
Physics Letters B 736 (2014) 180–185
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Building up the elliptic flow: Analytical insights

Yoshitaka Hatta a,∗, Bo-Wen Xiao b

a Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
b Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 May 2014
Received in revised form 8 July 2014
Accepted 14 July 2014
Available online 18 July 2014
Editor: J.-P. Blaizot

In this paper, we present a fully analytical description of the early-stage formation of elliptic flow in 
relativistic viscous hydrodynamics. We first construct an elliptic deformation of Gubser flow which is 
a boost invariant solution of the Navier–Stokes equation with a nontrivial transverse profile. We then 
analytically calculate the momentum anisotropy of the flow as a function of time and discuss the 
connection with the empirical formula by Bhalerao et al. regarding the viscosity dependence of elliptic 
flow.
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1. Introduction

One of the most intriguing results of ultrarelativistic heavy ion 
collisions at the RHIC and the LHC is the strong collectivity of 
the created hot and dense matter, especially the considerable el-
liptic flow [1–6]. In non-central collisions, the overlapping region 
of the colliding nuclei approximately has the shape of an ellipse 
in the transverse plane. This region expands hydrodynamically, 
and the initial anisotropy in the pressure gradient gets converted 
into momentum space anisotropy, resulting in the modulation of 
the azimuthal angle distribution of charged particles in the final 
state [7]:

dN

dφ
∝ 1 + 2v2 cos 2φ. (1)

The coefficient v2 is called the elliptic flow parameter and is one 
of the central objects of experimental and theoretical study in 
heavy-ion physics because it is a sensitive probe of the equilib-
rium/nonequilibrium properties of the created matter.

While the mechanism to generate v2 is well understood, little 
is known about its analytical details. Theoretically, the extraction 
of v2 relies heavily on numerical (viscous) hydrodynamic simula-
tions supplemented with some initial condition and the equation 
of state (see, e.g., [8–17]). In this paper, we provide a fully analyt-
ical description of the early-stage formation of v2 by deriving and 
utilizing an approximate elliptic solution of the relativistic Navier–
Stokes equation. Such an analysis has long been infeasible due to 
the difficulty of constructing realistic elliptically-shaped solutions 
of hydrodynamic equations for which only a few attempts have 
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been made in the literature [18–21]. The new solution we are able 
to present here has been achieved along the line of the recent 
progress in constructing exact solutions of viscous hydrodynamic 
equations using conformal symmetry [22–26]. Within the region 
of validity of the solution, one can study explicitly how the ellip-
tic flow develops as a function of proper time and how the shear 
viscosity affects this evolution.

In Section 2, we review the Gubser flow [22,23] which is an ex-
act boost-invariant solution of the relativistic Navier–Stokes equa-
tion with nontrivial radial flow velocities. In Section 3, we use 
the so-called Zhukovsky transform to elliptically deform the Gub-
ser flow in the transverse plane and construct an approximate 
solution. We then calculate in Section 4 the momentum space 
anisotropy of this flow and discuss the connection to the empir-
ical formula proposed by Bhalerao et al. [27] regarding the shear 
viscosity dependence of the elliptic flow. In the end, we summarize
in Section 5.

2. Gubser flow

In this section, we briefly review the exact boost-invariant solu-
tion of the relativistic Navier–Stokes equation found by Gubser [22,
23]. The solution is naturally explained by rewriting the Minkowski 
metric as

dŝ2 = −dt̂2 + dx̂2 + dŷ2 + dẑ2

= −dτ̂ 2 + dx̂2⊥ + x̂2⊥dφ̂2 + τ̂ 2dζ̂ 2, (2)

where τ̂ ≡
√

t̂2 − ẑ2 is the proper time and ζ̂ ≡ tanh−1 ẑ/t̂ is the 
space-time rapidity. In this coordinate system, the four-velocity ûμ

of the fluid (normalized as ûμûμ = −1) reads
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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ûτ = − cosh

[
tanh−1 2τ̂ x̂⊥

L2 + τ̂ 2 + x̂2⊥

]
,

û⊥ = sinh

[
tanh−1 2τ̂ x̂⊥

L2 + τ̂ 2 + x̂2⊥

]
, (3)

with ûφ = ûζ = 0 and L is roughly the initial transverse size of 
the fluid. The ζ̂ -independence of Eq. (3) and ûζ = 0 mean that the 
flow expands in the longitudinal (ẑ) direction in a boost-invariant 
way. It also expands in the transverse direction with the transverse 
velocity

v̂⊥ = − û⊥
ûτ

= 2τ̂ x̂⊥
L2 + τ̂ 2 + x̂2⊥

. (4)

Plugging this velocity profile into the relativistic Navier–Stokes 
equation and assuming conformal symmetry, Gubser obtained the 
following exact solution for the energy density

Ê = 1

τ̂ 4

C4

(coshρ)8/3

×
[

1 + η0

9C
(sinhρ)3

2 F1

(
3

2
,

7

6
,

5

2
;− sinh2 ρ

)]4

, (5)

where C > 0 is a constant and the shear viscosity η̂ has been made 
dimensionless by factoring out the corresponding power of the en-
ergy density η0 ≡ η̂/Ê3/4. In Eq. (5), we have defined

sinhρ ≡ − L2 − τ̂ 2 + x̂2⊥
2Lτ̂

. (6)

The following components of the shear tensor will be needed for 
a later calculation.

σ̂τ⊥ = 2

3

x̂⊥(L2 − τ̂ 2 + x̂2⊥)(L2 + τ̂ 2 + x̂2⊥)

((L2 + τ̂ 2 − x̂2⊥)2 + (2Lx̂⊥)2)3/2
,

σ̂⊥⊥ = − 1

3τ̂

(L2 + τ̂ 2 + x̂2⊥)2(L2 − τ̂ 2 + x̂2⊥)

((L2 + τ̂ 2 − x̂2⊥)2 + (2Lx̂⊥)2)3/2
,

σ̂⊥φ = 0, σ̂φφ = − 1

3τ̂

x̂2⊥(L2 − τ̂ 2 + x̂2⊥)√
(L2 + τ̂ 2 − x̂2⊥)2 + (2Lx̂⊥)2

. (7)

As already pointed out by Gubser, the solution has a patholog-
ical behavior at large negative values of ρ corresponding to large 
x̂⊥ and/or small τ̂ . Indeed, when | sinhρ| � 1 one can approxi-
mate

2 F1

(
3

2
,

7

6
,

5

2
;− sinh2 ρ

)
≈ 9

2
(− sinhρ)−7/3 +O

(
sinh−3 ρ

)
, (8)

so that

Ê ≈ C4

τ̂ 4(cosh2 ρ)4/3

[
1 − η0

2C

{
(− sinhρ)2/3 +O(1)

}]4

. (9)

The quantity inside the square brackets is proportional to the tem-
perature T̂ ∝ Ê1/4 and this becomes negative for sufficiently nega-
tive values of ρ . This is actually not surprising since the relativistic 
(first-order) Navier–Stokes equation is known to have unphysical 
features.1 As demonstrated in Ref. [24], the problem can be cured 
by switching to the (second-order) Israel–Stewart equation. For the 
present purpose, we are not concerned about this issue since one 
can consider η0 to be arbitrarily small (or C arbitrarily large) so 

1 The problem of negative temperature also appears in an exact solution of the 
Navier–Stokes equation for the Bjorken flow [26].
that the temperature remains positive in a parametrically large re-
gion of x̂⊥ and τ̂ .

τ̂ L

L2 or x̂2⊥
�

(
η0

C

)3/2

. (10)

In this region, the solution is well-behaved and offers an attrac-
tive model for the studies of strongly interacting matter created in 
heavy-ion collisions as discussed in Refs. [22,23].

3. Elliptic solution

The Gubser solution described above is cylindrically symmet-
ric around the ẑ-axis. Here we relax this restriction and construct 
an approximate solution which has the shape of an ellipse in the 
transverse plane. This can be achieved by employing the so-called 
Zhukovsky (Joukowski) transform2 which maps a circle onto an el-
lipse as follows

x̂ =
(

x⊥ + a2

x⊥

)
cosφ = x + a2x

x2 + y2
,

ŷ =
(

x⊥ − a2

x⊥

)
sinφ = y − a2 y

x2 + y2
, (11)

where a is a constant and we only consider the region x⊥ > a. As is 
manifest in its complex representation ω̂ = x̂+ i ŷ = ω+ a2

ω , Eq. (11)
is a conformal transformation in two-dimensions and therefore the 
metric is preserved up to a Weyl factor

dx̂2 + dŷ2 =
(

1 − 2a2

x2⊥
cos 2φ + a4

x4⊥

)(
dx2 + dy2)

≡ A2(dx2 + dy2). (12)

Embedding this in four-dimensions, we obtain

dŝ2 = −dτ̂ 2 + dx̂2 + dŷ2 + τ̂ 2dζ̂ 2

= A2
[
−dτ 2 + dx2⊥ + x2⊥dφ2 + τ 2dζ 2 − 2τ

A
dτdA

− τ 2

A2
(dA)2

]
, (13)

where we have relabeled τ̂ = Aτ and ζ̂ = ζ . If the last two terms 
were absent, the metric inside the square brackets would be ex-
actly Minkowskian. Let us find the conditions under which these 
terms can indeed be neglected. More explicitly, we find

dA = 2a2

Ax2⊥

[(
cos 2φ − a2

x2⊥

)
dx⊥
x⊥

+ sin 2φdφ

]
. (14)

Since the elliptic deformation ∼ cos 2φ is an O(a2/x2⊥) effect, we 
assume a2/x2⊥ 	 1 and neglect terms of order O(a4/x4⊥). Then the 
(dA)2 term in (13) can be safely dropped. In order to drop the 
cross term O(dτdA) as well, we must additionally assume that 
x⊥ � τ and neglect terms of order O(τa2/x3⊥) relative to the lead-
ing term.

Under these conditions, the coordinate systems (τ̂ , ̂x, ŷ, ̂ζ ) and 
(τ , x, y, ζ ) are conformally related, and one can map the Gubser 
solution expressed in the former coordinates into the latter.3 The 
transformation rule is given by

2 The Zhukovsky transform was originally used to determine the two-dimensional 
incompressible potential flow around an airfoil.

3 Since Eq. (11) is not an element of the Möbius transformation, it cannot ex-
actly be promoted to a four-dimensional conformal transformation. This is why the 
solution obtained is an approximate one.
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E = A4Ê, uμ = 1

A

∂ x̂ν

∂xμ
ûν, σμν = 1

A

∂ x̂α

∂xμ

∂ x̂β

∂xν
σ̂αβ . (15)

To the order of interest, we can approximate

τ̂ = Aτ ≈
(

1 − a2

x2⊥
cos 2φ

)
τ , x̂⊥ ≈ x⊥ + a2

x⊥
cos 2φ, (16)

∂φ̂

∂φ
≈ 1 − 2a2

x2⊥
cos 2φ,

∂φ̂

∂x⊥
≈ 2a2

x3⊥
sin 2φ, (17)

sinhρ ≈ − L2 − τ 2 + x2⊥
2Lτ

(
1 + a2(L2 + 3x2⊥)

x2⊥(L2 + x2⊥)
cos 2φ

)
. (18)

We thus find the energy density

E ≈ C4

τ 4/3

(2L)8/3

(L4 + 2(τ 2 + x2⊥)L2 + (τ 2 − x2⊥)2)4/3

×
(

1 − η0

2C

(
L2 − τ 2 + x2⊥

2Lτ

)2/3)4

×
(

1 − a2

1 − η0
2C

( L2−τ 2+x2⊥
2Lτ

)2/3

8

3x2⊥

L2 + 3x2⊥
L2 + x2⊥

cos 2φ

)

≡ E0 + δEa2 cos 2φ. (19)

Since δE < 0, the curves of constant energy are elliptic, with the 
major axis in the y-direction. The flow velocity in turn is given by

uτ ≈ −1 +O
(
τ 2),

u⊥ ≈ 2τ x⊥
L2 + τ 2 + x2⊥

− 2τ

(
1

x3⊥
+ 2x⊥

(L2 + x2⊥)2

)
a2 cos 2φ

≡ u⊥0 + δu⊥a2 cos 2φ,

uφ ≈ −2τ

x2⊥

L2 + 3x2⊥
L2 + x2⊥

a2 sin 2φ ≡ δuφa2 sin 2φ, (20)

and the shear tensor is

σ⊥⊥ ≈ − 1

3τ

(
1 − 2(L2 − 2x2⊥)τ 2

(L2 + x2⊥)2

− 4τ 2(L4 + L2x2⊥ + 6x4⊥)

(L2 + x2⊥)3x2⊥
a2 cos 2φ

)

≡ σ 0⊥⊥ + δσ⊥⊥a2 cos 2φ,

σ⊥φ ≈ 4τ (L2 + 3x2⊥)

3x⊥(L2 + x2⊥)2
a2 sin 2φ ≡ δσ⊥φa2 sin 2φ,

σφφ ≈ − x2⊥
3τ

(
1 − 2L2τ 2

(L2 + x2⊥)2
+ 4τ 2L2(L2 + 3x2⊥)

(L2 + x2⊥)3x2⊥
a2 cos 2φ

)

≡ σ 0
φφ + δσφφa2 cos 2φ. (21)

Note that δu⊥ is negative, meaning that both E and u⊥ are 
stretched in the y-direction. This may seem contradictory to the 
standard picture that the stronger pressure (or energy density) 
gradient in the x-direction develops a stronger flow in the same 
direction. In fact, there is no contradiction. The negativeness of 
δu⊥ (at large x⊥) is a direct consequence of conformal symme-
try4 which dictates a power-law decay of E and the hydrodynamic 
equation which, in the present accuracy, boils down to

4 The situation is different in the confining (non-conformal) case. Suppose that 
the energy density decays as a Gaussian instead of a power-law
δu⊥ = −3τ

8
∂⊥

(
δE
E0

)
< 0. (22)

(For simplicity here we consider the ideal hydrodynamic equation.) 
On the other hand, we find

2π∫
0

dφ
(
u2

x − u2
y

) ≈
∫

dφ

(
cos 2φ u2⊥ − 2 sin 2φ

x⊥
uφu⊥

)

= 2πa2u⊥0

(
δu⊥ − δuφ

x⊥

)
= 16πa2τ 2L2

(L2 + x2⊥)3
> 0,

(23)

where we have neglected u2
φ ∼ O(a4). Eq. (23) shows that, due 

to the φ-component of the flow velocity which tends to point to 
the x-direction (δuφ < 0), the flow is on average stronger in the 
x-direction, as expected.

Eqs. (19)–(21) define an approximate elliptic solution of the 
Navier–Stokes equation with the shear viscosity η = η0E3/4. They 
satisfy the equation with the accuracy of order O(a2/x2⊥) rela-
tive to the leading (isotropic) solution, but break down at order 
O(a2τ 2/x4⊥) which can be checked explicitly.5 One way to under-
stand this is to notice that there is in fact an O(τ 2/x2⊥) uncertainty 
in the definition of a2. Indeed, we could have employed a non-
constant a2(τ ) already in Eq. (11) as long as its τ -dependence is 
sufficiently weak

1

a2

∂a2

∂τ
�O

(
τ

x2⊥

)
. (24)

If Eq. (24) is satisfied, the extra terms that would appear in the 
transformation as in Eq. (13) are of the same order as, or less 
than those already neglected. The maximal uncertainty incurred 
by Eq. (24) is

a2(τ ) ∼ a2
0

(
1 +O

(
τ 2

x2⊥

))
, (25)

and this affects the Navier–Stokes equation at order O(a2τ 2/x4⊥).
A similar caveat applies to the eccentricity of the flow which 

we define as

ε(τ ) ≡ 〈y2 − x2〉
〈y2 + x2〉 ≡

∫
dxdy(y2 − x2)E(x⊥, τ )∫
dxdy(y2 + x2)E(x⊥, τ )

. (26)

For the ideal solution at early times, we find

ε ideal(τ ≈ 0) ≈ 14a2

9L2
. (27)

On general grounds, one expects that ε(τ ) decreases with time. 
Unfortunately, this τ -dependence is not reliably calculable in the 
present approach due to the above uncertainty in a2. We however 
note that Eq. (25) suggests that ε(τ ) decreases quadratically in τ

E ∼ e
− x2

σ2
x

− y2

σ2
y ≈ exp

(
− x2⊥

2

(
1

σ 2
x

+ 1

σ 2
y

))(
1 − x2⊥

2

(
1

σ 2
x

− 1

σ 2
y

)
cos 2φ

)
,

where σy > σx . The Euler equation is then

u⊥ ∼ −τ∂⊥ lnE ∼ τ x⊥
(

1

σ 2
x

− 1

σ 2
y

)
cos 2φ = δu⊥ cos 2φ,

for the φ-dependent part. Thus δu⊥ is positive in this case.
5 Note that we have already neglected terms of order O(τ 2/x2⊥) in the O(a2)

corrections in Eqs. (19)–(21).
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ε(τ ) ∼ ε0

(
1 − c

τ 2

L2

)
, (28)

where c > 0 remains undetermined. Eq. (28) appears to be con-
sistent with the result of numerical simulations [9,14] (see also, 
[28]).

Before proceeding to the calculation of elliptic flow with vis-
cous corrections, we make one more simplification. In order to 
clearly see the role of the viscosity, we shall neglect the terms 
of order O(τ 2/x2⊥) and O(τ 2/L2) in the energy density Eq. (19)
while keeping powers of η0(L/τ )2/3 up to quadratic order. Ac-
tually, once we go beyond linear order in η0, we must be care-
ful with the O(1) terms inside the brackets of Eq. (9). The 
condition that these terms are parametrically smaller than the 
O(η2

0(L/τ )4/3) term is
(

η0

C

)3/4

� τ

L or x⊥
�

(
η0

C

)3/2

, (29)

where another constraint in Eq. (10) has been included. Thus, 
strictly speaking, the following analysis is valid in the window as 
shown in Eq. (29) in the viscous case with η0 �= 0.

4. Viscous effect on elliptic flow

We now turn to the discussion of the elliptic flow parameter v2
which characterizes the momentum space anisotropy in the final 
state. Besides the leading contribution from the ideal flow, we also 
include the shear viscous correction which plays an important role 
in the phenomenological study of quark–gluon plasma [11,13–15,
17].

With an analytic solution of the Navier–Stokes equation at 
hand, we can get information about v2 via a closely related quan-
tity [8,9]

εp(τ ) ≡
∫

dxdy(Txx − T yy)∫
dxdy(Txx + T yy)

. (30)

Explicitly, we find

Txx + T yy ≈ 2E
3

(
1 + 2u2⊥

) + π⊥⊥ + 1

x2⊥
πφφ, (31)

Txx − T yy = 4E
3

(
u2

x − u2
y

) + πxx − πyy

≈ cos 2φ

(
4E
3

u2⊥ + π⊥⊥ − 1

x2⊥
πφφ

)

− 2 sin 2φ

x⊥

(
4E
3

u⊥uφ + π⊥φ

)
, (32)

where πμν is the shear-stress tensor. Unlike v2, εp(τ ) in Eq. (30)
is defined at all times, and its value at the ‘build-up time’

τ f ∼ L

cs
, (33)

where L represents the characteristic transverse size and cs is the 
speed of sound, is considered to be a measure of v2 ∝ εp(τ f ). (cs =
1/

√
3 in a conformal theory.) However, as already mentioned, τ f ∼

O(L) is outside the region of validity for our approximate solution. 
Nevertheless, we show that Eq. (30) evaluated at τ 	 τ f provides 
us with useful analytical insights into the property of εp(τ ) as we 
extrapolate τ → τ f .

First, let us consider the denominator in Eq. (31). Since εp ∝ a2

and the numerator is O(a2), we can set a = 0 in the denomina-
tor from the beginning. We then recall that in the Navier–Stokes 
approximation,
πμν = −2ησμν = −2η0E3/4σμν, (34)

where σμν is given by Eq. (21) and

E3/4 ≈ C3

τ

(2L)2

(L2 + x2⊥)2

(
1 − η0

2C

(
L2 + x2⊥

2Lτ

)2/3)3

×
(

1 − a2

1 − η0
2C (

L2+x2⊥
2Lτ )2/3

2

x2⊥

L2 + 3x2⊥
L2 + x2⊥

cos 2φ

)

≡ E3/4
0 + δE3/4a2 cos 2φ, (35)

in the present approximation. Moreover, u2⊥ ∼ O(τ 2) in the factor 
1 + 2u2⊥ can be neglected. It is then straightforward to show that

∫
dxdy(Txx + T yy) ≈ 8πC4

5τ 4/3

(
2

L

)2/3(
1 − 15η2

0

2C2

(
L

2τ

)4/3)
. (36)

Note that the viscous correction shows up only at O(η2
0).6

We now turn to the numerator which requires some extra care. 
After the φ integral, we get∫

dφ(Txx − T yy) = 4πa2u⊥0

3

{
δEu⊥0 + 2E0

(
δu⊥ − 1

x⊥
δuφ

)}

− 2πa2η0

{(
σ 0⊥⊥ − σ 0

φφ

x2⊥

)
δE3/4

+
(

δσ⊥⊥ − δσφφ

x2⊥
− 2δσ⊥φ

x⊥

)
E3/4

0

}

= 16πa2τ 2

3(L2 + x2⊥)2

(
x2⊥δE + 4L2E0

L2 + x2⊥

)

+ 8πa2η0τ

3(L2 + x2⊥)2

(
x2⊥δE3/4 + 4L2E3/4

0

L2 + x2⊥

)
, (37)

where the potentially dangerous O(1/x2⊥) terms in Eqs. (20) and 
(21) which could cause trouble in the remaining dx2⊥ integral have 
canceled out. In Eq. (37), we recognize two types of contribu-
tions with clear but distinct physical interpretations. The terms 
proportional to δE and δE3/4 are due to the spatial anisotropy of 
the source (energy density). Since the bulk of matter is initially 
stretched in the y-direction (δE < 0), these terms give a negative 
contribution to εp . On the other hand, the terms proportional to E0

and E3/4
0 are due to the anisotropy of the flow velocity δu. As al-

ready discussed in Eq. (23), they give a positive contribution to εp .
We thus evaluate the two contributions separately and find, af-

ter dividing by Eq. (36),∫
dxdy(Txx − T yy)∫
dxdy(Txx + T yy)

∣∣∣∣
δE

= 20a2τ 2

3L4

[
−80

77
+ 3η0

2C

(
L

2τ

)2/3

− 3264η2
0

385C2

(
L

2τ

)4/3]
, (38)

and∫
dxdy(Txx − T yy)∫
dxdy(Txx + T yy)

∣∣∣∣
δu

= 20a2τ 2

3L4

[
6

7
− 3η0

2C

(
L

2τ

)2/3

+ 513η2
0

70C2

(
L

2τ

)4/3]
. (39)

6 In fact, the O(η3
0) term of the denominator (but not the numerator) is divergent 

because the x⊥-integral does not converge as x⊥ → ∞. This is an artifact of the 
solution Eq. (9) which becomes unphysical at large x⊥ , and limits our calculation of 
εp to O(η2

0).
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Summing the two contributions, we arrive at

εp(τ ) = 20a2τ 2

3L4

[
− 2

11
− 177η2

0

154C2

(
L

2τ

)4/3]
. (40)

Surprisingly, εp is negative as a result of the slightly larger con-
tribution from the source anisotropy. This is at odds with the 
observed behavior in hydrodynamic simulations [8,12,14] which is 
qualitatively quite consistent with the contribution from the flow 
anisotropy (39) alone, namely, εp(τ ) is positive, grows quadrati-
cally in time εp(τ ) ∼ τ 2, and the viscosity tends to suppress it.7

While this discrepancy may seem worrisome, one should notice 
the large cancellation which resulted in a barely negative value 
found in (40). This suggests that whether the source anisotropy 
contribution is large enough to flip the sign of εp is subtle and 
model-dependent. It is then interesting that our conformal solu-
tion reveals and exemplifies the logical possibility that even if ∫

d2x⊥(u2
x − u2

y) is positive, 
∫

d2x⊥E(u2
x − u2

y) can become nega-
tive. When this occurs, the simple proportionality between v2 and 
εp is far from obvious and may be subject to large ‘non-flow’ ef-
fects (see, e.g., Refs. [16,29]).

What are, then, the main characteristics of a given model which 
determine the sign of εp? In the model at hand, the transverse 
flow u2

x − u2
y generated by the pressure gradient is weak and in-

sufficient to make εp positive because δu⊥ is negative (cf. (23)). 
This is an artifact of conformal symmetry which dictates that the 
energy density should decay as a power-law. In confining theo-
ries including QCD, δu⊥ will be positive (see footnote 4), and one 
therefore expects that the flow anisotropy contribution (39) domi-
nates over the source anisotropy contribution (38). After all, elliptic 
flow is the anisotropy in the flow velocity, and this is faithfully in-
corporated in (39), but not in (38).8

Let us therefore take a closer look at Eq. (39). Parametrically, 
and to linear order in η0, this can be rewritten as

εp(τ )

ε ideal
p (τ )

∣∣∣∣
δu

∼ 1

1 + η0
C ( L

τ )2/3
∼ 1

1 + ηL2

C3E1/4

∼ 1

1 + L2

σdN/dY

, (41)

where we have used E ∼ T 4 ∼ C4/(τ 4/3L8/3) and the kinetic the-
ory relation η/E1/4 ∼ η/T ∼ 1/σ (with σ being the cross sec-
tion of microscopic degrees of freedom) together with an estimate 
C3 ∼ dN/dY of the rapidity distribution of particle multiplicity in 
the final state (see Eq. (44) of Ref. [22]). Now let us compare 
Eq. (41) with the following empirical formula proposed in heavy-
ion collisions [27] (and also in high-multiplicity proton-proton col-
lisions [33])

v2

videal
2

= 1

1 + K
K0

, K ≡ S⊥
csσ

dN
dY

, (42)

where K0 > 0 is a number of order unity and S⊥ is the initial 
transverse overlap area of the two colliding nuclei. Despite its sim-

7 Readers may wonder whether the results in Eqs. (38)–(40), which are of the or-
der of O(a2τ 2/L4), are reliable in view of the difficulty we have encountered at this 
order when analyzing the hydrodynamic equation and the eccentricity. However, 
in the previous examples, the uncertainty at order O(a2τ 2/L4) stems from un-
known corrections to the lower order O(a2/L2) results. In contrast, Eqs. (38)–(40)
are the leading order results for the momentum anisotropy. The would-be lower or-
der terms of order O(τ 2/L2) and O(a2/L2), as well as their uncertainty have been 
canceled. It is also straightforward to see that the genuine O(a2τ 2/L4) corrections 
of E and uμ can only enter at even higher order in the results in Eqs. (38)–(40).

8 Another difference from hydrodynamic simulations is the treatment of the ini-
tial velocity. In typical numerical simulations, the transverse velocity at the initial 
time τ = τ0 is set to be zero, whereas in our solution the velocity (20) is nonzero 
for any τ0 > 0. Simulations with nonvanishing u⊥(τ0) do exist (see, e.g., [30–32]), 
but so far they only studied v2 in the final state. It would be interesting to see the 
effect of the initial velocity on the early-stage development of εp in these simula-
tions.
plicity, the formula in Eq. (42) is quite successful in fitting the 
RHIC/LHC data and the results of viscous hydrodynamic simula-
tions [12,27,34]. With the natural identification S⊥ = L2, paramet-
rically the agreement between Eqs. (41) and (42) is perfect.9 Thus 
we have presented an explicit justification of the empirical formula 
Eq. (42) to linear order in the ‘Knudsen’ number K ∼ η0(L/τ )2/3. 
At higher order in K , our result suggests a power series with 
alternating sign (remember that E ∼ (1 − K )4 before the d2x⊥
integration). Since this is not a geometric series, we expect a devi-
ation from the formula Eq. (42) starting from O(K 2). Nevertheless, 
Eq. (42) does capture the main feature of the series and this is 
probably the reason of its successful applications in phenomenol-
ogy.

5. Conclusion

In conclusion, we have constructed an approximate boost-
invariant elliptic solution of the Navier–Stokes equation with a 
well-defined region of validity. In this region, the leading contribu-
tion to the momentum anisotropy (30) of the fluid is analytically 
calculated. Driven by the spatial anisotropy, a stronger flow devel-
ops in the direction of larger pressure gradient. While this scenario 
is well-known and well-tested numerically, in the presence of vis-
cosity it has not been demonstrated with the level of analytical 
precision we have been able to present in this paper. We also 
pointed out the potentially large negative contribution to εp due 
to the source anisotropy which, depending on models, can even 
flip the sign of εp . Finally, by focusing on the flow anisotropy 
contribution in Eq. (39), we have discussed the connection with 
the empirical formula (42) previously suggested in heavy-ion phe-
nomenology.
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