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Summary  1 

Phenotypic heterogeneity of cancer cells is caused not only by genetic and epigenetic 2 

alterations, but also by stochastic variation of intracellular signaling molecules. Using cells 3 

that stably express Förster resonance energy transfer (FRET) biosensors, we here show 4 

correlation of Rac1 activity fluctuation with invasive property of C6 glioma cells. By 5 

long-term time-lapse imaging Rac1 activity in C6 glioma cells was found to fluctuate with a 6 

timescale significantly longer than the replication cycle. Because the level of Rac1 activity 7 

in each cell was robust to suspension-adhesion procedure, C6 glioma cells were sorted by 8 

Rac1 activity, yielding Rac1
high

 and Rac1
low

 cells. The Rac1
high

 cells invaded more efficiently 9 

than did Rac1
low

 cells in the Matrigel invasion assay. Among the top 14 membrane-related 10 

genes enriched in Rac1
high

 cells, four genes were associated with glioma invasion and Rac1 11 

activity as examined by siRNA knockdown experiments. Among transcription factors 12 

enriched in Rac1
high

 cells, Egr2 was found to positively regulate expression of the four 13 

membrane-related invasion-associated genes. The identified signaling network may cause 14 

the slow fluctuation of Rac1 activity and heterogeneity in invading capacity of glioma cells. 15 

 16 

Introduction 17 

Cancer cells originated from a single cell acquire phenotypic heterogeneity due to genomic 18 

instability or heritable epigenetic changes (Lengauer et al., 1998; Shackleton et al., 2009). 19 

This heterogeneity is of great advantage for the cancer progression and guarantees its 20 

insidious, highly invasive nature in tissues (Heppner, 1984; Rubin, 1990; Shackleton et al., 21 

2009). Recently, however, it has also been reported that the fate and behavior of mammalian 22 

cells, including cancer cells, can be determined by stochastic gene expression variation 23 

(Brock et al., 2009). For example, patterns of signaling heterogeneity in monoclonal cancer 24 

cells can generate diverse phenotypes with different drug sensitivities (Singh et al., 2010). 25 

A typical example of cancers that exhibit extensive heterogeneity is glioblastoma, 26 

which was previously termed glioblastoma “multiforme,” reflecting its histopathological 27 

divergence in size, shape, karyotype, etc. (Louis, 2006). Among the many experimental 28 

models of glioblastoma, the C6 glioma cell model has been frequently used to study 29 

invasiveness of glioblastoma cells (Grobben et al., 2002). The C6 glioma cells implanted 30 

into syngeneic Wistar rats share many histological hallmarks with human glioblastoma and 31 

preferentially migrate along neuronal fibers and through the perivascular space, a pattern 32 

which resembles the spread of human glioblastoma. 33 

Rho-family GTPases regulate cytoskeletal dynamics and thereby affect many cellular 34 

processes, including cell polarity, migration, vesicle trafficking and cytokinesis 35 

(Etienne-Manneville and Hall, 2002). In cancer cells, Rho-family GTPases play critical roles 36 

in manifesting the cancer cell-specific behavior (Sahai and Marshall, 2002). Rac1, for 37 
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example, accelerates tumorigenesis by regulating apoptosis, cell cycle progression, assembly 1 

and disassembly of tight junction and adherens junction, cell migration, and cell invasion 2 

(Mack et al., 2011). Importantly, these pleiotropic functions of Rho-family GTPases have 3 

been characterized by comparing cancer cells with non-cancer cells. Meanwhile, little is 4 

known about the heterogeneity and fluctuation of Rho-family GTPase activity within the 5 

cancer cell population.  6 

Sorting cells with respect to a property of interest is essential to study the 7 

heterogeneity of cancer cells by genetic, epigenetic, biochemical, or cell biological analyses. 8 

Cell surface markers and cognitive antibodies have been routinely used for this purpose, but 9 

the methods used to sort cells depending on the intracellular activity of a signaling molecule 10 

are limited. Biosensors based on the principle of Förster resonance energy transfer (FRET) 11 

have been widely used to monitor the activity of the signaling molecules (Kiyokawa et al., 12 

2006; Miyawaki, 2011); however, due to a lack of methods for the stable expression of the 13 

FRET biosensors, cell sorting with FRET biosensor-expressing cells has been a difficult 14 

task.  15 

Recently, we developed methods to express FRET biosensors stably in cell lines and 16 

transgenic mice (Kamioka et al., 2012; Komatsu et al., 2011). With C6 rat glioma cells stably 17 

expressing a FRET biosensor for Rac1, we found that C6 glioma cells penetrating the brain 18 

parenchyma showed higher Rac1 and Cdc42 activities and lower RhoA activity than those 19 

advancing in the perivascular regions (Hirata et al., 2012). This observation urged us to 20 

investigate the mechanism by which the heterogeneity of Rho-family GTPase activity is 21 

generated, and the role of the heterogeneity in the invasion of glioma cells. For this purpose, 22 

we established a method to sort cells with respect to their levels of Rho-family GTPase 23 

activity. Then, by using next-generation sequencers, we identified genes whose expressions 24 

were correlated with Rac1 activity. Using this approach, we here show that slow fluctuation 25 

of Rac1 activity is associated with the heterogeneity of glioma invasion. 26 

 27 

Results 28 

Distribution of Rac1 activity among C6 glioma cells  29 

We have shown that C6 glioma cells invading at the periphery of a tumor mass in the rat 30 

brain or a 3D spheroid exhibit higher Rac1 activity than those trailing such leader cells 31 

(Hirata et al., 2012). We speculated that such distribution of Rac1 activity among C6 glioma 32 

cells may be autonomously generated during cell growth and spreading. To test this idea, we 33 

prepared C6 glioma cells that stably express a FRET biosensor, Raichu-Rac1, and visualized 34 

Rac1 activity on glass-bottom dishes (Fig. 1A). We detected significant variation in Rac1 35 
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activity, which exhibited a typical normal distribution (Fig. 1B, C). Correlation between the 1 

Rac1 activity and the expression level of the biosensor was not observed (Fig. 1D)  2 

 3 

Fluctuation and Robustness of Rac1 activity 4 

The normal distribution of Rac1 activity probably reflected the noise of the system (Brock 5 

et al., 2009). To study the mechanism underlying the generation of the noise, we time-lapse 6 

imaged Rac1 activity in C6 glioma cells for 5 days (Fig. 2A, Movie S1). C6 glioma cells 7 

expressing Raichu-Rac1 were seeded onto a glass-bottom dish having 282-m-diameter 8 

spot, which prevented cells from straying out from the visual field. To maintain cell density 9 

within the optimal range for cell growth, the Raichu-Rac1-expressing cells were 10 

co-cultured with parental C6 glioma cells. We chose spots having a single 11 

biosensor-expressing cell and one to several parental C6 cells for the tracking. Rac1 12 

activity was averaged over the entire cell area and plotted against time (Fig. 2B). Except for 13 

the rapid decline and increment during cell division, Rac1 activity exhibited fluctuation 14 

with timescales longer than the cell cycle (>40 hours). Consequently, after 5 days, when the 15 

single cells proliferated to 6 to 8 cells, Rac1 activity varied significantly among the 16 

daughter cells (Supplementary Fig. S1A). Analysis with power spectrum did not reveal any 17 

periodicity of Rac1 activity fluctuation (Fig. 2C). Of note, Rac1 activity did not 18 

significantly change before and after cell division, suggesting that the level of Rac1 activity 19 

was maintained by a mechanism that is robust to cell division (Fig. 2D). The range of Rac1 20 

activity after 5 days (Fig. 2B) was similar to the range of Rac1 activity observed for the cell 21 

population (Fig. 1C). Therefore, we concluded that the distribution of Rac1 activity was 22 

generated primarily by the slow fluctuation with timescales longer than the cell cycle. To 23 

understand the biological significance of the observed distribution of Rac1 activity, we 24 

examined the correlation between the cell area and Rac1 activity (Fig. 2E), and found a 25 

weak positive correlation. The positive, albeit weak, correlation between cell area and Rac1 26 

activity probably reflects the high level of Rac1 activity in lamellipodia (Itoh et al., 2002; 27 

Kraynov et al., 2000). We also examined the velocity of migration (Fig. 2E), but could not 28 

observe any clear correlation with Rac1 activity. 29 

 Next, to examine the robustness of the level of Rac1 activity, we detached the cells 30 

by trypsin, and then induced cell adhesion by trypsin inhibition in situ (Fig. 2F). 31 

Trypsinization induced cell rounding and decreased Rac1 activity. Following trypsin 32 

inhibition induced cell adhesion and restored the Rac1 activity. Notably, the relative Rac1 33 

activity of each cell did not change before, during, and after trypsinization (Fig. 2F). This 34 

observation agrees with the previous report that the suspension of adherent cells reduces 35 

Rac1 activity (del Pozo et al., 2000), and also suggests that the level of Rac1 activity in 36 
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each cell is maintained by a robust mechanism, which is not affected by the 1 

suspension-adhesion procedure.  2 

 3 

FRET-based cell sorting to select Rac1
high

 and Rac1
low

 populations 4 

To understand the mechanisms underlying and roles played by the slow fluctuation and 5 

robustness of Rac1 activity, we attempted to examine the transcriptomes of C6 glioma cells 6 

with different levels of Rac1 activity. Encouraged by the observation that the 7 

suspension-adhesion procedure did not alter the relative Rac1 activity of each cell, we 8 

sorted C6 glioma cells depending on Rac1 activity with FACS. The FRET/CFP ratio was 9 

used as the index of FRET efficiency as in microscopy. The FRET/CFP ratio was 10 

independent of the expression level of the biosensor (Fig. 3A) as observed in 2D condition 11 

(Fig. 1D). C6 glioma cells in the highest and lowest decile with respect to the FRET/CFP 12 

ratio were named the Rac1
high

 and Rac1
low

 populations, respectively, and sorted (Fig. 3B).  13 

There was a serious concern about whether the Rac1 activity monitored by the 14 

FRET/CFP ratio in FACS reflected the Rac1 activity of cells grown on the culture dishes, 15 

because Rac1 activity is closely associated with cell attachment (del Pozo et al., 2000). In 16 

Fig. 2F, we showed that suspension-adhesion procedure did not alter the relative Rac1 17 

activity of each cell among the cell population. Here, we quantified GTP bound to the 18 

endogenous Rac1 by pulldown assay. The amount of GTP-Rac1 in Rac1
high

 cells was larger 19 

than that in Rac1
low

 cells (Fig. 3C). Furthermore, we directly measured the GTP/GDP ratio 20 

by TLC after cell sorting. Both Rac1
high

 and Rac1
low

 cells were plated on the culture dishes 21 

and labeled with 
32

Pi for 2 hours, followed by TLC analysis to measure the GTP/GDP ratio 22 

on the biosensor (Fig. 3D). Although the difference in the GTP/GDP ratio between Rac1
high

 23 

and Rac1
low

 was smaller than the difference between wild-type and GTPase-deficient 24 

mutant Rac1 proteins, the GTP/GDP ratio of Rac1
high

 cells was constantly higher than that 25 

of Rac1
low

 cells, providing a biochemical validation of the FRET-based cell sorting. In 26 

addition, we found that cells in G2/M phases were enriched in Rac1
low

 cell (Supplementary 27 

Fig. S1B), which agrees with the observation that Rac1 activity transiently dropped during 28 

cell division (Fig. 2B). 29 

We then examined the invasion of Rac1
high

 and Rac1
low

 cells into Matrigel by 30 

Boyden chamber assay. Cells that had reached the lower side of filter were counted after 22 31 

hours. Although the efficiency of invasion varied in each experiment, we constantly 32 

observed that Rac1
high

 cells invaded into Matrigel significantly faster than did Rac1
low

 cells 33 

(Fig. 3E). This observation agrees with the findings of our previous 3D spheroid assay that 34 

cells with higher Rac1 activity invaded into Matrigel at the front and guided cells with 35 

lower Rac1 activity (Fig. 1B) (Hirata et al., 2012).  36 
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Finally, to confirm our hypothesis that the distribution of Rac1 activity was caused 1 

by slow fluctuations, the Rac1
high

 and Rac1
low

 cells were cultured for up to nine days and 2 

re-analyzed by FACS. On the first day, the distribution of Rac1 activities within the sorted 3 

populations remained discrete, but after one week the distribution of Rac1 activity within 4 

each population was identical, supporting our hypothesis (Fig. 3F). We performed similar 5 

experiments with C6 glioma cells expressing a FRET biosensor for Cdc42. In agreement 6 

with the previous finding that the glioma cells invading at the front exhibit high Rac1 7 

activity and high Cdc42 activity (Hirata et al., 2012), a similar result was obtained with 8 

Cdc42
high

 and Cdc42
low

 cells (Fig. 3F). Furthermore, we retrogradely analyzed long-term 9 

time-lapse images (Supplementary Fig. S1C), and found that, in agreement with the FACS 10 

data, cells in the highest and lowest decile with respect to the FRET/CFP ratio were 11 

merging in fifty hours. 12 

 13 

Transcriptional signatures of Rac1
high

 and Rac1
low

 cells 14 

To investigate the association of the Rac1 activity variation with transcriptional signatures, 15 

RNA-Seq analysis was performed with C6 glioma cells sorted by FACS. mRNA was 16 

isolated from the Rac1
high

 and Rac1
low

 populations of C6 glioma cells and sequenced. The 17 

expression difference of Rac1
high

/Rac1
low

 was plotted against average expression (Fig. 4A). 18 

Similar analysis was performed for Cdc42 and RhoA to characterize the nature of the 19 

Rac1
high

 and Rac1
low

 populations (Fig. 4B). The difference in the expression of 20 

Rac1
high

/Rac1
low

 was positively correlated with that of Cdc42
high

/Cdc42
low

. But there was 21 

no correlation between the expression differences of Rac1
high

/Rac1
low

 and 22 

RhoA
high

/RhoA
low

 or those of Cdc42
high

/Cdc42
low

 and RhoA
high

/RhoA
low

. Again, this is in 23 

agreement with our previous observation that both Rac1 and Cdc42 activities were high in 24 

cells migrating at the front of glioma cells in rat brains and in 3D Matrigel (Hirata et al., 25 

2012). For identification of differentially expressed genes, we used the weighted average 26 

difference method (WAD). The WAD method identified 713 differentially expressed genes 27 

using a cutoff of the top 5% of ranked genes. Gene ontology analysis based on biological 28 

process terms showed that the Rac1
high

 phenotype is associated with the GPCR protein 29 

signaling pathway, cell-matrix adhesion, and electron transport chain in that order (Fig. 4C). 30 

The Rac1
low

 phenotype is associated with cell division, cell cycle, and mitosis terms. In 31 

addition, analysis with cellular component terms showed that genes related to the 32 

respiratory chain, focal adhesion, and mitochondrial respiratory chain complex I, were 33 

enriched in the Rac1
high

 population, and that genes related to the cytoplasm, nucleus, and 34 

integral to membrane were enriched in Rac1
low

 population (Fig. 4D).  35 

 36 

Identification of genes that regulate C6 glioma cell invasion 37 
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Based on the RNA-Seq data, we attempted to identify genes that regulate glioma invasion. 1 

For this purpose, we focused on the top 23 up-regulated genes related to cell component 2 

term “membrane” (Table S1). Notably, 18 genes out of the 23 genes were up-regulated in 3 

Cdc42
high

 cells in comparison to Cdc42
low

 cells, strongly suggesting that a large part of 4 

Rac1
high

 cells are overlapped with Cdc42
high

 cells. Before starting detailed characterization 5 

of the membrane-related genes enriched in Rac1
high

 cells, the difference in gene expression 6 

between Rac1
high

 cells and Rac1
low

 cells was confirmed by qPCR, except for Ecop, to 7 

which we failed to prepare specific primers. Next, we knocked-down top 10 genes with 8 

three different siRNAs, except for cathepsin L1 (ctsl1), against which we failed to prepare 9 

three effective siRNAs. From the remaining 12 genes, we arbitrarily chose and 10 

knocked-down Ntrk2, Freq, Il1rap, and Pstpip2. C6 glioma cells were then examined for 11 

their invasive potential by the Matrigel invasion assay. Among the 14 membrane-related 12 

genes, knockdown of MMP15, TSN17, Pstpip2, and Freq, which we call membrane-related 13 

invasion-associated genes, significantly inhibited C6 glioma cell invasion (Fig. 5A). Except 14 

for MMP15, knockdown of the membrane-related invasion-associated genes suppressed 15 

Rac1 activity, suggesting thatTSN17, Pstpip2, and Freq promoted invasion via Rac1 16 

activation (Fig. 5B). Knockdown of membrane-related but invasion-irrelevant genes, 17 

Lgals3 and Rgs2, did not affect Rac1 activity. Notably, knockdown of TSN17 and Freq, 18 

but not Pstpip2, caused rounding of the cell shape (Fig. 5C). These two genes may be 19 

associated with Rac1-mediated membrane protrusion.  20 

We next sought for transcription factors enriched in Rac1
high

 cells (Table S2), and 21 

found that Egr2 was reproducibly enriched in Rac1
high

 cells and Cdc42
high

 cells. Similarly, 22 

we identified Elmo1 and PRex1 as Rac1 activators enriched in Rac1
high

 cells (Table S3). 23 

Knockdown of Egr2 and Elmo1, but not PRex1, suppressed C6 cell invasion and decreased 24 

Rac1 activity (Fig. 5D, E). Unlike the knockdown of membrane-related genes, TSN17 and 25 

Freq, knockdown of Egr2 or Elmo1 decreased Rac1 activity without affecting the cell 26 

shape (Fig. 5F).  27 

Thus, we identified genes of four membrane-related proteins, a transcriptional 28 

factor, and a Rac1 activator as invasion-associated genes enriched in Rac1
high

 cells. Notably, 29 

knockdown of Egr2, Elmo1, Pstpip2, Freq, and TSN17 not only decreased the average 30 

Rac1 activity but also suppressed the fluctuation of Rac1 activity (Supplementary Fig. S2), 31 

implying that the fluctuation of Rac1 activity may be associated with the basal level of 32 

Rac1 activity.  33 

 34 

Hierarchy of the invasion-associated genes enriched in Rac1
high

 cells 35 

To untangle the signaling network of the invasion-associated genes enriched in Rac1
high

 36 

cells, we first transiently activated Rac1 by rapamycin-induced Rac1 activation system 37 
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(Yagi et al., 2012). Upon rapamycin-induced membrane translocation of Tiam1, a GEF for 1 

Rac1, Rac1 activation was clearly detected by both FACS (Fig. 6A) and pulldown assay 2 

(Fig. 6B). Among the genes tested, only Egr2 was significantly induced rapidly and 3 

transiently (Supplementary Fig. S3). We next knocked down each gene and quantified the 4 

expression of the other invasion-associated genes by qPCR (Supplementary Fig. S4). The 5 

comprehensive knockdown experiments revealed intriguing features of the signaling 6 

network that regulates Rac1 activity (Fig. 6C). First, the membrane-related 7 

invasion-associated genes, Pstpip2, TSN17, Freq, and MMP15, could be clustered by the 8 

response to the knockdown of the other genes. Second and more importantly, we could 9 

infer the hierarchy of the genes by assuming that the knockdown of a gene decreases the 10 

expression of the downstream genes and increases the expression of the upstream gene(s) 11 

by a negative feedback loop. For example, Egr2 knockdown decreased expression of all 12 

four membrane-related invasion-associated genes, but not an invasion-irrelevant gene, 13 

Rgs2, or Elmo1. On the other hand, knockdown of the membrane-related 14 

invasion-associated genes increased Egr2 expression, suggesting the presence of negative 15 

feedback loops to Egr2. Because the effect of Egr2 knockdown on the expression of 16 

Pstpip2 was not significant, this gene may be placed in a different signaling pathway. From 17 

these data, we suggest a model of the gene network that regulates Rac1 activity and 18 

invasion of C6 glioma cells (Fig. 6D). 19 

 20 

Discussion 21 

The phenotypic heterogeneity of cancer cell populations is caused by genetic, epigenetic, 22 

and non-genetic mechanisms. The non-genetic mechanism that causes the variation of gene 23 

expression includes transcriptional and translational noises (Brock et al., 2009). Although 24 

the precise nature of such noise remains largely elusive, we can speculate that the gene 25 

expression variation would reflect the intracellular signaling activities. Here we established 26 

a technology to sort the cells depending on the activities of intracellular signaling 27 

molecules and to examine the effect of the activity variation of signaling molecules on the 28 

biological or transcriptional heterogeneity of cancer cells. 29 

 30 

FRET-based cell sorting 31 

The technology is based on two assumptions. First, the activity of the molecule of interest 32 

is maintained during FACS. Second, the transcriptome is not significantly perturbed during 33 

FACS. We had a serious concern as to whether the process of cell preparation, i.e., 34 

trypsinization and suspension of adherent C6 glioma cells, might mask the intercellular 35 

variation in the activities of Rho-family GTPases that are observed both under 2D and 3D 36 
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conditions. In fact, it has been established that the suspension of adherent cells reduces 1 

their Rac1 activity (del Pozo et al., 2000). Contrary to our expectation, however, the 2 

intercellular variation in Rac1 activity was reproduced after the cell preparation. Reanalysis 3 

of Rac1 activity by FACS, TLC, or pulldown assay demonstrated that Rac1 activity was 4 

conserved in both the Rac1
high

 and Rac1
low

 cell populations (Fig. 3A, B). Time-lapse 5 

imaging confirmed that the relative Rac1 activity of each cell was maintained before and 6 

after cell division or suspension-adhesion procedure (Fig. 2D). These observations imply 7 

that the Rac1 activity in a single cell consists of basal and external cue-dependent Rac1 8 

activities. The external cue includes integrin, growth factors, etc., and rapidly changes Rac1 9 

activity upon input of the cues (Heasman and Ridley, 2008). Meanwhile, the basal Rac1 10 

activity is determined by intrinsic signaling status, which is robust to external cues and is 11 

subjected to fluctuation with longer timescales.  12 

The second assumption that needs further consideration is the effect of cell sorting 13 

on the transcriptome. The ontology analysis of genes enriched in Rac1
high

 cells showed 14 

close correlation to biological process terms that are linked to the function of Rac1 (Fig. 15 

4C). The first and second scores went to the GPCR pathway and cell-matrix adhesion. Both 16 

of these are related to cell migration, with which the functions of Rac1 are most often 17 

associated (Sahai and Marshall, 2002; Sander and Collard, 1999). Another major function 18 

of Rac1 is the regulation of NADH-mediated production of reactive oxygen species 19 

(Heasman and Ridley, 2008); therefore, it is not surprising that the electron transport chain 20 

was scored at the third position. Furthermore, in agreement with the finding that Rac1 21 

activity drops rapidly during cell division (Yoshizaki et al., 2003), the first to third scores 22 

of genes enriched in Rac1
low

 cells went to the pathways of cell division, cell cycle, and 23 

mitosis (Fig. 4C). Furthermore, among the 23 genes up-regulated in the Rac1
high

 population 24 

and classified under the cell component term “membrane”, 13 genes are known to be 25 

involved in cancer cell invasion (Table S1). These observations support our assumption 26 

that the transcriptional profiles are reasonably conserved during FACS.  27 

 28 

Genes associated with the Rac1
high

 phenotype 29 

Among the 14 genes classified under the cell component term “membrane” and enriched in 30 

Rac1
high

 cells, knockdown of 4 genes inhibited C6 glioma cell invasion in the Matrigel 31 

invasion assay. Previous reports have indicated or suggested that proteins encoded by the 32 

four genes are more or less associated with invasion of cancer cells. MMP15, matrix 33 

metaloprotease protein 15 of MT2-MMP, is expressed predominantly in glioblastoma 34 

(Lampert et al., 1998; Nakada et al., 1999), suggesting that MMP15 may play a major role 35 

in the degradation of extracellular matrix during glioma invasion. TSN17, tetraspanin 17, 36 

was recently shown to regulate ADAM10, which has been shown to be involved in cancer 37 
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progression (Dornier et al., 2012; Haining et al., 2012; Mochizuki and Okada, 2007). 1 

Pstpip2 regulates F-actin bundling and enhances filopodia (Chitu et al., 2005), which 2 

strongly argues for a role of this protein in glioma invasion. Freq is a calcium-binding 3 

protein expressed predominantly in neuronal cells (Dason et al., 2012; Nakamura et al., 4 

2006). In primary cultured adult cortical neurons, overexpression of NCS1 induces neurite 5 

sprouting; however, the role of NCS-1 in glioma invasion has not been determined.  6 

Genes responsive to the activation of Rac1 or Cdc42 have been identified by 7 

overexpressing constitutively active QL mutants of Rac1 or Cdc42 in NIH 3T3 cells 8 

(Teramoto et al., 2003). There are some similarities between this previous work and our 9 

present study. First, the expression profile of Rac1QL-expressing cells resembles that of 10 

Cdc42QL-expressing cells in the previous studies. We also found that the expression 11 

profile of Rac1
high

 cells resembles that of Cdc42
high

 cells (Fig. 4B, Table S1). Second, in 12 

cells expressing Rac1QL or Cdc42QL, genes related to the extracellular matrix and cell 13 

adhesion are enriched and genes related to the cell cycle are suppressed as in Rac1
high

 cells 14 

(Fig. 4C). However, there are also some discrepancies. For example, collagen alpha 1 chain 15 

precursor was 3.1-fold enriched in Rac1QL-expressing cells, but was 0.56-fold suppressed 16 

in Rac1
high

 cells. This difference may have been caused by the lack of GTPase activity in 17 

Rac1QL mutant, because the cycling between the GDP-bound and GTP-bound forms has 18 

been shown to play an important role in cell migration (Parrini et al., 2011). In another 19 

study, different levels of Rac1 were expressed in colorectal cancer cells to identify the 20 

target genes of Rac1 by microarray analysis (Gomez et al., 2007). However, we could not 21 

find any similarity to our data. In another study, C6 rat glioma cells were selected both in 22 

vitro and in vivo for high and low migratory phenotypes (Tatenhorst et al., 2005). By 23 

microarray analysis, thirty-one genes were found to be differentially expressed in 24 

association with migratory phenotypes. We could not detect a significant resemblance 25 

between the gene expression profiles of this study and our present findings. Thus, the 26 

constitutive activation (or suppression) and intrinsic fluctuation of Rac1 activity might 27 

cause different transcriptional phenotypes. Alternatively, the effect of Rac1 on 28 

transcriptional profiles might be cell-type specific. In any event, different approaches led to 29 

the identification of various genes related to glioma invasion. Further analyses will be 30 

required to find the cause of such divergence. 31 

 32 

Hierarchy of invasion-associated genes enriched in Rac1
high

 population 33 

The comprehensive knockdown experiments strongly argued for the role of Egr2 as a 34 

master regulator of C6 glioma invasion. Knockdown of Egr2 suppressed the expression of 35 

the four membrane-related invasion-associated genes. In contrast, knockdown of the four 36 

membrane-related invasion-associated genes or Elmo1 increased the expression of Egr2, 37 



 

11 

 

implying negative feedback loops from the invasion phenotype to Egr2 expression. 1 

Microarray analyses have revealed enrichment of Egr2 in metastatic squamous cell 2 

carcinomas (Kim et al., 2006; Liu et al., 2008). Furthermore, in fibroblasts infected with 3 

Kaposi sarcoma-associated herpesvirus, Egr2 induces MMPs and Extracellular Matrix 4 

MetalloPRoteinase INducer (emmprin) (Dai et al., 2012). These observations strongly 5 

argue for the proposal that Egr2 is a key regulator of glioma invasion.  6 

 7 

Origin of the heterogeneity of Rac1 activity  8 

What causes the heterogeneity of Rac1 activity among C6 glioma cells? The five-day 9 

time-lapse image revealed that the distribution of Rac1 activity was caused by non-genetic 10 

slow fluctuation with time scales of more than 40 hours (Fig. 2A). This conclusion was also 11 

supported by the observation that the isolated Rac1
high

 or Rac1
low

 cell population restored 12 

the original distribution within one week (Fig. 3F, Supplementary Fig. S1C). Notably, our 13 

conclusion agrees with the variation of protein levels in human H1299 lung carcinoma cells 14 

(Sigal et al., 2006), in which the expression levels of proteins have been shown to fluctuate 15 

with a timescale of more than 40 hours. By the knockdown experiments against genes 16 

enriched in Rac1
high

 population, we identified a gene network regulating Rac1 activity (Fig. 17 

6D). This network comprises both positive and negative feedback loops, which are 18 

sufficient to cause oscillation of a signaling network. Although we have not been able to 19 

confirm that the variation in Rac1 activity in vivo is also driven by the same mechanism, 20 

slow fluctuations of gene expression, and resulting fluctuation of Rac1 activity could 21 

generate glioma cells with different levels of invading capacity. 22 

 23 

Materials and Methods 24 

Biosensors and cell lines 25 

C6 rat glioma cells were obtained from American Type Culture Collection and cultured in 26 

DMEM containing 10% FBS. The FRET biosensors for Rac1, Cdc42, and RhoA, 27 

Raichu-Rac1, Raichu-Cdc42, and Raichu-RhoA, respectively, were described previously 28 

(Itoh et al., 2002; Yoshizaki et al., 2003). For the establishment of stable cell lines 29 

expressing Raichu biosensors, we took two approaches. First, we replaced CFP with teal 30 

fluorescent protein (TFP) and delivered the expression cassettes by a retroviral vector into 31 

C6 glioma cells as described previously (Hirata et al., 2012). More recently, piggyBac 32 

transposon-mediated gene transfer was used to stably express Raichu biosensors with 33 

higher sensitivity (Komatsu et al., 2011; Yusa et al., 2009) . The cells were single-cell 34 

cloned before further experiments unless described otherwise. 35 

 36 
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Time-lapse FRET imaging 1 

FRET images were obtained and processed using essentially the same conditions and 2 

procedures as previously reported (Aoki and Matsuda, 2009). Cells were plated on 35 3 

mm-diameter glass-bottom dishes (AGC Techno Glass, Shizuoka, Japan) or 4 

micro-patterned glass-bottom dishes (CytoGraph; Dai Nippon Printing Co., Tokyo, Japan). 5 

Cells were imaged at 37
o
C in 5% CO2 with an inverted microscope (IX81; Olympus, 6 

Tokyo, Japan) equipped with a x40 objective lens (UAPO/NA 1.35; Olympus), a x40 7 

objective lens (UPLSAPO/NA 0.95; Olympus), and a x60 objective lens (PlanApoPH/NA 8 

1.40; Olympus), a cooled CCD camera (Cool SNAP-HQ or Cool SNAP-K4; Roper 9 

Scientific, Tucson, AZ), an LED illumination system (CoolLED precisExcite; Molecular 10 

Devices, Sunnyvale, CA), an IX2-ZDC laser-based autofocusing system (Olympus) and an 11 

MD-XY30100T-Meta automatically programmable XY stage (SIGMA KOKI, Tokyo, 12 

Japan). The following filters used for the dual emission imaging studies were obtained 13 

from Omega Optical (Brattleboro, VT): an XF1071 (440AF21) excitation filter, an XF2034 14 

(455DRLP) dichroic mirror, and two emission filters, XF3075 (480AF30) for CFP and 15 

XF3079 (535AF26) for yellow fluorescent protein (YFP). After background subtraction, 16 

FRET/CFP ratio images were created with MetaMorph software (Universal Imaging, West 17 

Chester, PA), and represented by intensity-modulated display mode. In the 18 

intensity-modulated display mode, eight colors from red to blue are used to represent the 19 

FRET/CFP ratio, with the intensity of each color indicating the mean intensity of FRET 20 

and CFP. For the quantification, the FRET and CFP intensities were averaged over the 21 

whole cell area, and the results were exported to Excel software (Microsoft Corporation, 22 

Redmond, WA).  23 

 24 

FRET-based Cell Sorting 25 

C6 glioma cells expressing Raichu-Rac1 were trypsinized, resuspended in PBS containing 26 

3% FBS, and analyzed and/or sorted with a FACSAria (Becton Dickinson, Franklin Lakes, 27 

NJ). We used the following combinations of lasers and emission filters for the detection of 28 

fluorescence from the biosensor: for the donor fluorescence of TFP and CFP, a 407 nm 29 

laser and a 480AF30 filter (Omega Optical); for the sensitized FRET from YFP, a 407 nm 30 

laser and a 535AF26 filter (Omega Optical); and for the acceptor fluorescence of YFP, a 31 

475 nm laser and a 535AF26 filter (Omega Optical). Cells were first gated for size and 32 

granularity to exclude cell debris and aggregates. For cell sorting, C6 glioma cells in the 33 

highest and lowest decile with respect to the FRET/CFP (or TFP) ratios were sorted as 34 

Rac1
high

 and Rac1
low

 populations, respectively, into DMEM containing 10% FBS. Small 35 

fractions of Rac1
high

 and Rac1
low

 were reanalyzed for validation and the remaining cells 36 

were snap-frozen and stored at -80°C until RNA extraction. Detailed data analysis was 37 

performed using FlowJo. 7.6 software (Tree Star Inc., Ashland, OR).  38 
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 1 

TLC of guanine nucleotides bound to GTPases 2 

Guanine nucleotides bound to Raichu biosensors or GFP-tagged Rac1 proteins were 3 

quantified essentially as described previously (Gotoh et al., 1995). Briefly, cells were sorted 4 

by FACS and plated on 6-well dishes. After 3 hours, cells were metabolically labeled with 5 

32
Pi for 2 hours and lysed with lysis buffer. The cell lysates were clarified by centrifugation 6 

and used to immunoprecipitate Raichu biosensors or GFP-tagged Rac1 with an anti-GFP 7 

antiserum and Protein-A Sepharose. Guanine nucleotides bound to the immuoprecipitates 8 

were separated by TLC and quantitated with a BAS-1000 image analyzer. 9 

 10 

Rac1 pulldown analysis 11 

Rac1 pulldown assay was performed according to the manufacturer’s protocol (Cytoskelton, 12 

Inc, Denver, CO).  13 

 14 

RNA extraction 15 

Total RNA was isolated with a Qiagen RNeasy Micro Kit (Qiagen, Hilden, Germany) or a 16 

Qiagen RNeasy Mini Kit, according to the manufacturer’s protocol. RNA preparations 17 

were confirmed to be free of proteins using a NanoDrop ND-1000 instrument (Thermo 18 

Fisher Scientific Inc., Waltham, MA), and the integrity of these measurements was 19 

confirmed using a 2100 BioAnalyzer (Agilent Technologies, South Queensferry, UK). 20 

RNA that had an RNA integrity Number (RIN) ≥ 8.6 was used for RNA-Seq.  21 

 22 

Library preparation and sequencing 23 

Total RNA was poly(A)-selected using poly(T) Dynabeads (Invitrogen, San Diego, CA). 24 

Sequencing libraries were prepared according to Illumina's mRNA-Seq protocol and 25 

sequenced at the Omics Science Center (OSC) RIKEN Yokohama Institute. Two 26 

independent libraries were analyzed for each data set. Sequence-read data have been 27 

submitted to the Sequence Read Archive at DDBJ (submission No. DRA000605). 28 

 29 

Mapping and processing of RNA-Seq reads 30 

The reads of each dataset were aligned to the rat reference genome (rn4, Nov. 2004, 31 

version 3.4) using TopHat v1.3.0 (Trapnell et al., 2009). The resulting sequence 32 

alignment/map files in the BAM format were analyzed with Cufflinks version 0.8.0 33 

(Trapnell et al., 2010) to compute fragments per kilobase of transcript per million mapped 34 

reads (FPKM). Genomic annotations were obtained from Ensembl in gene transfer format 35 

(GTF). We used only reads mapped to 20 or fewer sites on the genome. The WAD method 36 

(Kadota et al., 2008) was then performed on the data of pairs of cells to generate expression 37 

differences. Differentially expressed genes were filtered for a WAD ranking cutoff of the 38 
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top 5.0%. Gene Ontology (GO) annotations were used to assign biological functions to 1 

genes included in this study (Ashburner et al., 2000). 2 

 3 

3D Matrigel invasion assay 4 

3D Matrigel invasion assay was performed with a BD BioCoat Matrigel Invasion Chamber 5 

(Becton Drive, Franklin Lakes, NJ) according to the manufacturer’s protocol. Briefly, 2 x 6 

10
4
 cells were seeded on the membrane with or without Matrigel precoating. After 22 hours, 7 

cells were fixed, stained for nuclei with propidium iodide, and imaged with an 8 

epifluorescence microscope. The number of nuclei was counted with MetaMorph software 9 

(Universal Imaging). Data is expressed as the percent invasion through the Matrigel Matrix 10 

and membrane relative to the migration through the control membrane. 11 

 12 

3D spheroid imaging 13 

Organotypic culture was prepared as described previously (Gaggioli et al., 2007). In a 14 

12-well plate coated with poly-(2-hydroxyethyl methacrylate) (Sigma, St. Louis, MO) and 15 

containing 1 ml serum-free CO2-independent medium (Invitrogen), 10
6
 cells were cultured 16 

overnight with slow agitation to form small aggregates. The aggregates were embedded in 17 

6 mg/ml Matrigel, maintained in complete medium and observed under a two-photon 18 

microscope or a confocal microscope for up to 18 hours in an incubation chamber. 19 

 20 

Quantitative RT-PCR 21 

RNA was reverse-transcribed by a High Capacity cDNA Reverse Transcription kit 22 

(Applied Biosystems, Foster City, CA) according to the manufacturer’s protocol. Then, the 23 

expression levels of each gene and GAPDH used as a standard were analyzed by Power 24 

SYBR Green PCR Master Mix (Applied Biosystems) with ABI PRISM7300 Sequence 25 

Detection System (Applied Biosystems). The sequences of primers used for qPCR are 26 

shown in Table S4. 27 

 28 

siRNA-Knockdown experiments 29 

Stealth RNAi Negative Control Duplex and Stealth RNAi against MMP15 were purchased 30 

from Invitrogen. Mission siRNAs against the other genes were purchased from 31 

Sigma-Aldrich (St. Louis, MO). C6 cells stably expressing Raichu-Rac1 were transfected 32 

with 20 μM siRNA by Lipofectamine 2000 (Invitrogen). Two days after transfection, 33 

cells were used for invasion assay, qPCR, or FRET imaging. The siRNA sequences are 34 

shown in Table S5. 35 

 36 

Rapamycin-induced Rac1 activation 37 
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Rapamycin-induced Rac1 activation with FKBP-Tiam1 was reported previously (Yagi et 1 

al., 2012).  2 

 3 

Supplementary Materials 4 

Figure S1. (A) Rac1 activity of a single C6 glioma cell and its daughter cells traced for five 5 

days. (B) Enrichment of cells in G2/M phases in Rac1
low

 cell populations. (C) Time-lapse 6 

analyses of Rac1
high

 and Rac1
low

 cells. 7 

Figure S2. Suppression of Rac1 activity fluctuation by the knockdown of genes enriched in 8 

the Rac1
high

 cells. 9 

Figure S3. Effect of Rac1 activation on the expression of invasion-associated genes. 10 

Figure S4. Effect of knockdown of the invasion-associated genes on the expression of the 11 

other genes. 12 

Table S1. Genes enriched in Rac1
high

 population and related to "membrane". 13 

Table S2. Transcription factors enriched in Rac1
high

 population. 14 

Table S3. Rac1 activators enriched in Rac1
high

 population.  15 

Table S4. Primer sequences used for qPCR. 16 

Table S5. siRNA sequences. 17 

Movie S1. Slow fluctuation of Rac1 activity during 5-day time-lapse imaging. 18 
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Figure Legends 1 

Fig. 1. Activity variation of Rac1. (A) Schematic view of the Raichu-Rac1 FRET biosensor. 2 

(B) C6 glioma cells that stably expressed Raichu-Rac1 were grown on glass-bottom dishes 3 

and imaged to visualize the FRET/CFP ratio in the intensity-display mode with the 4 

FRET/CFP ratio ranges as indicated in the figures. Bar, 200 m. (C) The FRET/CFP ratio 5 

averaged for each cell in (B) is shown in the histogram, which could be normal distribution 6 

(p=0.92, Kolmogorov-Smirnov test and p=0.3, Shapiro-Wilk normality test). Analyses were 7 

performed by R(R Ver 2.12.1). (D) The FRET/CFP ratio and YFP intensity in each cell are 8 

plotted to show the independence of the Rac1 activity from the concentration of the 9 

biosensor. 10 

 11 

Fig. 2. Fluctuation and Robustness of Rac1 activity. (A) C6 glioma cells expressing 12 

Raichu-Rac1 were plated on glass-bottom dishes with parent C6 glioma cells, which served 13 

as feeder cells at a low cell density. Cells were time-lapse imaged for 5 days 14 

(Supplementary Movie 1). Representative snap shots of FRET/CFP images and DIC 15 

images overlaid with FRET/CFP image are shown. (B) The time course of a single cell and 16 

its derivatives after smoothing by the Savitzky-Golay filter, except for the mitosis phase, 17 

during which period a surge of Rac1 activity was observed (asterisks and thin lines). The 18 

color of each arrow is used to depict each newborn cell. The data are also shown in 19 

Supplementary Fig. S1. (C) Power spectrum of Rac1 activity. Blue and red lines indicate 20 

normalized power spectra of analyzed cells (N = 58) and the average, respectively. (D) 21 

Correlation of Rac1 activities before and after cell division. (E) Scatter plots show the 22 

relationship between Rac1 activity and the cell area and velocity of cells. (F) C6 glioma 23 

cells expressing Raichu-Rac1 in serum-free media were time-lapse-imaged. During the 24 

imaging, 1.25% Trypsin was added at 0.5 h. At 0.75 h, FBS was added to inactivate Trypsin. 25 

Bars, 20 m. 26 

 27 

Fig. 3. Isolation of Rac1
high

 and Rac1
low

 cell populations by FACS. (A) C6 glioma cells 28 

expressing Raichu-Rac1 were analyzed by FACS. The Rac1 activity (FRET/CFP) did not 29 

correlate with the FRET biosensor concentration (YFP) in each cell. (B) The top and 30 

bottom 10% of cells were sorted to obtain Rac1
high

 (red) and Rac1
low

 (blue) populations. 31 

Small fractions of Rac1
high

 and Rac1
low

 cells were reanalyzed after sorting. (C) Rac1
high

 and 32 

Rac1
low

 cells were collected and analyzed by pulldown assay. Cells expressing 33 

CFP-Rac1V12 and CFP-Rac1N17 were used as positive and negative controls, respectively. 34 

(D) Rac1
high

 and Rac1
low

 cells were plated on dishes and cultured for 3 hours. Cells were 35 

labeled with 
32

Pi for 2 hours, lysed, and immunoprecipitated with an anti-GFP antibody, 36 

followed by TLC to quantify GTP and GDP bound to the FRET biosensor. . (E) Rac1
high

 37 

and Rac1
low

 cells were used for the Matrigel invasion assay. (F) Rac1
high

, Rac1
low

 cells, 38 
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Cdc42
high

, and Cdc42
low

 cells were plated on dishes and cultured for the indicated periods 1 

and re-analyzed by FACS. 2 

 3 

Fig. 4. RNA-Seq analysis of Rac1
high

 and Rac1
low

 cell populations. (A) poly(A)-selected 4 

RNA was isolated from Rac1
high

 and Rac1
low

 cell populations and used for RNA-Seq 5 

analysis. The relationship between average expression [log2(Rac1
high

×Rac1
low

) / 2] and 6 

expression difference of Rac1
high

 vs Rac1
low

 [log2(Rac1
high

/Rac1
low

)] is shown in the M-A 7 

plot. The WAD method identified 713 differentially expressed genes using cutoffs of the 8 

top 5% ranked genes. Cell populations enriched in Rac1
high

 and Rac1
low

 cells are depicted 9 

with pink and blue dots, respectively. The top 14 genes for the cellular component term 10 

“membrane” are marked in orange, except for Pstpip2, Freq/NCS-1, MMP15, and Tsn17, 11 

which are shown with red dots. Elmo1 and Egr2 are shown in green dots. (B) RNA-Seq 12 

analysis was similarly performed for the Cdc42
high

, Cdc42
low

, RhoA
high

, and RhoA
low

 cell 13 

populations. Scatter plots of the expression differences are shown. (C and D) Gene ontology 14 

analysis with biological process terms (C) or cellular component terms (D) is shown. The 15 

p-value was calculated by Pearson product-moment correlation coefficients. 16 

 17 

Fig. 5. Effect of knockdown of genes enriched in the Rac1
high

 cell population on invasion 18 

and Rac1 activity. (A) For the top 14 genes enriched in the cellular component term 19 

“membrane”, three siRNAs for each gene were prepared and used to knockdown the target 20 

genes in C6 glioma cells. Cells were used for invasion analysis as described in the text. The 21 

results of two independent experiments are included. *P<0.05, **P<0.01 and ***P<0.001. 22 

P-value was calculated by two-tailed paired t-test. (B) Four genes associated with invasion 23 

phenotype in (A) and Lgals3 and Rgs2 used as controls were knocked down and 24 

FRET/CFP ratio values were quantified for each C6 glioma cells. Numbers of cells 25 

analyzed are shown at the bottom. (C) Representative snap shots of FRET/CFP images of 26 

C6 glioma cells transfected with the siRNAs. Bars, 100 μm. (D, E, F) Effect of knockdown 27 

of Egr2, Elmo1, and PRex1 was also examined as in (A), (B), and (C). Bars, 100 μm. 28 

 29 

Fig. 6. Identification of a signaling network comprising the genes enriched in the Rac1
high

 30 

cell population and associated with invasion. (A, B) C6 glioma cells expressing 31 

Raichu-Rac1 alone or Raichu-Rac1, plasma membrane-targeted 32 

Lyn-FKBP12-rapamycin-binding domain (LDR) and FK506-binding protein (FKBP) fused 33 

with Tiam1 were stimulated with (solid line) 10 M rapamycin or the solvent DMSO 34 

(dashed line) for 30 min. Rac1 activity was examined with FACSAria (A) or by pulldown 35 

assay (B). C6 glioma cells expressing CFP-Rac1N17 and CFP-Rac1V12 were used as 36 

negative and positive controls, respectively. White and black arrows indicate CFP-Rac1 and 37 

endogenous Rac1, respectively. Densitometry for GTP-bound Rac1 was normalized to the 38 



 

22 

 

amount of the total Rac1.(C) Genes listed in the left column were knocked down as in Fig. 1 

5 or Rac1 was activated as in (A). mRNAs purified from the cells were used for qPCR 2 

analysis for the genes in the top row. Fold changes to the control siRNA-transfected cells 3 

are shown in the log(2) scale. The genes were clustered by nearest neighbor method. Data 4 

on invasion and Rac1 activity shown in Fig. 5 are also included. (D) A proposed model of 5 

Rac1 activity regulation in C6 glioma cells. 6 
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Figure S1. (A) Rac1 activity of a single C6 glioma cell and its daughter cells traced for five 
days. This figure corresponds to Fig. 2B in the text. The red, green, and blue dotted lines indi-
cate FRET/CFP ratios of 2.35, 2.1, and 1.85, respectively. (B) Enrichment of cells in G2/M 
phases in Rac1low cell populations. Rac1high and Rac1low cells were fixed, stained with propidium 
iodide (PI), and analyzed by FACS. The pink lines represent fitting by the Watson-Pragmatic 
cell cycle model. Green, yellow and blue area indicate G1, S, and G2/M phases, respectively. 
(C) Time-lapse analyses of Rac1high and Rac1low cells.Figure S1. C6 glioma cells expressing 
Raichu-Rac1 were plated on glass-bottom dishes and time-lapse imaged for 5 days. Cells in the 
highest (red) and lowest (blue) decile with respect to the FRET/CFP ratio were selected and 
followed up to 50 hours.
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Figure S2. Suppression of Rac1 activity fluctuation by the knockdown of genes enriched in the Rac1high 
cells. (A) Egr2, Elmo1, Pstpip2, Freq, or TSN17 were knocked down as described in the legend to Fig. 
5, followed by time-lapse imaging for at least 50 hours. (B) The time courses are smoothed by the 
Savitzky-Golay filter, except for the mitosis phase, during which a surge of Rac1 activity was 
observed. The effect of siRNA-knockdown was evaluated by square root of mean-square displacement 
(MSD) of the Rac1 activity during 10 or 20 hours window.
                                         

                                       ,
                                       
where xt+T and xt indicate Rac1 activity at time t+T and t, respectively, Tend indicates total duration 
of imaging, and T is an arbitrary number of duration. 
                    ,
where X indicates square root of MSD. These analyses were implemented in Matlab software (The 
Mathworks).
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Figure S3. Effect of Rac1 activation on the expression of invasion-associated genes. C6 glioma cells 

expressing plasma membrane-targeted FKBP12-rapamycin-binding domain, and FK506-binding 

protein (FKBP) alone or FKBP fused with Tiam1 (blue) or without Tiam1 (red) were stimulated with 

10 μM Rapamycin. mRNAs depicted at the bottom were quantified by real-time PCR.
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Figure S4. Effect of knockdown of the invasion-associated genes on the expression of the other genes. 

Genes listed at the bottom were knocked down by siRNAs. mRNAs purified from the cells were 

analyzed by qPCR for the listed genes. Fold changes to the control siRNA-transfected cells are shown 

in the log(2) scale. Bars, S.D.



Table S1. Genes enriched in Rac1high population and related to "membrane".
Cdc42

Exp.1 Exp.2
ENSRNOG00000010645 Lgals3 → 10 3.06 6.83 2.07 0.96 1-9
ENSRNOG00000012622 Mmp15 ↓ 12 2.01 3.89 3.41 6.78 10-30
ENSRNOG00000003687 Rgs2 → 17 3.14 5.83 2.96 3.00 31-33
ENSRNOG00000018566 Ctsl1 N.A. 21 1.70 2.40 1.63 1.40 34-36
ENSRNOG00000002434 Tmem100 → 26 2.03 3.72 2.61 3.11
ENSRNOG00000004936 Sdc2 → 38 1.82 2.26 2.02 0.97 37-42
ENSRNOG00000014816 Slc1a1 → 65 2.00 2.71 2.56 5.01
ENSRNOG00000016818 Fgfr3 → 76 2.08 3.34 2.94 1.83 43-48
ENSRNOG00000018122 TSN17 ↓ 78 1.75 2.71 2.55 1.21
ENSRNOG00000013024 Csgalnact1 → 87 2.82 5.91 5.92 1.65
ENSRNOG00000014371 Cdh13 → 93 1.57 2.64 1.55 1.53 49-57
ENSRNOG00000006756 Maged1 N.A. 105 1.54 1.82 1.31 0.97 58-62
ENSRNOG00000018646 Hbegf N.A. 112 1.60 1.84 1.42 1.55 63, 64
ENSRNOG00000018839 Ntrk2 → 128 2.86 2.52 2.35 2.08 65-70
ENSRNOG00000008761 Freq ↓ 129 3.21 4.40 4.48 0.83
ENSRNOG00000001928 Il1rap → 137 1.58 1.76 1.80 2.06
ENSRNOG00000006646 Ecop N.A. 144 3.79 4.78 N.D. 1.05
ENSRNOG00000004322 Sh3kbp1 N.A. 150 1.50 1.90 1.42 1.82 71-74
ENSRNOG00000019536 Nid67 N.A. 152 1.79 1.74 1.74 1.46
ENSRNOG00000007060 Adfp N.A. 179 1.31 1.80 1.72 0.98
ENSRNOG00000009922 Prlhr N.A. 192 1.30 3.56 4.36 4.16
ENSRNOG00000007638 Loxl3 N.A. 197 1.18 1.57 1.68 1.44 75, 76
ENSRNOG00000016987 Pstpip2 ↓ 211 3.80 6.23 5.51 3.07 77
*Effect of knock-down on glioma invasion: See legend to Figure 5 in the main text; ↓, suppressed; →, not affected; N.A., not analyzed

**RNA-Seq was performed twice. Fold increase of Rac1high vs Rac1low, or Cdc42high vs Cdc42low cell populations is shown.
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Table S2. Genes enriched in Rac1high population and encoding transcription factors.

RNA-Seq*
1.pxE2.pxE1.pxE

ENSRNOG00000012262 Depdc7 1.51 1.88 1.18 33.57 1.15 N.A.**
ENSRNOG00000001314 Fam20c 1.35 1.84 1.19 16.25 0.88 N.A.
ENSRNOG00000019965 Tgfb1i1 1.61 2.04 1.03 12.96 0.85 N.A.
ENSRNOG00000000640 Egr2 1.35 2.41 3.28 6.00 3.98 5.35
ENSRNOG00000018841 Sox8 1.54 5.20 N.A. 1.52 1.61 N.A.
ENSRNOG00000004109 Zfpm2 3.63 4.99 N.A. 1.24 1.14 N.A.
ENSRNOG00000028648 Olig1 2.77 7.76 N.A. 1.07 N.A. N.A.
ENSRNOG00000008826 Pax9 2.02 2.35 N.A. 0.95 1.42 N.A.

*RNA-Seq was performed twice. Fold increase of Rac1high vs Rac1low, or Cdc42high vs Cdc42low cell populations is shown.
**N.A.; not analyzed.

Ensembl gene ID Symbol
Rac1 experiments Cdc42 experiments

RNA-Seq*
qPCR average

FPKM qPCR



Table S3. Genes enriched in Rac1high population and encoding Rac1 activators

WAD
rank Exp.1 Exp.2 qPCR WAD

rank Exp.1 qPCR
ENSRNOG00000018726 Elmo1 435 2.95       3.89 766
ENSRNOG00000016479 Plekhg4 504 0.71 0.55 0.60 9716 1.03
ENSRNOG00000006952 Prex1 541 1.43 1.69 2.05 481 1.84
ENSRNOG00000016728 LOC100362710 1103 0.69 0.52 6064 0.84
ENSRNOG00000015026 ARHGB_RAT 1199 0.71 0.71 11806 1.00
ENSRNOG00000023313 Arhgef19 1428 1.50 1.25 5272 1.12
ENSRNOG00000001818 FGD4_RAT 1573 1.60 1.94 1197 2.47
ENSRNOG00000020130 Arhgef1 1633 1.12 1.33 2366 1.16
ENSRNOG00000004823 F1LUN1_RAT 1717 0.73 0.50 805 0.49
ENSRNOG00000038970 Fgd1 1810 0.79 0.74 10120 0.98
ENSRNOG00000017765 Net1 2280 0.72 0.79 6736 1.13
ENSRNOG00000030266 Plekhg2 2391 1.38 1.43 4992 1.29
ENSRNOG00000001304 Bcr 3026 0.85 0.76 10983 0.99
ENSRNOG00000007733 Arhgef9 3154 3.67 6.11 260 2.98
ENSRNOG00000014576 F1M4N6_RAT 3308 0.82 0.42 20750 0.93
ENSRNOG00000000869 Arhgef6 3356 0.87 0.86 5928 0.90
ENSRNOG00000001706 Kalrn 3384 0.87 0.73 385 0.42
ENSRNOG00000020027 Arhgef2 3517 0.95 0.83 8618 0.97
ENSRNOG00000022216 Abr 4824 0.95 0.83 2853 0.85
ENSRNOG00000018683 Dock1 4854 0.94 0.89 1667 1.21
ENSRNOG00000009910 Swap70 4941 1.21 1.02 10349 1.01
ENSRNOG00000011203 Farp1 5098 1.00 1.17 6749 1.05
ENSRNOG00000020485 Vav3 5141 1.57 1.09 3525 1.48
ENSRNOG00000021569 D3ZTB8_RAT 5544 0.71 0.97 9806 0.97
ENSRNOG00000012934 Arhgef7 6377 1.01 0.83 6127 1.09
ENSRNOG00000007422 Vav2 6877 1.09 1.10 8559 0.95
ENSRNOG00000024703 F1MA88_RAT 6881 1.03 0.83 5190 0.91
ENSRNOG00000010964 Akap13 7218 1.09 1.04 2941 1.14
ENSRNOG00000015894 Dock8 7232 1.01 0.81 1872 0.65
ENSRNOG00000028426 Mcf2l 8326 1.00 0.75 2647 0.61
ENSRNOG00000006570 Plekhg3 8421 0.92 0.95 8574 0.95
ENSRNOG00000013321 Dock11 8933 1.89 2.78 20750 0.00
ENSRNOG00000006701 Fgd6 9043 0.91 0.69 11143 1.08
ENSRNOG00000005506 Arhgef5 9777 1.13 0.71 1085 0.48
ENSRNOG00000011969 Dock9 9856 0.99 0.91 6614 0.90
ENSRNOG00000004826 Sos2 9910 1.05 1.02 4542 1.15
ENSRNOG00000023280 Als2 9935 0.97 1.10 5808 1.11
ENSRNOG00000028090 Arhgef18 10122 1.02 0.92 5425 0.89
ENSRNOG00000008924 Arhgef12 10923 1.13 0.92 6075 1.07
ENSRNOG00000016011 Plekhg1 11624 1.03 1.01 11069 1.02
ENSRNOG00000002001 Itsn1 11680 0.96 1.02 10061 0.98
ENSRNOG00000018051 Farp2 11899 1.13 0.92 8672 0.93
ENSRNOG00000016544 Rgnef 12021 0.95 1.02 5957 0.71
ENSRNOG00000013707 Spata13 12168 1.01 0.97 961 2.32
ENSRNOG00000010652 Dock6 12180 0.70 0.59 11040 0.88
ENSRNOG00000014549 Sgef 12550 1.17 0.86 20750 1.68
ENSRNOG00000000502 Def6 15330 0.00 0.00 20750 0.00
ENSRNOG00000000528 Fgd2 15330 0.00 0.00 20750 0.00
ENSRNOG00000003435 Mcf2 15330 0.00 1.83 20750 0.00
ENSRNOG00000004566 Arhgef15 15330 0.00 2.75 20750 0.00
ENSRNOG00000010213 F1LTE6_RAT 15330 0.00 0.00 20750 0.00
ENSRNOG00000014025 Rasgrf1 15330 0.00 0.92 20750 1.35
ENSRNOG00000014035 Arhgef4 15330 0.82 0.31 20750 0.00
ENSRNOG00000014363 Arhgef3 15330 1.12 0.99 20750 0.13
ENSRNOG00000016225 Fgd3 15330 0.17 1.53 20750 3.77
ENSRNOG00000016653 Ngef 15330 1.03 0.92 20750 0.38
*RNA-Seq of Rac1 was performed twice. Fold increase of Rac1 high vs Rac1low, or Cdc42high vs Cdc42low cell populations is shown.

Cdc42 experiments
Ensembl gene ID Symbol

Rac1 experiments

2.57 3.843.60



Table S4. Primer sequences used for qPCR.
Adfp-Forward tatgcctgcaaggggcta Adfp-Reverse gggcattggcaacaatct
Cdh13-Forward caacccacagaccaacgag Cdh13-Reverse cagggtgtgaaaggcagag
Csgalnact1-Forward ccggtcagacttcatcaaca Csgalnact1-Reverse ggagatatttccggtacaggtg
Ctsl1-Forward ttgtgtgactcctgtgaagaatc Ctsl1-Reverse ccttctaggcaacccgatg
Depdc7-Forward ctcccctcacgtctctacca Depdc7-Reverse gtccaatcgtctcctcttgc
Ecop-Forward gccgttcctatgaagactgc Ecop-Reverse gccgttcctatgaagactgc
Egr2-Forward ctacccggtggaagacctc Egr2-Reverse tctctccggtcatgtcaatg
Elmo1-Forward cactattcttcgattaaccacgtc Elmo1-Reverse ttgatgactgtattcgttcatgg
Fam20c-Forward gaggcacaatgcggagatag Fam20c-Reverse gaggcactctgcggaaatc
Fgfr3-Forward ctcaggagatgacgaagatgg Fgfr3-Reverse cggtcgagtccagtaaggag
Freq-Forward cctggatgagaagttgaggtg Freq-Reverse ccactatgtccagcatctcg
Hbegf-Forward tgaccacactaccgtcttgg Hbegf-Reverse cataacctcctcgcctatgg
Il1rap-Forward aagcagccaaggtgaaacag Il1rap-Reverse ctccagccagtaaacgtggt
Lgals3-Forward aagcccaacgcaaacagtat Lgals3-Reverse tcattgaagcgggggtta
Loxl3-Forward ccggtttctcagactccaac Loxl3-Reverse ctggtcggagtcgcactt
Maged1-Forward caagagctatggctcagaaacc Maged1-Reverse agcaaggcgctgtcttctac
Mmp15-Forward gaagacgccgaagtatacgc Mmp15-Reverse gctggggtaggtagccataga
Nid67-Forward tcgcttgaggatcccttg Nid67-Reverse gctgatagcatccatgttgg
Ntrk2-Forward accaatcgggagcatctct Ntrk2-Reverse gccaacttgagcagaagca
Prex1-Forward ccatcaggaccctggtagac Prex1-Reverse gcagctggttcttcccatc
Prlhr-Forward ggcgcatttcactgaagc Prlhr-Reverse cgccagcactgcagatag
Pstpip2-Forward gctgcagcggaaaaagac Pstpip2-Reverse tgcgagttcctctgtttgtg
Rgs2-Forward aacttttatcaagccttctcctga Rgs2-Reverse acgctctgaatgcagcaag
Sdc2-Forward ttgatggcctgtgtgtcg Sdc2-Reverse ggagctgctgtcaaggtaca
Sh3kbp1-Forward gaggaacacatttcgcttgc Sh3kbp1-Reverse gggaagccttgttatcagaca
Slc1a1-Forward ttcctgcggaatcactgg Slc1a1-Reverse accaagactcctaccacgatg
Tgfb1i1-Forward aacctattgctgggcaagtg Tgfb1i1-Reverse aacctctgcaaaggaagtgc
Tmem100-Forward ggtccttctctcccaagtca Tmem100-Reverse aggttcagaaagcctgacca
Tsn17-Forward gcccttctcctgctgtgtta Tsn17-Reverse tttggtgtagatggagccttg



Table S5. siRNA Sequences
Ap1s2-1 GAAUGAAAGUUUAUUGAAATT Itgb3-1 GCUUUGACGCCAUCAUGCATT
Ap1s2-2 CUGAUUACCCUGGAAAUAATT Itgb3-2 CAAGCAAUGUCCUUCAGCUTT
Ap1s2-3 GUGAAACCUGGUUUAAUGATT Itgb3-3 CCAUGUUUGGCUACAAACATT
Cdh13-1 CUAUCAGGUACUCUGUUUATT Lgals3-1 CACAGUGAAGCCCAACGCATT
Cdh13-2 CUUAUCAACUGUUUGUGGATT Lgals3-2 CGGUCAAUGAUGUUCAUCUTT
Cdh13-3 CUAUGAGGUCUCAAGCCCATT Lgals3-3 CCAACUGGCCCUAGUGCUUTT
Csgalnac-1 CCAUAAGCAUGAAUUCCAATT MMP15-1 UCUCCAGCACUGACCUGCAUGGAAU
Csgalnac-2 GAUUUGACCUGGACAUCAATT MMP15-2 GGACACCCAUUUCGACGCACAUGAA
Csgalnac-3 CAUAGCAACCUCAUAGUGATT MMP15-3 ACAGAGAAGCUGGGCUGGUACAACU
Egr2-1 GUGACUAUUGUGGCCGUAATT Ntrk2-1 GACAUCAUGUGGCUCAAGATT
Egr2-2 GUUUGACUAUGGUCUGCGATT Ntrk2-2 CAAUGAAGAUGAUGUCGAATT
Egr2-3 GAAAGGAAGCGCCACACCATT Ntrk2-3 CAAACAACGAGGUGAUAGATT
Elmo1-1 GUUUAUGACUGUAACUGAATT Pstpip2-1 GAAAGAAAGGGCAUCAAUUTT
Elmo1-2 GCAUUUCACUCCUCACUCATT Pstpip2-2 CCAUCAUGUAUGAGAAUUUTT
Elmo1-3 GGAUGAACCAGGAAGAUUUTT Pstpip2-3 GUGAAACUGGCCACUUCGATT
Fbxo23-1 CGCCAUUGCCUCCUUCAAATT Rgs2-1 GGUUGGCUUGCGAAGACUUTT
Fbxo23-2 GGCUAUACAUCCGCUCAAATT Rgs2-2 GAGAUAAACAUAGACUUUCTT
Fbxo23-3 CCCAAUGACUGGAACCUCATT Rgs2-3 CUUGCUGCAUUCAGAGCGUTT
Fgfr3-1 CACAUGACCUGUACAUGAUTT Sdc2-1 CUUUAGCAUAGAAUAAUGATT
Fgfr3-2 GAGUCUAAUUCCUCUAUGATT Sdc2-2 CAGUGUUCUGUGAAUAGCATT
Fgfr3-3 GCAUUAAGCUCCGGCACCATT Sdc2-3 CUGACAACAUCCCAACUGATT
Freq-1 CACCAAGUUCGCCACGUUUTT Slc1a1-1 CAGAUUCUGGUGGAUUUCUTT
Freq-2 GAACGCUGAUGGGAAGCUATT Slc1a1-2 CCACAAUCCUGGAUAAUGATT
Freq-3 CGAAUUCAUCCAGGCUCUATT Slc1a1-3 GGUAUUGUGUUAGUUGUGATT
Il1rap-1 GACUUACUGCAGCAAAGUUTT Tmem100-1 GAUAUGCACAGCAUUAAAUTT
Il1rap-2 GGUUGUACUGAAAUAGUGATT Tmem100-2 CAAAUAAUGGACAGGAUGATT
Il1rap-3 CUCAUAUCUACUCGCCAAATT Tmem100-3 GGGAAUAACUCAUCUUCUUTT


