_d), and 101 nucleotide diversity (π). We also checked the neutrality of the five nuclear loci with Tajima's D 102 (Tajima, 1989). Since none of them showed significant deviation from zero (Table S3), these 103 loci were considered neutral markers. We conducted all of these calculations using DnaSP 104 (Rozas et al., 2003).

105

106

5 2.4. Population assignment based on mtDNA

107 A phylogenetic analysis was conducted using the two mitochondrial genes. First, we 108 selected the best substitution model for each gene using Kakusan4 (Tanabe, 2011) based on the 109 Akaike information criterion (AIC). Then, phylogenetic trees based on the maximum-likelihood 110 method (ML) and Bayesian inference (BI) were constructed using TREEFINDER ver. Mar. 111 2011 (Jobb, 2011) and MrBayes ver. 3.2.1 (Ronquist and Huelsenbeck, 2003), respectively. For 112 the ML tree, we conducted non-parametric bootstrap analysis with 1000 replicates, and 113 branches with a bootstrap value (BS) of 70% or greater were regarded as significantly supported. 114 In the BI analysis, two independent runs of four Markov chains were conducted for 10 million 115 generations (sampling frequency one tree per 100 generations); the first three million 116 generations were discarded as burn-in. Convergence of parameters was checked using Tracer 117 ver. 1.5 (Rambaut and Drummond, 2009). We considered a Bayesian posterior probability 118 (BPP) of 0.95 or greater as significant support. From the results of both analyses, we used 119 mitochondrial haplotype clades, levels of haplotype divergence, and geographic distributions to 120 diagnose hypothetical species lineages, which were treated as population units based on mtDNA 121 in the later analyses.

122

123 2.5. Population assignment based on nDNA

Rana tagoi and *R. sakuraii* are so close genetically as to cause difficulty constructing
phylogenetic trees using nDNA sequences (Eto et al., 2012, 2013). Therefore, we conducted
clustering analysis using STRUCTURE ver. 2.3.3 (Pritchard et al., 2000) to delimit population
units based on nDNA. We applied an admixture and allele-frequency-independent model to
haplotype data for the nuclear loci, and calculated 500,000 generations following 100,000
generations of burn-in. The number of clusters (*K*) was set from 1 to 10, and 10 independent
iterations were conducted for each *K*. The most likely *K* was determined by the likelihood

131 distribution of each iteration and the delta *K* value (Evanno et al., 2005). We also constructed

haplotype networks for each gene based on the median-joining method using Network ver. 4.6

133 (Bandelt et al., 1999) to examine the relationships among nuclear haplotypes.

134

135 2.6. Divergence dating based on mtDNA

To estimate the divergence time between mt-lineages, we conducted Bayesian analysis using BEAST ver. 1.7.5 (Drummond et al., 2012). For each calibration, 10 million generations of run (of which the first three million were discarded as burn-in) were conducted under a nonautocorrelated log-normal relaxed clock model. Tracer ver. 1.5 (Rambaut and Drummond, 2009) was used to check the parameter distributions and effective sample size. We applied the following two different calibrations:

142 **Calibration I**: The molecular evolutionary rate of 1.38% (0.69% per lineage) per MY was

143 applied. This value was estimated for the ND1 and ND2 regions of Bufo (Macey et al., 1998),

144 and only *ND1* data were used in this calculation. The evolutionary rate of this region is similar

among a wide range of vertebrates (Macey et al., 2001). We thus used that rate, despite

146 considerable phylogenetic distance between *Rana* and *Bufo*.

147 **Calibration II**: Using only *16S* data, we applied the evolutionary rate of 0.66% (0.33% per

148 lineage) per MY estimated for *16S* of *Leiopelma* (Fouquet et al., 2009).

149

150 2.7. Estimation of historical demography

The historical demography, especially the patterns of gene flow and divergence times among species or genetic groups, was examined using coalescent analysis with the Bayesian IM model. We analysed the nDNA data using the program IMa2 (Hey 2010), and estimated the effective population size, N_e , population migration rate, $2N_eM$, and population divergence time, T. As the mutation rate of nuclear genes, we applied 0.047% per MY per lineage for *NCX1* (reported in the genus *Hydromantes*; Rovito 2010), 0.072% (0.061–0.083%) for *POMC* 157 (Hyperolius; Lawson, 2010), and 0.047% (0.027–0.067%) for SLC8A3 (amphibians in general; Roelants et al., 2007). The geometric mean of these values, approximately 2.71×10^{-7} mutations 158 159 per year per locus, was used as the mutation rate (μ) to scale each demographic parameter. 160 Based on several test runs, the upper bounds for the parameters were set at $\theta = 10-20$, t = 3-5, and m = 10-25, and five million steps (sampling frequency one tree per 50 steps) of 161 162 calculations were performed for 30 heated chains after two million burn-in steps. We conducted 163 three independent runs, and finally combined the results using the L-mode option of IMa2. 164 Since R. tagoi and R. sakuraii typically start to breed at the age of 3 years (Kusano et al., 1995a, 165 b), we applied this value as the generation time of the two species. The trendline plots and effective sample sizes were monitored to ensure good mixing and convergence of parameters. 166 167 The significance of $2N_eM$ was determined using the log-likelihood ratio (LLR) test of 168 Nielsen and Wakeley (2001). We also used the parameter comparison option (with the -p6 169 command) of IMa2 and output the list of probability, which indicates one parameter to be 170 greater than the other. The relative strength of genetic isolation was evaluated using $2N_eM$ 171 values (strong $[2N_eM \le 1]$, moderate $[1 < 2N_eM \le 5]$, and weak $[5 < 2N_eM \le 25]$: Wright, 1931; 172 Waples and Gaggiotti, 2006; Reilly et al., 2012). 173

174 **3. Results**

175 *3.1. Sequence characteristics*

We obtained complete mitochondrial *16S* (1612bp) and *ND1* (967bp) sequences for all
samples. There were 489 parsimoniously informative sites within the ingroup: 244 for *16S* and
245 for *ND1*. The other statistics are listed in Table S3.

179 In the sequences of the five nuclear loci for all 128 samples, only *POMC* had in-dels, and

180 these sites were omitted from the subsequent analyses. For haplotype determination using

181 PHASE, all haplotypes in all samples/loci were determined successfully, except for one sample

182 for *POMC* and two for *TYR*, which were treated as null alleles in subsequent analyses. The

183 sequence length and statistics of each locus are listed in Table S3. Overall, each parameter

184 generally indicated great genetic diversity in *R. tagoi* and *R. sakuraii*. Of the five nuclear loci,

185 *TYR* was the most variable ($H_d = 0.955$ and $\pi = 0.017$ for all samples) and *NFIA* was the least

- 186 variable (0.735 and 0.003, respectively).
- 187

188 3.2. Population assignment: Mitochondrial DNA results

189 The best substitution model selected in the ML analysis was the general time reversible

190 (GTR; Tavaré, 1986) model with the optimized gamma shape parameter (G) of 0.158 and the

191 proposition of invariable sites (I) of 0.144 for *16S* and the J1 (Jobb, 2011) model + G (0.543) + I

192 (0.312) for *ND1*. For BI, the models were GTR + G (0.082) + I (0.226) and GTR + G (0.892) + I (0.226)

193 I (0.226) for 16S and ND1, respectively. The constructed ML (-lnL = 15500.618) and BI

194 (15863.190) trees were essentially identical in topology, and only the ML tree is shown in Fig. 2.

195 We followed Eto et al. (2012) for the names of each genetic group.

196 The phylogenetic relationships obtained were fundamentally identical to those reported by

197 Eto et al. (2012). The ingroup was divided into two large haplotype clades (A and B), and both

198 of these included subclades judged by their geographic distributions to diagnose separate

199 species lineages (A-1ab to A-9abc and B-1 to B-2ab); Clade B (ML-BS = 82% and

BPP = 1.00) contained only haplotypes from *R. tagoi*, while Clade A (ML-BS = 93% and

BPP = 1.00) included both *R. tagoi* and *R. sakuraii* haplotypes. Each clade/lineage was well

supported (ML-BS \geq 70%, BPP \geq 0.95). The statistical support for nodes was generally better

203 than in the previous study, and more detailed phylogenetic relationships were clarified,

204 particularly those among the lineages in Clade A. In Clade A, the lineages from Honshu Island

205 (A-1ab to A-6) formed a subclade (A' in Fig. 2. ML-BS = 73% and BPP = 0.98) against the

206 Shikoku and Kyushu subclade (A"; ML-BS = 79% and BPP = 0.95). Within Subclade A', three

207 additional lineage groups were recognised: one consisted of Lineages A-1a and A-1b (ML-

BS = 82% and BPP = 1.00; the second of Lineages A-2 and A-3 (ML-BS = 70% and

BPP = 0.98); and the third Lineages A-4, A-5, and A-6 (ML-BS = 79% and BPP = 1.00). The haplotypes obtained from *R. sakuraii* were included in Lineages A-2 and A-3. Lineage A-2 also contained *R. tagoi* haplotypes, although haplotypes were not shared between the two species.

212

213 3.3. Population assignment: Nuclear DNA results

214 The results of the clustering analysis using STRUCTURE are shown in Fig. 3. For all 215 samples, K = 2 was supported by the test of delta K, and two clusters (I and II) were recognised. 216 Almost all samples were clearly assigned to each cluster (posterior probabilities $\geq 80\%$), 217 indicating strong genetic isolation between the two nDNA clusters. Although the division of the 218 two nuclear clusters (I and II) did not completely correspond to that of the two mitochondrial 219 clades (A and B), Cluster II was largely concordant with mitochondrial Subclade A', with the 220 exception of Lineage A-1a (Fig. 3). Clusters I and II also were separated on the haplotype 221 networks of some nuclear genes (e.g., NCX1, NFIA, and SLC8A3; Fig. S1). However, in 222 relatively more variable genes like TYR, the haplotype relationships were highly complex and 223 their separation was not clear (Fig. S1). Furthermore, haplotypes were more or less shared 224 between Clusters I and II in all loci, indicating ILS in these nuclear genes. 225 Since the two large clusters seemed to contain several subclusters, we independently 226 reanalysed samples for the two clusters. Within Cluster I, the population assignment with K = 2227 was supported (Fig. 3). In this clustering, the division of subclusters was still roughly correlated with the mt-lineages: the lineages from the main islands (A-1a, A-7, A-9a, and B-2ab) tended to 228 229 form a subcluster and the lineages from the peripheral islands (A-8, A-9c, and B-1) formed 230 another. One lineage, A-9b, included samples assigned to both of these subclusters. Except for 231 Lineage A-9b, samples of the two subclusters were clearly assigned to either subcluster. In 232 contrast, K = 3 was supported within Cluster II using the delta K test and likelihood distribution. 233 In this division, R. tagoi Lineages A-1b and A-4, R. tagoi A-2, and R. sakuraii (A-3 and part of 234 A-2) each formed a subcluster (Fig. 3). The separation of these subclusters was clear (posterior

probabilities > 80%), with a few exceptional samples in the *R. sakuraii* subcluster. By contrast,
many samples of lineages A-5 and A-6 were not clearly assigned to particular subclusters, and

showed intermediate genetic structures between *R. tagoi* of A-2 and *R. sakuraii*.

238

239 *3.4. Divergence times of the mitochondrial lineages*

240 The results of divergence dating for the major nodes on the mitochondrial genealogy are 241 listed in Table 1. Although we applied the evolutionary rates of phylogenetically remote taxa 242 (Bufo and Leiopelma) the divergence times obtained for the ingroup were similar in the two 243 calibrations. Two major mt-clades (A and B: node 1 in Fig. 2) were estimated to have diverged 244 4.2-4.0 (95% highest posterior density interval [HPD] of 6.2-2.3) MYA. Then Subclades A' 245 and A" (node 2) split 2.8–2.6 (4.1–1.6) MYA, followed by the separation within Clade B (node 246 22) 2.7–2.3 (4.3–1.2) MYA. The two lineages including R. sakuraii samples, A-2 and A-3, 247 separated from each other 2.1–1.9 (3.1–1.1) MYA (node 7), followed by internal divergence 248 during 1.4–0.9 (2.2–0.4) MYA (nodes 8 and 9). The most recently divergent lineages were B-2a 249 and B-2b (node 23), which split at 1.4 (2.2–0.7) MYA. These estimates indicate that the 250 divergence of each major mitochondrial clade/lineage began in the mid-to-late Pliocene and was 251 approaching completion in the mid Pleistocene.

252

253 *3.5. Historical demography*

As shown above, the results of the population assignment were not completely concordant between mt- and n-DNA (Figs. 2 and 3). In estimating demographic parameters, we used only nDNA data because nuclear markers are thought to be more conservative than mitochondrial ones, which are more likely to be affected by introgression than the nuclear markers (Ballard and Whitlock 2004).

260 3.5.1. Historical demography between Clusters I and II

First, we conducted a coalescent analysis using IMa2 for the two large nuclear clusters: I 261 262 and II. Each parameter showed single peaks in their probability density distributions (Fig. S2). 263 The parameter values obtained are listed in Table 2. The estimated population migration rate 264 $(2N_eM)$ for I to II (I \rightarrow II) was 0.52 (0.24–1.12). In the opposite direction; *i.e.* II \rightarrow I, the 265 parameter value tended to be larger, with $2N_eM_{II} \rightarrow I$ being 1.23 (0.70–2.14). The LLR test 266 showed that all of these values were significantly larger than zero (p < 0.01), suggesting that 267 clusters I and II have maintained a degree of gene flow after their divergence. However, strong 268 to moderate genetic isolation would exist between the two clusters because the $2N_eM$ values 269 obtained were relatively small (ca. 1 or smaller: Wright, 1931; Waples and Gaggiotti, 2006; 270 Reilly et al., 2012). The effective population size estimated for I, II, and their ancestor was 2.2 271 (1.7–2.9), 1.7 (1.3–2.3), and 0.4 (0.2–0.8) million individuals, respectively. The ancestral 272 population size was smaller than those at present, as supported by parameter comparison of θ 273 (the posterior probabilities were 1.00 for each comparison). The population size of II tended to 274 be smaller than that of I, but the tendency was not supported statistically (BPP < 0.95). The 275 population divergence time (T) of I and II was estimated as 2.7 (4.4–2.2) MYA. Although its 276 95% HPD was relatively wide, this estimate was younger than the divergence time of the two 277 major mt-clades (A/B; ca. 4.2–4.0 MYA), but almost equal to those of A'/A" (ca. 2.8–2.6 MYA) 278 and B-1/B-2 (ca. 2.7–2.3 MYA) (Table 1).

279

280 3.5.2. Historical demography between R. tagoi and R. sakuraii

Then, we compared demographic parameters between *R. tagoi* and *R. sakuraii*. As *R. tagoi* (*Rt*), we chose mt-Lineages A-2, 5, and 6, which were genetically close to *R. sakuraii* (*Rs*) in the mitochondrial and nuclear DNA analyses, as shown above (see Figs. 2 and 3). Since our dataset was not sufficiently informative to analyse a four-populations model, we combined Lineages A-5 and A-6 as a single group; these showed close genetic relationships in both 286 mitochondrial and nuclear analyses (Figs. 2, 3). We conducted two separate analyses under

287 different population schemes: (1) three-populations model, in which *R. sakuraii* (*Rs*) and *R*.

288 *tagoi* (*Rt*) Lineage A-2 were assumed to be mutually close compared to A-5 and 6, based on the

289 mtDNA genealogy, and (2) two-populations model based on the current classification (Rs vs. Rt

A-2, 5, and 6).

291 In the three-populations model, significant gene flow (p < 0.05 in the LLR test) was 292 detected only in R. tagoi A-5+6 \rightarrow A-2 (2N_eM_{Rt A-5+6} \rightarrow Rt A-2 was 3.79 [0.75–9.50]; Fig. S3 and 293 Table 2) and A-5+6 \rightarrow R. sakuraii (2N_eM_{Rt A-5+6} \rightarrow Rs was 0.40 [0.04–2.00]), and no significant 294 gene flow was recognized between R. sakuraii and R. tagoi A-2 (p > 0.05). These results 295 indicated that the genetic isolation between R. tagoi A-2 and A-5+6 was moderate ($1 < 2N_eM \le$ 296 5), but the gene flow was strongly biased to one direction (from A-5+6 to A-2). Although gene 297 flow existed between the two species, the direction was limited (*R. tagoi* A-5+6 \rightarrow *R. sakuraii*), 298 and the population migration rate obtained was small ($2N_eM \leq 1$), indicating strong genetic 299 isolation between R. sakuraii and R. tagoi lineages. The estimated effective population size (a 300 million individuals) was similar between R. tagoi A-2 (0.80 [0.34–2.06]) and A-5+6 (0.79 301 [0.38–1.76]), but was smaller in R. sakuraii (0.16 [0.07–0.32]). This tendency was supported in 302 the statistical test, in which N_e for R. sakuraii was significantly smaller than those for R. tagoi 303 lineages (BPP > 0.95).

We could not obtain a sufficient estimate for gene flow between the ancestral populations because no obvious peaks of probability for the parameter $2N_eM$ were recognised (Table 2). The estimated ancestral population size (N_e) was 0.21 (0.01–4.06) for *R. sakuraii* + *R. tagoi* A-2, and was 0.43 (0.23–0.77) for the common ancestor of *R. sakuraii*, *R. tagoi* A-2 and A-5+6. The estimated N_e for the ancestors tended to be smaller than the present N_e for *R. tagoi* (A-2, A-5+6) and larger than that for *R. sakuraii*, but the tendencies were not supported statistically (BPP < 0.95). The time of population divergence estimated for *R. sakuraii*/*R. tagoi* A-2 (1.1 [2.3–0.6] MYA) was much younger than that for the ancestors (2.15 [6.11–1.31] MYA), although the
credibility intervals largely overlapped.

313 In the two-populations model, significant gene flow from *R. tagoi* to *R. sakuraii* was again 314 detected ($2N_eM_{Rt \rightarrow Rs}$ was 0.51 [0.14–1.17]: Fig. S3 and Table 2), but such trend was not 315 recognized in the opposite direction (Fig. S3 and Table 2). These results indicate strong to 316 medium isolation between the two species, although small and unidirectional gene flow exists. 317 The $2N_eM$ value for R. tagoi \rightarrow R. sakuraii in this model was similar to the value for R. tagoi A-318 $5+6 \rightarrow R$. sakuraii in the three-populations model shown above (Table 2). 319 The estimated N_e showed values and tendencies similar to those obtained in the three-320 populations model; N_e for R. sakuraii (0.17 [0.09–0.34]) was significantly smaller (BPP > 0.95) 321 than that of R. tagoi (1.61 [0.99–2.65]). The estimates for ancestral N_e (0.37 [0.10–0.68] in the 322 two-populations model) also are similar between the models. The divergence time estimated for 323 the two species, 1.2 (2.9–0.6) MYA, was slightly older than that estimated by the three-324 population model (ca. 1.1 MYA).

325

326

327 **4. Discussion**

4.1. Discordance between the classification and patterns of genetic variation using different
 markers

Our new data and analyses confirmed the major patterns of mitochondrial genomic variation reported previously (Eto et al., 2012). Mitochondrial haplotypes obtained from *R. sakuraii* were genealogically embedded in those from *R. tagoi*, and neither species was monophyletic on the haplotype tree. The mitochondrial and nuclear data considered together indicate that *R. sakuraii* constitutes a single species lineage. *Rana sakuraii* corresponds largely to Lineage A-3 on the mitochondrial haplotype tree (Fig. 2), with its sister lineage being *R. tagoi* populations bearing mitochondrial haplotypes of Lineage A-2. Nonetheless, Lineage A-2 includes some *R. sakuraii* 337 mitochondrial haplotypes. We examine the hypotheses of incomplete lineage sorting and gene 338 flow as possible explanations for this pattern. The following three scenarios could explain the 339 phylogenetic pattern of mitochondrial haplotypes of lineages A-2 and A-3 (Fig. 2): (1) recent 340 speciation of *R. sakuraii* from *R. tagoi* Lineage A-2, which led to ILS of mtDNA at the species 341 level; (2a) past mitochondrial introgression from *R. tagoi* A-2 to *R. sakuraii*; and (2b) 342 introgression in the opposite direction (Fig. 4). If recent separation of R. sakuraii from R. tagoi 343 A-2 was the case, the ILS hypothesis (1) would be the simplest explanation. However, if the 344 speciation was shown to be old, especially much older than the divergence time within mt-345 Lineage A-2, this hypothesis would be rejected. Conversely, the past-introgression hypotheses 346 (2) would be applicable if the speciation of the two species coincided with the split between 347 Lineages A-2 and A-3 (2a), or the separation of these two lineages from the others (2b). 348 Detection of historical gene flow between R. sakuraii and R. tagoi A-2 for the nuclear markers 349 also would support the past introgression hypotheses. 350 The genetic relationship based on the STRUCTURE analysis using nDNA was discordant 351 with the mitochondrial genealogy, and R. sakuraii and R. tagoi A-2 tended to be separated in 352 different subclusters (Fig. 3). This result likely reflects their heterospecific status. The 353 demographic analysis using IMa2 showed that the separation of R. sakuraii from R. tagoi 354 lineages (ca. 1.1 MYA and 1.2 MYA in three- and two-populations models, respectively; Table 355 2) was younger than the separation of mt-Lineages A-2 and A-3 (ca. 2.1–1.9 MYA; Table 1), 356 and was similar to the divergence within these lineages (ca. 1.4-0.9 MYA). The date of 357 speciation would correspond to, or be younger than, the population divergence time estimated 358 by IMa in this case. So these results favour the ILS hypothesis, although the credibility intervals 359 of these estimates overlapped.

Based on the genealogy obtained (Fig. 2), mitochondrial introgression between *R. tagoi* A-2 and *R. sakuraii* happened several times if the hypotheses 2 were the case (for example, two independent introgression events should be presumed in the hypothesis 2a). Thus the 363 introgression hypotheses assume rampant hybridization of *R. tagoi* A-2 and *R. sakuraii* in the

and past. The IM analyses based on two different models showed gene flow from *R. tagoi* to *R.*

365 *sakuraii*. However, this unidirectional gene flow seems to depend largely on the flow from *R*.

366 *tagoi* A-5+6 to *R. sakuraii*, because no significant flow between *R. tagoi* A-2 and *R. sakuraii*

367 was detected (Table 2). These results do not support rampant hybridization of *R. tagoi* A-2 and

368 *R. sakuraii*, even though inter-specific gene flow did exist. From these considerations, the ILS

369 hypothesis would be more plausible than the introgression hypothesis to explain the

370 relationships of the two species on the mitochondrial genealogy.

371 The estimated time of the split of *R. sakuraii* and *R. tagoi* Lineage A-2 (ca. 1.2–1.1 MYA) is

372 younger than those of other Japanese frogs (e.g., ca. 2.3 MYA between *Odorrana ishikawae/O*.

373 *splendida* and ca. 1.7 MYA between *O. amamiensis/O. narina* [Matsui et al., 2005]; and around

5.7–4.0 MYA among *Bufo torrenticola* and two subspecies of *B. japonicus* [Igawa et al., 2006]),

and seems to have occurred after the rough formation of the Japanese archipelago (see the next

376 section). Although the ILS of mtDNA at the species level is relatively rare because of its small

377 effective number of gene copies, it occurs occasionally in some situations, such as speciation

378 within the past millions years. It could be applicable in the case of *R. sakuraii* and *R. tagoi*,

379 because their speciation is estimated to be only about one million year ago. Rana sakuraii has

380 several traits adaptive to stream breeding in contrast to the subterranean breeding *R. tagoi*,

although they share many other characters (Matsui and Matsui, 1990). It suggests that the

382 speciation of *R. sakuraii* was triggered by adaptation to a new breeding habitat, which is a

383 process that often promotes rapid speciation (Coyne and Orr, 2004).

384 *4.2. Evolutionary history of the two species*

Rana tagoi and *R. sakuraii* are endemic to the Japanese archipelago and no close relatives
are known from the continent, although *R. sauteri*, a lotic breeding brown frog from Taiwan, is
thought to be their sister lineage (Tanaka-Ueno et al., 1998). Our data do not contradict with this
idea (Fig. 1). Since the continental allies of *R. sauteri* are also unknown, the dispersal route of

389 the ancestor of the *R. tagoi* complex to the Japanese mainland is uncertain. The estimated time 390 of separation of *R. sauteri* and *R. tagoi* complex varies between the calibrations (22.0–11.6 391 MYA; Table 1), but around the early to middle Miocene. In this period the opening of the Japan 392 Sea began (Iijima and Tada, 1990), although the Japanese and Ryukyu archipelagos, as well as 393 Taiwan were not yet isolated from the Eurasian continent (Chinzei and Machida, 2001). 394 Therefore the common ancestor of R. sauteri and the R. tagoi complex would have been distributed in the continental areas corresponding to the present Japanese archipelago to Taiwan, 395 396 but the ancestral allies would have been extinguished thereafter on the continent and the 397 Ryukyus, leaving relict species in Japan and Taiwan.

In any case, the ancestral population of the *R. tagoi* complex is thought to have diverged into two major clades, A and B (Fig. 2), in the mid Pliocene (ca. 4.2–4.0 MYA). The ancient Japanese archipelago was already roughly formed by the late Miocene (Chinzei and Machida, 2001), and the separation of lineages ancestral to the clades is thought to have occurred on the archipelago. The ancestor at this period would have been a *R. tagoi*-like subterranean breeder because all of the present genetic groups of the two species have a common larval trait (e.g., no need to feed until metamorphosis) thought to be adapted to such an environment.

405 Then, the divergence within Clade A occurred in the late Pliocene (ca. 2.8–2.6 MYA), 406 separating populations on or near Honshu from ones on or near from Kyushu and Shikoku. 407 Cluster II as identified by nuclear markers (Fig. 3) is equivalent to populations diagnosed by 408 mitochondrial haplotype Subclade A' excluding Lineage A-1a. Lineages of Subclade A' occur 409 on Honshu, whereas those of mitochondrial Subclade A" are associated with Kyushu or Shikoku. 410 Because populations of mitochondrial haplotype Clade B also occur on Honshu, Honshu is 411 likely the ancestral source of this species complex, and expansion to the ancestral areas of 412 Kyushu and Shikoku likely produced the major cladogenetic event within mitochondrial Clade 413 A. Approximately 1.8–1.4 MYA (the divergence time estimated for mitochondrial haplotypes 414 of Lineages A-1a and A-1b), introgression of mitochondrial haplotypes from a population in

415 mitochondrial Subclade A' to one in Clade B produced the anomalous result that Lineage A-1a 416 appears in an incorrect position on the mitochondrial haplotype tree. The best interpretation is 417 that Lineage A-1a is closest phylogenetically to the lineages of mitochondrial Clade B as 418 revealed by the nuclear markers, in contrast to its position on the mitochondrial haplotype tree. 419 Occurrence of Subclade A' and Clade B in geographic proximity on Honshu further supports 420 this interpretation. The divergences within SubcladesA', A", and Clade B started around 2.7-2.3 421 MYA, and splitting of the major mt-lineages was roughly completed by the middle Pleistocene 422 (around 1.4 MYA). In this period, the populations on peripheral islands were isolated 423 geographically, and some survived and evolved into the extant subspecies; *i.e.*, *R. t.* 424 vakushimensis of Lineage A-8 and R. t. okiensis of B-1. 425 The estimated date of speciation of *R. sakuraii* was younger than the formation of the major 426 population lineages discussed above. Rana sakuraii would have originated ca. 1.2-1.1 MYA 427 based on the IM analysis (Table 2), likely in association with the adaptation to a new breeding

environment as discussed above. The effective population size of *R. sakuraii* (ca. 0.2 million
individuals) is smaller than that of the closest mt-lineage of *R. tagoi* (ca. 0.8 million individuals
for Lineage A-2), and suggests that a small ancestral population adapted to stream breeding led
to *R. sakuraii*.

432

433 **5. Conclusion**

Our data reveal that *R. tagoi* comprises multiple species lineages, which form a paraphyletic group with respect to *R. sakuraii*. Because *R. sakuraii* arose only about one million years ago, incomplete lineage sorting of mitochondrial haplotypes best explains non-monophyly of *R. sakuraii* on the mitochondrial haplotype tree. Our study illustrates how mitochondrial haplotype phylogenies combined with multilocus demographic analyses of nuclear haplotypes permits precise resolution of species lineages and their genetic interactions.

441 Acknowledgements

- 442 We would like to thank G. Aoki, K. Araya, H. Fujita, T. Hayashi, A. Hamidy, T. Hikida, M.
- 443 Kato, Y. Kawahara, K. Kawauchi, Y. Kokuryo, N. Kuraishi, N. Maeda, Mm, Matsui, T. Matsuki,
- 444 T. Matsuo, Y. Misawa, Y. Miyagata, A. Mori, S. Mori, N. Nakahama, T. Nakano, Y. Nakase, K.
- 445 Nishikawa, S. Okada, J. Oki, M. Sakamoto, T. Shimada, T. Sugahara, T. Sugihara, H. Takeuchi,
- 446 S. Tanabe, A. Tominaga, T. Ueno, M. Yamagami, Y. Yamane, Y. Yamazaki, N. Yoshikawa,
- 447 and everyone else who helped us in collecting specimens. KE thanks N. Kuraishi and N.
- 448 Yoshikawa for assisting laboratory works. We are also grateful to A. Larson and anonymous
- 449 reviewers for valuable comments on the manuscript. This work was partly supported by grants
- 450 from the Ministry of Education, Science and Culture, Japan (Nos. 07454234, 20405013 and

451 23405014) to MM.

452

453 **References**

- Ballard, J.W.O., Whitlock, M.C., 2004. The incomplete natural history of mitochondria. Mol.
 Ecol. 13, 729–744.
- Bandelt, H., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific
 phylogenies. Mol. Biol. Evol. 16, 37–48.
- 458 Chinzei, K., Machida, H., 2001. Formation history of structural landforms and tectonic
- 459 landforms in Japan, in: Yonekura, N., Kaizuka, S., Nogami, M., Chinzei, K. (Eds.),
- 460 Regional Geomorphology of the Japanese Islands, Introduction to Japanese
- 461 Geomorphology, Vol. 1. University of Tokyo Press, Tokyo, pp. 298–311.
- 462 Coyne, J.A., Orr, H.A., 2004. Speciation. Sinauer Associates, Sunderland, MA.
- Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with
 BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973.
- 465 Edgar, R., 2004. MUSCLE: multiple sequence alignment with high accuracy and high
- throughput. Nucleic Acids Res. 32, 1792–1797.

- 467 Eto, K., Matsui, M., Sugahara, T., 2013. Discordance between mitochondrial DNA genealogy
- 468 and nuclear DNA genetic structure in the two morphotypes of *Rana tagoi tagoi*
- 469 (Amphibia: Anura: Ranidae) in the Kinki Region, Japan. Zool. Sci. 30, 553–558.
- 470 Eto, K., Matsui, M., Sugahara, T., Tanaka-Ueno, T., 2012. Highly complex mitochondrial DNA
- 471 genealogy in an endemic Japanese subterranean breeding brown frog *Rana tagoi*
- 472 (Amphibia, Anura, Ranidae). Zool. Sci. 29, 662–671.
- 473 Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using
 474 the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.
- 475 Fouquet, A., Green, D.M., Waldman, B., Bowsher, J.H., McBride, K.P., Gemmell, N.J., 2010.
- 476 Phylogeography of *Leiopelma hochstetteri* reveals strong genetic structure and suggests
- 477 new conservation priorities. Conserv. Genet. 11, 907–919.
- Garrick, R.C., Sunnucks, P., Dyer, R.J., 2010. Nuclear gene phylogeography using PHASE:
 dealing with unresolved genotypes, lost alleles, and systematic bias in parameter
 estimation. BMC Evol. Biol. 10, 118.
- 481 Hey, J., 2010. Isolation with migration models for more than two populations. Mol. Biol. Evol.
 482 27, 905–920.
- 483 Hey, J., Nielsen, R., 2004. Multilocus methods for estimating population sizes, migration rates
- 484 and divergence time, with applications to the divergence of *Drosophila pseudoobscura* and
 485 *D. persimilis.* Genetics 167, 747–760.
- 486 Hurt, C., Silliman, K., Anker, A., Knowlton, N., 2013. Ecological speciation in anemone487 associated snapping shrimps (*Alpheus armatus* species complex). Mol. Ecol. 22, 4532–
 4540
- 488 4548.
- 489 Igawa, T., Kurabayashi, A., Nishioka, M., Sumida, M., 2006. Molecular phylogenetic
- 490 relationship of toads distributed in the Far East and Europe inferred from the nucleotide
- 491 sequences of mitochondrial DNA genes. Mol. Phylogenet. Evol. 38, 250–260.

- 492 Iijima, A., Tada, R., 1990. Evolution of tertiary sedimentary basins of Japan in reference to
 493 opening of the Japan Sea. J. Fac. Sci. Univ. Tokyo, Sect. II 22, 121–171.
- 494 Jacobsen, F., Omland, K.E., 2012. Extensive introgressive hybridization within the northern
- 495 oriole group (Genus *Icterus*) revealed by three-species isolation with migration analysis.
- 496 Ecol. Evol. 2, 2413–2429.
- 497 Jobb, G., 2011. TREEFINDER version March 2011. http://www.treefinder.de>.
- Kusano, T., Fukuyama, K., Miyashita, N., 1995a. Age determination of the stream frog, *Rana sakuraii*, by skeletochronology. J. Herpetol. 29, 625–628.
- Kusano, T., Fukuyama, K., Miyashita, N., 1995b. Body size and age determination brown frog *Rana tagoi tagoi* by skeletochronology in southwestern Kanto. Jpn. J. Herpetol. 16, 29–34.
- Lawson, L.P., 2010. The discordance of diversification: evolution in the tropical-montane frogs
 of the Eastern Arc Mountains of Tanzania. Mol. Ecol. 19, 4046–4060.
- Macey, J.R., Schulte, J.A, Larson, A., Fang, Z., Wang, Y., Tuniyev, B.S., Papenfuss, T.J., 1998.
- 505 Phylogenetic relationships of toads in the *Bufo bufo* species group from the eastern
- 506 escarpment of the Tibetan Plateau: a case of vicariance and dispersal. Mol. Phylogenet.
- 507 Evol. 9, 80–87.
- 508 Macey, J.R., Strasburg, J.L., Brisson, J. a, Vredenburg, V.T., Jennings, M., Larson, A., 2001.
- Molecular phylogenetics of western North American frogs of the *Rana boylii* species
 group. Mol. Phylogenet. Evol. 19, 131–143.
- 511 Maeda, N., Matsui, M., 1999. Frogs and Toads of Japan, Revised Edition. Bun–ichi Sogo
 512 Shuppan, Tokyo.
- Matsui, M., 2011. On the brown frogs from the Ryukyu Archipelago, Japan, with descriptions
 of two new species (Amphibia, Anura). Curr. Herpetol. 30, 111–128.
- 515 Matsui, M., Shimada, T., Ota, H., Tanaka-Ueno, T., 2005. Multiple invasions of the Ryukyu
- 516 Archipelago by Oriental frogs of the subgenus *Odorrana* with phylogenetic reassessment
- 517 of the related subgenera of the genus *Rana*. Mol. Phylogenet. Evol. 37, 733–742.

- 518 Matsui, T., Matsui, M., 1990. A new brown frog (genus *Rana*) from Honshu, Japan.
- 519 Herpetologica 46, 78–85.
- 520 Mitsui, Y., Setoguchi, H., 2012. Demographic histories of adaptively diverged riparian and non-
- 521 riparian species of *Ainsliaea* (Asteraceae) inferred from coalescent analyses using multiple.
- 522 BMC Evol. Biol. 12, 254.
- Nielsen, R., Wakeley, J., 2001. Distinguishing migration from isolation: a Markov chain Monte
 Carlo approach. Genetics 158, 885–896.
- 525 Pritchard, J., Stephens, M., Donnelly, P., 2000. Inference of population structure using
- 526 multilocus genotype data. Genetics 155, 945–959.
- 527 Rambaut, A., Drummond, A., 2009. Tracer version 1.5. http://beast.bio.ed.ac.uk/Tracer>.
- 528 Reilly, S.B., Marks, S.B., Jennings, W.B., 2012. Defining evolutionary boundaries across
- parapatric ecomorphs of Black Salamanders (*Aneides flavipunctatus*) with conservation
 implications. Mol. Ecol. 21, 5745–5761.
- 531 Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau, L.,
- 532 Bossuyt, F., 2007. Global patterns of diversification in the history of modern amphibians.
- 533 Proc. Natl. Acad. Sci. U. S. A. 104, 887–892.
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under
 mixed models. Bioinformatics 19, 1572–1574.
- 536 Rovito, S.M., 2010. Lineage divergence and speciation in the Web-toed Salamanders
- 537 (Plethodontidae: *Hydromantes*) of the Sierra Nevada, California. Mol. Ecol. 19, 4554–
 538 4571.
- 539 Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA
- polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–
 2497.
- 542 Stephens, M., Smith, N., Donnelly, P., 2001. A new statistical method for haplotype
- 543 reconstruction from population data. Am. J. Hum. Genet. 68, 978–989.
 - 21

- Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA
 polymorphism. Genetics 123, 585–595.
- 546 Tanabe, A.S., 2011. Kakusan4 and Aminosan: two programs for comparing nonpartitioned,
- 547 proportional and separate models for combined molecular phylogenetic analyses of
- 548 multilocus sequence data. Mol. Ecol. Resour. 11, 914–921.
- 549 Tanaka, T., Matsui, M., Takenaka, O., 1996. Phylogenetic relationships of Japanese brown
- frogs (*Rana*: Ranidae) assessed by mitochondrial cytochrome b gene sequences. Biochem.
 Syst. Ecol. 24, 299–307.
- 552 Tanaka-Ueno, T., Matsui, M., Chen, S.-L., Takenaka, O., Ota, H., 1998. Phylogenetic
- relationships of brown frogs from Taiwan and Japan assessed by mitochondrial
- 554 cytochrome b gene sequences (*Rana*: Ranidae). Zool. Sci. 15, 283–288.
- 555 Tavaré, S., 1986. Some probabilistic and statistical problems in the analysis of DNA sequences,
- in: Miura, R.M. (Ed.), Lectures on Mathematics in the Life Sciences. pp. 57–86.
- 557 Waples, R., Gaggiotti, O., 2006. What is a population? An empirical evaluation of some genetic
- 558 methods for identifying the number of gene pools and their degree of connectivity. Mol.
- 559 Ecol. 15, 1419–1439.
- 560 Woerner, A.E., Cox, M.P., Hammer, M.F., 2007. Recombination-filtered genomic datasets by
- 561 information maximization. Bioinformatics 23, 1851–1853.
- 562 Wright, S., 1931. Evolution in Mendelian populations. Genetics 16, 97–159.
- 563

564 Supporting information

565 Additional supporting information may be found in the online version of this article.

567 **Table Captions**

Table 1 The mean estimated divergence times (MYA) for *R. tagoi*, *R. sakuraii*, and the
outgroups. Values in parentheses are the 95% highest posterior density interval. For the node
numbers, refer to Fig. 2.

571

572 **Table 2** Demographic parameters estimated in the IM analysis. *Ne*, effective population size

573 (million individuals); 2N_eM, effective population migration rate (number of gene

574 copies/generation), for which $2N_eM_{1\rightarrow 2}$ ($2N_eM_{2\rightarrow 1}$) indicates gene flow from group 1 to 2 (2 to

575 1) forwards in time; *T*, population divergence time (MYA). Values supported by the highest

576 probability are shown as HiPt, and HPD95 indicates the 95% highest posterior density interval.

577 Parameters in bold indicate the values with statistical support, and characters in italics are those

578 with no significant peak of posterior probability density.

579

580 Figure Captions

581 Fig. 1 Map showing the sampling localities of *Rana tagoi tagoi* (circles), *R. t. yakushimensis*

582 (double circle), *R. t. okiensis* (stars), and *R. sakuraii* (triangles). Each species lineage inferred

using mitochondrial haplotypes is represented by different markers. For the locality information,see Table S1.

585

586 Fig. 2 Maximum-likelihood tree based on the complete mitochondrial 16S and ND1 sequences

587 (2579 bp in total) for *Rana tagoi* and *R. sakuraii*. For the locality number, see Fig. 1.

588 Haplotypes in Clades A' and B are sampled from Honshu or the Oki Island (B-1). Haplotypes in

589 Clades A" are from Kyushu, Shikoku, or adjacent small islands.

590

591 Fig. 3 Results of STRUCTURE analyses based on the five nuclear genes. Each species lineage

592 inferred using mitochondrial haplotypes is separated by black vertical lines. (top) The best

593	clustering result ($K = 2$ clusters) for all 128 samples. (left bottom) Results with $K=2$ (best) and 3
594	for Cluster I. (right bottom) Results with $K=3$ (best) and 4 for Cluster II.
595	
596	Fig. 4 Hypothesized scenarios for non-monophyly of mitochondrial haplotypes in <i>R. sakuraii</i> :
597	(1) the species-level ILS hypothesis; and (2) the past mitochondrial introgression hypothesis, in
598	which introgression occurred from R. tagoi Lineage A-2 to R. sakuraii (a) or in the opposite
599	direction (b). Solid and broken lines indicate the mitochondrial lineages of <i>R. tagoi</i> and <i>R</i> .
600	sakuraii, respectively. Grey arrows indicate massive mitochondrial introgression.
601	
602	Captions for supplementary materials
603	Table S1 The samples used in this study with information on the sampling localities, vouchers,
604	and GenBank accession numbers for each locus. KUHE, Graduate School of Human and
605	Environmental Studies, Kyoto University; TMP, temporary number.
606	
607	Table S2 The primers used to amplify mt- and n-DNA in this study.
608	
609	Table S3 Summary statistics of each locus. Tajima's D values; length of sequence after
610	alignment; variable sites (vs); number of haplotypes (h); haplotype diversity (Hd); and
611	nucleotide diversity (π).
612	
613	Fig. S1 Median-joining networks of five nuclear loci. The size of each circle reflects the relative
614	sample size of each haplotype. The color indicates nuclear clusters and species as follows: red =
615	n-Cluster I of <i>R. tagoi</i> ; green = n-Cluster II of <i>R. tagoi</i> ; light green = n-Cluster II of <i>R. sakuraii</i> .
616	Black circles and bars indicate median vectors and missing haplotypes, respectively.
617	

- 618 Fig. S2 Posterior probability densities for divergence time (T), effective population size (N_e) ,
- and population migration rate $(2N_eM)$ of Clusters I and II obtained in the IM analyses. The
- 620 resultant values and 95% confidence intervals for each estimate are listed in Table 2.
- 621
- 622 Fig. S3 Posterior probability densities for divergence time (*T*, left top), effective population size
- 623 (*N_e*, left middle and bottom), and population migration rate (2*N_eM*, right) of *R*. tagoi (*Rt*)
- 624 lineage A-2, A-5+6, and *R. sakuraii* (*Rs*). Estimates with no statistical support are indicated by
- 625 *ns*. The parameters obtained in three- and two-populations models are shown as triangles and
- 626 circles, respectively. The resultant values and 95% confidence intervals for each estimate are
- 627 listed in Table 2.
- 628
- 629
- 630 The English in this document has been checked by at least two professional editors, both native
- 631 speakers of English. For a certificate, please see:
- 632 <u>http://www.textcheck.com/</u>
- 633 certificate/wc1m0N

Table 1 The mean estimated divergence times(MYA) for *R. tagoi*, *R. sakuraii*, and the outgroups.Values in parentheses are the 95% highest posteriordensity interval. For the node numbers, refer to Fig.

density	interval. For the node n	umbers, refer to Fig.
Node	Calibration I	Calibration II
1	4.00 (5.96-2.33)	4.16 (6.16–2.44)
2	2.58 (3.82-1.60)	2.82 (4.07-1.69)
3	2.31 (3.38–1.42)	2.46 (3.54–1.45)
4	1.84 (2.69–1.05)	1.73 (2.60-0.99)
5	1.16 (1.87-0.60)	1.04 (1.66-0.50)
6	1.32 (2.00-0.69)	1.35 (2.06-0.70)
7	1.87 (2.78–1.05)	2.08 (3.07-1.21)
8	0.95 (1.60-0.44)	1.13 (1.78-0.58)
9	0.88 (1.40-0.41)	1.39 (2.16-0.72)
10	1.92 (2.85-1.09)	2.12 (3.14-1.24)
11	1.75 (2.59-0.96)	1.69 (2.50-0.90)
12	0.50 (0.95-0.14)	0.42 (0.81-0.11)
13	1.15 (1.85-0.56)	1.50 (2.30-0.82)
14	0.36 (0.64-0.13)	0.53 (0.90-0.21)
15	2.31 (3.36–1.34)	2.54 (3.70-1.53)
16	0.79 (1.30-0.34)	0.85 (1.38-0.37)
17	0.20 (0.43-0.03)	0.17 (0.37-0.01)
18	1.68 (2.53-0.99)	1.98 (2.91–1.19)
19	0.53 (0.90-0.21)	0.59 (1.01-0.24)
20	1.04 (1.67-0.46)	1.40 (2.11-0.73)
21	1.46 (2.22-0.76)	1.54 (2.34–0.83)
22	2.71 (4.34–1.40)	2.29 (3.50-1.24)
23	1.40 (2.15-0.71)	1.35 (2.07-0.71)
24	0.80 (1.28-0.36)	0.82 (1.32-0.39)
25	0.90 (1.46-0.42)	1.08 (1.74–0.52)
26	0.04 (0.13-0.03)	0.26 (0.53-0.05)
O-1	22.02 (35.97-11.08)	11.59 (18.29–6.42)

Table 2 Demographic parameters estimated in the IM analysis. N_e , effective population size (million individuals); $2N_eM$, effective population migration rate (number of gene copies/generation), for which $2N_eM_{1 \rightarrow 2}$ ($2N_eM_{2 \rightarrow 1}$) indicates gene flow from group 1 to 2 (2 to 1) forwards in time; T, population divergence time (MYA). Values supported by the highest probability are shown as HiPt, and HPD95 indicates the 95% highest posterior density interval. Parameters in bold indicate the values with statistical support and characters in italics are those with no significant peak of posterior probability density.

probability density.														
	N_{I}	N_2	N ancestor	$2N_e M_{1 \rightarrow 2}$	$2N_eM_2 \rightarrow I$	Т								
(1) Cluster I vs. (2) Cluster II														
HiPt	2.18	1.73	0.40	0.52	1.23	2.72								
HPD95	(1.70–2.87)	(1.34–2.30)	(0.17–0.79)	(0.24–1.12)	(0.70–2.14)	(2.10-4.29)								
Three-pops. model: (1) R. sakuraii vs. (2) R. tagoi lin														
HiPt	0.16	0.80	0.21	0.01	0.00	1.05								
HPD95	(0.07–0.32)	(0.34 - 2.06)	(0.01–4.06)	(0.00-2.46)	(0.00-0.84)	(0.63–2.26)								
Three-pops.	model: (1) <i>R</i> .	sakuraii vs. (2) R. tagoi lin	eage A-5, 6										
HiPt	0.16	0.79	-	0.46	0.40	-								
HPD95	(0.07–0.31)	(0.38 - 1.76)	-	(0.00-2.52)	(0.04 - 2.00)	-								
T 1				- -										
Three-pops.	model: $(1) R$.	tagoi A-2 vs.	(2) <i>R. tagot A</i>	1-5, 6										
HiPt	0.80	0.79	-	0.17	3.79	-								
HPD95	(0.34 - 2.06)	(0.38 - 1.76)	-	(0.00 - 3.74)	(0.75–9.50)	-								
T 1	1 1 (1)													
Three-pops.	model: (1) an	cestor of R. sa	<i>kurall</i> and <i>R</i> .	tagoi A-2 vs.	(2) <i>R. tagoi</i> A	-5, 6								
HiPt	0.21	0.79	0.43	0.06	0.04	2.15								
HPD95	(0.01–4.06)	(0.38 - 1.76)	(0.23–0.77)	(0.00-81.15)	(0.00-34.07)	(1.31–6.11)								
_														
Two-pops. 1	model: (1) <i>R</i> . <i>s</i>	akuraii vs. (2) <i>R. tagoi</i> A-2	, 5, 6										
HiPt	0.17	1.61	0.37	0.01	0.51	1.21								
HPD95	(0.09–0.34)	(0.99–2.65)	(0.10–0.68)	(0.00–3.19)	(0.14–1.17)	(0.56–2.85)								

loc.		voucher GenBank accession r							
nos.	locality	(KUHE)	mt-lineage	mtDNA(16S ND1)	NCX1	NFIA	POMC	SLC8A3	TYR
Rana		(Refill)			iveni	101 111	10000	SLCOILS	111
1 Nunu	Mutsu City Acmori Pref	11827	A 1a	AB630/13 AB630503	AB068741	A B 068871	A B068006	A B 060125	A B060253
1	Noshiro City, Abita Pref	44627	A-1a	AD039413, AD039393	AD906/41	AD9060/1	AD906990	AB909123	AB909233
2	Johinosoki City, Justa Prof	40398	A-la	AD700300 AD620412 AD620509	AD908703	AD906094	AD909021	AD909130	AD909279
5 4	Sondoj City, Iwale Fiel.	30099	A-1a	AD039413, AD039396	AD90000/	AD906010	AD906942	AD909071	AD909199
4	Sendal City, Miyagi Piel.	43022	A-la	AD908302	AD908/01	AD908890	AD909017	AD909140	AD909274
5	Yamagata City, Yanagata Pref.	37543	A-1a	AB639417, AB639601	AB968689	AB968818	AB968944	AB969073	AB969201
6	Ninonmatsu City, Fukusnima Pref.	29595	A-la	AB639419, AB639604	AB968676	AB968805	AB968931	AB969060	AB969189
7	Nihonmatsu City, Fukushima Pref.	36330	A-2	AB639474, AB639643	AB968686	AB968815	AB968941	AB969070	AB969198
8	Daigo town, Ibaraki Pref.	42344	A-la	AB639420, AB639605	AB968703	AB968832	AB968958	AB969087	AB969215
		43723	A-1a	AB968270	AB968725	AB968854	AB968980	AB969109	AB969237
		43886	A-2	AB639421, AB639646	AB968728	AB968857	AB968983	AB969112	AB969240
		TMP_081122-1	A-2	AB968251	AB968772	AB968784	AB969029	AB969156	AB969158
9	Tsukuba City, Ibaraki Pref.	42747	A-2	AB639479, AB639648	AB968709	AB968838	AB968964	AB969093	AB969221
10	Ichihara City, Chiba Pref.	28409	A-2	AB639482, AB639652	AB968673	AB968803	AB968929	AB969058	AB969186
		46172	A-2	AB968305	AB968764	AB968893	AB969020	AB969149	AB969277
11	Kanuma City, Tochigi Pref.	40166	A-1a	AB639422, AB639609	AB968690	AB968819	AB968945	AB969074	AB969202
12	Uonuma City, Nigata Pref.	36896	A-1a	AB639429, AB639612	AB968688	AB968817	AB968943	AB969072	AB969200
13	Nakanojo Town, Gunma Pref.	44810	A-1a	AB968281	AB968739	AB968869	AB968994	AB969123	AB969251
	0	44811	A-1a	AB968282	AB968740	AB968870	AB968995	AB969124	AB969252
		22930	A-4	AB639487, AB639657	AB968658	AB968787	AB968913	AB969042	AB969171
		22936	A-4	AB639487, AB639657	AB968659	AB968788	AB968914	AB969043	AB969172
		44797	A-4	AB968280	AB968738	AB968868	AB968993	AB969122	AB969250
14	Saku City Nagano Pref	43980	A-2	AB968274	AB968732	AB968861	AB968987	AB969116	AB969244
14	Akiruno City, Tokyo Pref	42452	Δ_{-2}	AB639483 AB639651	AB968705	AB968834	AB968960	AB969089	AB969217
15	Akiruno eny, Tokyo Pier.	42452	A-2 A 2	AB069263	AB968706	AB068835	AB968961	AB960000	AB060218
16	Eujikawa zuchika Tawa Vamanashi Draf	42455	A-2	AD908205	AD908700	AD908833	AD900901	AD909090	AD909218
10	Fujikawaguchiko 10wii, 1 amanasin Fier.	43336	A-2	AD906300	AD908739	AD900000	AD909013	AD909144	AD909272
17	Mincher Torren Varranashi Duaf	45480	A-0	AD039493, AD039003	AB908/10	AB908843	AB9089/1	AB969100	AB909228
17	Minobu Town, Yamanashi Pref.	45552	A-2	AB968299	AB908/58	AB908887	AB969014	AB969143	AB969271
10		45549	A-0	AB908298	AB968/5/	AB908880	AB969013	AB969142	AB969270
18	Izu City, Shizuoka Pref.	43468	A-2	AB639485, AB639655	AB968/15	AB968844	AB968970	AB969099	AB969227
19	Hokuto City, Yamanashi Pref.	43483	A-5	AB639489, AB639659	AB968/1/	AB968846	AB968972	AB969101	AB969229
23	Nagano City, Nagano Pref.	18005	A-5	AB639488, AB639658	AB968654	AB968782	AB968909	AB969038	AB969167
24	Kurobe City, Toyama Pref.	45102	A-1a	AB968287	AB968746	AB968876	AB969002	AB969131	AB969259
		45103	A-1a	AB968288	AB968747	AB968877	AB969003	AB969132	AB969260
		45014	A-5	AB968283	AB968742	AB968872	AB968998	AB969127	AB969255
		45099	A-5	AB968286	AB968745	AB968875	AB969001	AB969130	AB969258
25	Takayama City, Gifu Pref.	42048	A-1a	AB968261	AB968700	AB968829	AB968955	AB969084	AB969212
		43018	A-1a	AB639434, AB639617	AB968711	AB968840	AB968966	AB969095	AB969223
26	Gujo City, Gifu Pref.	14228	A-5	AB639490, AB639660	AB968652	AB968780	AB969027	AB969036	AB969165
27	Fujieda City, Shizuoka Pref.	17955	A-6	AB639498, AB639668	AB968653	AB968781	AB968908	AB969037	AB969166
28	Neba Village, Nagano Pref.	27335	A-6	AB639500, AB639670	AB968665	AB968794	AB968920	AB969049	AB969178
		27337	A-6	AB968254	AB968666	AB968795	AB968921	AB969050	AB969179
29	Shinio City, Aichi Pref.	45913	A-6	AB968304	AB968763	AB968892	AB969019	AB969148	AB969276
30	Okazaki City. Aichi Pref.	45910	A-6	AB968303	AB968762	AB968891	AB969018	AB969147	AB969275
31	Ise City, Mie Pref.	42829	A-6	AB639502, AB639672	AB968710	AB968839	AB968965	AB969094	AB969222
33	Ibigawa Town, Gifu Pref.	27388	A-1a	AB639436, AB639619	AB968667	AB968796	AB968922	AB969051	AB969180
34	Takashima City Shiga Pref	43925	A-1a	AB968273	AB968731	AB968860	AB968986	AB969115	AB969243
54	Tukusinina City, binga Pier.	43924	A-1b	AB968272	AB968730	AB968859	AB968985	AB969114	AB969242
35	Taga Town Shiga Pref	43512	R-10 R-29	AB968266	AB968718	AB968847	AB968973	AB969102	AB969230
36	Matsuzaka City Mie Pref	43312	B_{-2a}	AB630551 AB630716	AB968698	AB968827	AB968953	AB969082	AB969210
27	Love City, Kyote Pref	41464	\mathbf{D} -2a \mathbf{P} -2a	AB630540 AB630714	AD908098	AD908827	AD908955	AD909082	AD909210
20	Odei Teur Mie Bref	41334	\mathbf{D} -2a	AD039349, AD039714	AD906099	AD900020	AD906934	AD909063	AD909211
38	Odal Town, Mie Pfel.	40190	B-2a	AB039353, AB039/18	AB908091	AB908820	AB908940	AB969075	AB909203
20	Cale Cite Walson Date	45047	B-2a	AB908284	AB968/43	AB9688/3	AB968999	AB969128	AB969257
39	Gobo City, wakayama Pref.	41229	B-2a	AB639561, AB639727	AB968693	AB968822	AB968948	AB969077	AB969205
40	Kyoto City, Kyoto Pref.	42342	A-1b	AB968262	AB968702	AB968831	AB968957	AB969086	AB969214
		44828	A-lb	AB968307	AB968/68	AB968896	AB968997	AB969126	AB969254
		42319	B-2a	AB639464, AB639712	AB968701	AB968830	AB968956	AB969085	AB969213
41	Nantan City, Kyoto Pref.	41408	A-1b	AB639452, AB639630	AB968695	AB968824	AB968950	AB969079	AB969207
		41405	B-2a	AB968259	AB968694	AB968823	AB968949	AB969078	AB969206
		41430	B-2a	AB968260	AB968697	AB968826	AB968952	AB969081	AB969209
42	Sasayama City, Hyogo Pref.	10307	A-1b	AB639469, AB639639	AB968647	AB968776	AB968903	AB969031	AB969160
43	Kobe City, Hyogo Pref.	45392	A-1b	AB968297	AB968756	AB968885	AB969012	AB969141	AB969269
44	Taka Town, Hyogo Pref.	10330	B-2a	AB639564, AB639729	AB968648	AB968777	AB968904	AB969032	AB969161
45	Kyotango City, Kyoto Pref.	14171	A-1b	AB968253	AB968651	AB968779	AB968907	AB969035	AB969164
46	Toyooka City, Hyogo Pref.	42711	A-1b	AB639466, AB639637	AB968707	AB968836	AB968962	AB969091	AB969219
		42714	B-2a	AB639467, AB639729	AB968708	AB968837	AB968963	AB969092	AB969220
47	Wakasa Town, Tottori Pref.	34743	A-1b	AB639473, AB639642	AB968684	AB968813	AB968939	AB969068	AB969196
49	Mimasaka City, Okayama Pref.	27659	B-2a	AB639464, AB639730	AB968670	AB968800	AB968926	AB969055	AB969183
52	Misasa Town, Tottori Pref.	24574	B-2b	AB639465, AB639731	AB968660	AB968789	AB968915	AB969044	AB969173
53	Kagamino Town, Okavama Pref	29739	B-2b	AB968256	AB968677	AB968806	AB968932	AB969061	AB969190
5 <i>1</i>	Shohara City Hiroshima Pref	36040	B-26 B-2h	AB639469 AR630734	AB968685	AB968814	AB968940	AB969060	AB960107
55	Izumo City Shimane Pref	18877	B-20 R-2h	AB639467 AR630724	AB968655	AR068782	AR068010	AR060020	AR060169
55 57	Higashihiroshima City Hiroshima Drof	20262	B-20 B-25	AB630/77 AB620727	4R069670	4R068607	AR069022	4R060062	ΔR060101
51	Hatsukajchi City, Hiroshima Drof	JUZUZ	D-20 ב ור ב	AB630571 AD620726	AB060772	A BUC0001	A BUCUUJO	A BUCU167	A BUCUJ01
58	naisukaichi City, Hirosnima Pref.		D-20	AD0393/1, AB039/30	AD708//3	AD908901	AD909028	AD20213/	AD909281
60	Shimonogoki City, Varraquali Deef	4310/ 24516	Б-20 Б-21	ABY08203	AD908/13	AD908842	AD908908	AD90909/	AD909223
60	Minemieusii Cita II. D. C	34316	ы-20	AD0393/3, AB039/40	AD908082	AD908811	AD90893/	AD909000	AD9092/8
61	Managa Tagan Kanaga Salah	43885	A-/	AB039504, AB0396/3	AB968/27	AB968856	AB968982	AB969111	AB969239
62	Nanno Iown, Kagawa Pret.	TMP_12882	A-/	АВ639505, АВ639674	AB968//0	AB968898	AB969024	AB969153	AB969283
63	Miyoshi City, Tokushima Pref.	TMP_T3498	A-7	AB968308	АВ968771	AB968899	AB969025	АВ969154	АВ969284

Table S1 The samples used in this study with information on the sampling localities, vouchers, and GenBank accession numbers for each locus. KUHE, Graduate School of Human and Environmental Studies, Kyoto University; TMP, temporary number.

64 Toyo Town, Kochi Pref.	29464	A-7	AB639510, AB639679	AB968675	AB968804	AB968930	AB969059	AB969188
65 Saijo City, Ehime Pref.	27679	A-7	AB639507, AB639676	AB968672	AB968802	AB968928	AB969057	AB969185
	43078	A-7	AB968264	AB968712	AB968841	AB968967	AB969096	AB969224
66 Saiyo City, Ehime Pref.	TMP_T2241	A-7	AB639509, AB639678	AB968769	AB968897	AB969023	AB969152	AB969282
67 Kitakyushu City, Fukuoka Pref.	28612	A-9a	AB968255	AB968674	AB968798	AB968924	AB969053	AB969187
68 Beppu City, Oita Pref.	43637	A-9a	AB639519, AB639688	AB968723	AB968852	AB968978	AB969107	AB969235
69 Yatsushiro City, Kumamoto Pref.	27562	A-9a	AB639524, AB639691	AB968668	AB968797	AB968923	AB969052	AB969181
70 Amakusa City, Kumamoto Pref.	30342	A-9a	AB639525, AB639692	AB968679	AB968808	AB968934	AB969063	AB969192
71 Kanova City, Kagishima Pref.	27295	A-9a	AB639530, AB639697	AB968664	AB968793	AB968919	AB969048	AB969177
72 Sasebo City Nagasaki Pref	27140	A-9a	AB639518 AB639687	AB968663	AB968792	AB968918	AB969047	AB969176
73 Goto City Nagasaki Pref	45359	A-9a	AB968295	AB968754	AB968883	AB969010	AB969139	AB969267
75 0010 0119, 14ugusulli 1101.	45362	A-9a	AB968296	AB968755	AB968884	AB969011	AB969140	AB969268
74 Nobeoka City, Miyazaki Pref	27121	Δ_{-9h}	AB639528 AB639695	AB968662	AB968791	AB968917	AB969046	AB969175
75 Nishimera Village Miyazaki Pref	26088	Δ_9b	AB639529 AB639696	AB968661	AB968790	AB968916	AB969045	AB969174
76 Miyakonojo City Miyazaki Pref	20000	A-96	AB639532, AB639699	AB968680	AB968800	AB968935	AB969064	AB969193
70 Wilyakohojo City, Wilyazaki Hel.	42207	A-90	AB639532, AB639699	AD908080	AD900009	AD900955	AD909004	AB969795
77 Kinloisuki City, Kagoshima Irei. 78 Kinko Toum, Kagoshima Drof	43377	A-90	AD039335, AD039700 AD620526 AD620702	AD908714	AD900043	AD908909	AD909098	AD909220
78 Kiliko Towii, Kagosiliilia Fiel.	21070	A-90	AD039330, AD039703	AD9060/1	AD900001	AD906927	AD909030	AD909104
79 Goto City, Nagasaki Prei.	31539	A-90	AB039538, AB039705	AB968681	AB968810	AB908930	AB969065	AB969194
79 Shinkamigoto City, Nagasaki Pref.	45149	A-9c	AB968291	AB968/50	AB968879	AB969006	AB969135	AB969263
	TMP_110216-1	A-9c	AB968252	AB968650	AB968774	AB968906	AB969034	AB969163
80 Goto City, Nagasaki Pref.	44316	A-9c	AB968278	AB968736	AB968866	AB968991	AB969120	AB969248
	44317	A-9c	AB968279	AB968737	AB968867	AB968992	AB969121	AB969249
	45355	A-9c	AB968294	AB968753	AB968882	AB969009	AB969138	AB969266
R. t. okiensis								
50 Okinoshima Town, Shimane Pref.	10818	B-1	AB639576, AB639742	AB968649	AB968778	AB968905	AB969033	AB969162
	22341	B-1	AB639579, AB639742	AB968656	AB968785	AB968911	AB969040	AB969169
51 Nishinoshima Town, Shimane Pref.	43647	B-1	AB639580, AB639742	AB968724	AB968853	AB968979	AB969108	AB969236
R. t. yakushimensis								
81 Yakushima Town, Kagoshima Pref.	10182	A-8	AB639578, AB639741	AB968646	AB968775	AB968902	AB969030	AB969159
-	45177	A-8	AB968292	AB968751	AB968880	AB969007	AB969136	AB969264
	45182	A-8	AB968293	AB968752	AB968881	AB969008	AB969137	AB969265
R. sakuraii								
11 Kanuma City, Tochigi Pref.	43633	A-2	AB968268	AB968720	AB968849	AB968975	AB969104	AB969232
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	43634	A-2	AB968269	AB968721	AB968850	AB968976	AB969105	AB969233
	43635	A_2	AB639423 AB639744	AB968722	AB968851	AB968977	AB969106	AB969234
15 Akiruno City Tokyo Pref	42450	A-2	AB639583 AB639744	AB968704	AB968833	AB968959	AB969088	AB969216
18 Finnano City, Fongo Fron	43740	Δ_{-2}	AB968271	AB968726	AB968855	AB968981	AB969110	AB969238
17 Minohu Town, Vamanashi Pref	45620	Δ_{-2}	AB968301	AB968760	AB968889	AB969016	AB969145	AB969273
20 Shizuoka City, Shizuoka Pref	unnumbered	A-2	AB630/88 AB6307/0	AB968766	AB968900	AB969022	AB969151	AB969280
20 Silizuoka City, Silizuoka Fiel.	44254	A-2	AD059488, AD059749	AD908700	AD908900	AD909022	AD909131	AD909280
	44234	A-3	AD906275	AD900733	AD900002	AD900900	AD909117	AD909240
21 Glimate City Glimate Def	44280	A-3	AB908277	AB908733	AB908803	AB968990	AB969119	AB969247
21 Shizuoka City, Shizuoka Pref.	44256	A-2	AB968276	AB968/34	AB968863	AB968989	AB969118	AB969245
22 Matsumoto City, Nagano Pref.	22887	A-2	AB639585, AB639/46	AB96865/	AB968/86	AB968912	AB969041	AB969170
24 Kurobe City, Toyama Pref.	45105	A-3	AB968289	AB968748	AB968878	AB969004	AB969133	AB969261
24 Kurobe City, Toyama Pref.	45106	A-3	AB968290	AB968749	AB968864	AB969005	AB969134	AB969262
32 Katsuyama City, Fukui Pref.	43591	A-3	AB968267	AB968719	AB968848	AB968974	AB969103	AB969231
38 Odai Town, Mie Pref.	27647	A-3	AB639554, AB639719	AB968669	AB968799	AB968925	AB969054	AB969182
	40309	A-3	AB639555, AB639720	AB968692	AB968821	AB968947	AB969076	AB969204
	45049	A-3	AB968285	AB968744	AB968874	AB969000	AB969129	AB969256
41 Nantan City, Kyoto Pref.	41412	A-3	AB639455, AB639632	AB968696	AB968825	AB968951	AB969080	AB969208
	unnumbered	A-3	AB639454, AB639631	AB968767	AB968895	AB969026	AB969155	AB969285
48 Wakasa Town, Tottori Pref.	34740	A-3	AB968257	AB968683	AB968812	AB968938	AB969067	AB969195
59 Iwakuni City, Yamaguchi Pref.	43893	A-3	AB639590, AB639750	AB968729	AB968858	AB968984	AB969113	AB969241
R. tsushimensis								
Tsushima City, Nagasaku Pref.	10606		AB639592, AB639752	-	-	-	-	-
R. kobai	20000		,,					
Amami City Kagoshima Pref	10051		AB685768	_	_	_	_	_
R ulma	10001		112003700					
Higashi Village Okinawa Prof	10056		AR685780	_	_	_	_	_
R sautari	10050		007/00	-	-	-	-	-
Chiavi County Taiwan	689/		AR685767	_	_	_	_	_
Ounty, rarwall	0074		10000707	-	_	_	-	—

Table S2 The primers used to amplify mt- and n-DNA in this study.

Target	Name	Sequence	Reference
16S	L1507	TACACACCGCCCGTCACCCTCTT	Shimada et al (2011)
	H1923	AAGTAGCTCGCTTAGTTTCGG	Shimada et al (2011)
	L1879	CGTACCTTTTGCATCATGGTC	Shimada et al (2011)
	H2315	TTCTTGTTACTAGTTCTAGCAT	Shimada et al (2011)
	L2188	AAAGTGGGCCTAAAAGCAGCCA	Matsui et al (2006)
	Wilkinson_6	CCCTCGTGATGCCGTTGATAC	Wilkinson et al (2002)
	16L1	CTGACCGTGCAAAGGTAGCGTAATCACT	Hedges (1994)
	16H1	CTCCGGTCTGAACTCAGATCACGTAGG	Hedges (1994)
ND1	L3032	CGACCTCGATGTTGGATCAGG	Shimada et al (2011)
	ND1_Htago	GRGCRTATTTGGAGTTTGARGCTCA	Eto et al (2012)
	ND1_Ltago	GACCTAAACCTCAGYATYCTATTTAT	Eto et al (2012)
	tMet_H	AGGAAGTACAAAGGGTTTTGATC	Shimada et al (2011)
NCX1	NCX1F	ACAACAGTRAGRATATGGAA	Shimada et al. (2011)
	NCX1R1	GCCATATCTCTCCTCGCTTCTTC	Eto et al (2013)
NFIA	NFIA-005_F	TTTGTCACATCAGGTGTTTT	This study
	NFIA-005_F	CTTGCCTTGGCTGCT	This study
POMC	POMC1	GAATGTATYAAAGMMTGCAAGATGGWCC	Wiens et al. (2005)
	POMC7	TGGCATTTTTGAAAAGAGTCAT	Smith et al. (2005)
SLC8A3	SCF_2F	CAAACACAGRGSAATTATGAT	Shimada et al (2011)
	SCF_2R	ATAATYCCAACTGARAACTC	Shimada et al (2011)
TYR	Tyr_L1	CCCCAGTGGGYRCCCARTTCCC	Kuraishi et al (2013)
	Tyr_H1	CCACCTTCTGGATTTCCCGTTC	Kuraishi et al (2013)

References

Eto, K., Matsui, M., Sugahara, T., 2013. Discordance between mitochondrial DNA genealogy and nuclear DNA genetic structure in the two morphotypes of Rana tagoi tagoi (Amphibia: Anura: Ranidae) in the Kinki Region, Japan. Zool. Sci. 30, 553–558.

Eto, K., Matsui, M., Sugahara, T., Tanaka-Ueno, T., 2012. Highly complex mitochondrial DNA genealogy in an endemic Japanese subterranean breeding brown frog Rana tagoi (Amphibia, Anura, Ranidae). Zool. Sci. 29, 662–671.

Kuraishi, N., Matsui, M., Hamidy, A., Belabut, D.M., Ahmad, N., Panha, S., Sudin, A., Yong, H.S., Jiang, J.-P., Ota, H., Thong, H.T., Nishikawa, K., 2013. Phylogenetic and taxonomic relationships of the *Polypedates leucomystax* complex (Amphibia). Zool. Scripta, 42, 54–70.

Matsui M, Shimada T, Liu W-.Z., Maryati, M., Khonsue, W., Orlov, N., 2006. Phylogenetic relationships of Oriental torrent frogs in the genus Amolops and its allies (Amphibia, Anura, Ranidae). Mol. Phylogenet. Evol. 38, 659–666.

Shimada, T., Matsui, M., Yambun, P., Sudin, A. 2011. A taxonomic study of Whitehead's torrent frog, Meristogenys whiteheadi, with descriptions of two new species (Amphibia: Ranidae). Zool. J. Linnean, Soc, 161, 157–183.

Smith, S.A., Stephens, P.R., Wiens, J., 2005. Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs. Evolution, 59, 2433–2450.

Wiens, J., Fetzner, J.W. Jr, Parkinson, C.L., Reeder, T.W., 2005. Hylid frog phylogeny and sampling strategies for species clades. Syst. Biol. 54, 719–748.

Wilkinson, J.A., Drewes, R.C., Tatum, O.L., 2002. A molecular phylogenetic analysis of the family Rhacophoridae with an emphasis on the Asian and African genera. Mol. Phylogenet. Evol. 24, 265–273.

	Tajima's <i>L</i>	sites	VS	h	Hd	π	vs	h	Hd	π	VS	h	Hd	π	VS	h	Hd	π	
		V	whole	(n = 1)	28)		mt	mt-lineage A-1a ($n = 18$)				linea:	ge A-1b (n = 9)	mt-lineage A-2Rt ($n = 12$)				
16S	-1.307	1612	285	115	0.998	0.024	44	15	0.980	0.006	50	9	1.000	0.010	51	20	0.970	0.010	
ND1	-0.816	967	287	104	0.997	0.047	44	14	0.974	0.010	70	9	1.000	0.026	53	10	0.970	0.016	
NCX1 (SLC8A1) -0.648	505	26	37	0.851	0.006	7	5	0.651	0.003	3	4	0.525	0.002	5	4	0.649	0.003	
NFIA	-1.626	414	18	21	0.735	0.003	3	5	0.548	0.002	3	4	0.700	0.003	2	3	0.177	0.000	
POMC	-1.538	475	40	48	0.870	0.007	9	6	0.712	0.004	7	6	0.775	0.004	12	10	0.859	0.006	
SLC8A3 (NCX3	-1.429	524	21	23	0.786	0.003	3	4	0.236	0.001	2	3	0.242	0.000	8	6	0.659	0.002	
TYR	-1.210	318	50	97	0.955	0.017	17	12	0.867	0.013	15	12	0.958	0.018	20	15	0.946	0.018	
							_				_				_				
		-	mt-	lineag	e A-2 <i>Rs</i>	(n = 9)	m	linea:	ge A-3 (n	= 12)	m	t-linea	age A-4 (r	n = 3)	m	t-linea	age A-5 (1	n = 5)	
16S			26	7	0.964	0.006	43	12	1.000	0.009	7	2	0.667	0.003	41	5	1.000	0.012	
ND1			38	7	0.964	0.016	37	8	0.939	0.013	9	2	0.667	0.006	38	4	0.900	0.018	
NCX1 (SLC8A1)		2	2	0.125	0.001	2	3	0.163	0.000	3	2	0.533	0.003	3	3	0.607	0.002	
NFIA			1	2	0.125	0.000	2	3	0.163	0.000	2	3	0.600	0.002	1	2	0.250	0.001	
POMC			6	5	0.556	0.003	9	5	0.652	0.004	3	2	0.533	0.003	4	3	0.607	0.003	
SLC8A3 (NCX3	?)		1	2	0.125	0.000	2	3	0.554	0.001	1	2	0.533	0.001	1	2	0.571	0.001	
TYR		_	11	4	0.442	0.008	9	5	0.493	0.007	1	2	0.533	0.002	12	7	0.964	0.018	
		-	m	t-linea	ige A-6 (1	n = 8)	mt-lineage A-7 $(n = 7)$					t-linea	age A-8 (r	n = 3)	mt-lineage A-9a $(n = 8)$				
16S		-	25	8	1.000	0.005	27	7	1.000	0.006	3	2	0.667	0.001	28	7	0.964	0.006	
ND1			15	6	0.964	0.005	32	7	1.000	0.011	3	2	0.667	0.002	21	7	0.964	0.006	
NCX1 (SLC8A1)		4	5	0.505	0.002	2	3	0.538	0.001	4	3	0.733	0.004	6	6	0.792	0.004	
NFIA			2	3	0.425	0.001	2	3	0.275	0.001	2	3	0.600	0.002	2	3	0.433	0.001	
РОМС			9	7	0.850	0.006	-	1	-	-	4	3	0.600	0.003	2	3	0.242	0.001	
SLC8A3 (NCX3	?)		2	2	0.363	0.001	2	2	0.440	0.002	-	1	-	-	1	2	0.264	0.001	
TYR			16	13	0.975	0.016	9	7	0.846	0.009	10	4	0.800	0.013	11	7	0.692	0.009	
mt-lineage A-9b ($n = 5$)						m	t-linea	ge A-9c (n = 6)	m	t-line	age B-1 (r	n = 3)	mt	-lineag	ge B-2a (r	n = 12)		
16S			44	5	1.000	0.014	41	5	0.933	0.014	4	3	1.000	0.002	36	10	0.970	0.007	
ND1			36	5	1.000	0.018	39	4	0.800	0.023	-	1	-	-	42	10	0.970	0.013	
NCX1 (SLC8A1)		5	5	0.822	0.003	6	7	0.879	0.003	-	1	-	-	2	3	0.636	0.002	
NFIA			2	2	0.200	0.001	4	5	0.756	0.004	1	2	0.333	0.001	1	2	0.228	0.001	

Table S3 Summary statistics of each locus. Tajima's *D* values; length of sequence after alignment; variable sites (*vs*); number of haplotypes (*h*); haplotype diversity (*Hd*); and nucleotide diversity (π).

POMC	6	3	0.378	0.003	7	5	0.742	0.006	8	5	0.933	0.008	9	7	0.851	0.004
SLC8A3 (NCX3)	3	4	0.644	0.001	-	1	-	-	3	4	0.867	0.003	4	5	0.361	0.002
TYR	12	9	0.978	0.013	11	6	0.848	0.014	6	5	0.933	0.009	10	9	0.812	0.010
	m	t-linea	ige B-2b (n = 8)		n-clus	ster I (n =	68)	1	n-clus	ter II (n =	56)				
16S	24	7	0.964	0.006	204	61	0.996	0.026	176	53	0.997	0.018				
ND1	33	7	0.964	0.014	218	57	0.994	0.049	192	47	0.994	0.037				
NCX1 (SLC8A1)	7	6	0.833	0.005	19	26	0.875	0.005	12	13	0.483	0.002				
NFIA	1	2	0.125	0.000	11	16	0.493	0.002	6	8	0.486	0.001				
POMC	4	4	0.350	0.001	29	26	0.784	0.006	24	24	0.849	0.007				
SLC8A3 (NCX3)	3	3	0.633	0.002	9	10	0.593	0.002	12	12	0.577	0.002				
TYR	10	13	0.967	0.010	34	58	0.935	0.014	33	43	0.907	0.016				

Fig. 4

Fig. S1

Fig. S3

Graphical abstract