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I  Introduction 1 

Operation of a harvester in the field is demanding for 2 
the operator because the work is time-consuming and to 3 
deteriorates the health of the operator owing to, dust 4 
particles as well as the noise and vibrations of the 5 
harvesting machine. Moreover, the steering operation 6 
requires the operator to possess a high level of 7 
proficiency to compensate for the inefficiencies of 8 
inaccurate steering, which could result in incompletely 9 
harvested areas or re-harvesting of the areas. To address 10 
such issues, automated guidance systems can steer 11 
automatically by the edges of uncut crops to fully 12 
complete the demanding tasks. 13 

Because the automated guidance system provides an 14 
optimal steering path after considering the machinery 15 
environment, it reduces operator fatigue and improves 16 
both safety and productivity of the operations. The 17 
automated guidance system consists of two parts 18 
including an autonomous system and an operator- 19 
assisted system (Kise, et al., 2005). The autonomous 20 
system replaces the role of the operator in the field and 21 
performs all operations, completing the harvesting task 22 
automatically. The operator-assisted system merely 23 
assists the operator and guides the machinery toward the 24 
desired path. Although the two systems differ in 25 
functionality, both perform path planning by navigation 26 

sensors mounted on the machinery. The automated 27 
guidance system of the harvesting machine repeats the 28 
following process until harvesting is complete: The 29 
current position of the machinery is first estimated in 30 
real-time, and the course direction is determined by the 31 
extraction of the uncut crop edges. Next, an optimal path 32 
with minimum time consumption that does not damage 33 
the crops is planned for the steering. Finally, the 34 
machinery is steered along the desired path. As 35 
previously described, because the automated guidance 36 
system performs path planning and accurate steering on 37 
the basis of the uncut crop edges extracted by the use of 38 
navigation sensors mounted on the machinery, precise 39 
extraction of the edges is critical to the system 40 
performance. 41 

In recent years, various sensor methodologies have 42 
been proposed or developed for automated guidance 43 
systems of harvesting machines. Researchers from the 44 
National Agricultural Research Center in Japan and 45 
Mitsubishi Farm Machinery Co., Ltd. have developed an 46 
automatic travelling control system that performs straight 47 
-forward traveling movement by detecting uncut crops 48 
and incorporating a 90° turn by using the gyroscope 49 
mounted on the combine body when the harvester 50 
reaches the end of crop row. This action is performed by 51 
utilizing the contact sensor mounted on the header’s 52 
divider of the head-feeding combine harvester (Sato, et 53 

Vision-based Uncut Crop Edge Detection for  

Automated Guidance of Head-Feeding Combine 
 

Wonjae CHO*1, Michihisa IIDA*2, Masahiko SUGURI*3,  
Ryohei MASUDA*3, Hiroki KURITA*3 

 

Abstract 
This study proposes a vision-based uncut crop edge detection method to be utilized as a part of an automated 

guidance system for a head-feeding combine harvester, which is widely used in Japan for the harvesting of rice and 
wheat. The proposed method removes the perspective effects of the acquired images by inverse perspective mapping 
and recovers the crop rows to their actual parallel states. Then, the uncut crop edges are detected by applying color 
transformation and the edge detection method. The proposed method has shown outstanding detection performance 
on the images acquired under various conditions of the paddy field with an average accuracy of 97% and a 
processing speed of 33 ms per frame. 

[Keywords] Head-feeding combine harvester, Uncut crop edge detection, Inverse perspective mapping, Color transformation 

Research Paper 

 
*1 JSAM Student Member, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 

606-8502, Japan; cho@elam.kais.kyoto-u.ac.jp 
*2 JSAM Member, Corresponding author, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, 

Sakyo-ku, Kyoto, 606-8502, Japan; iida@elam.kais.kyoto-u.ac.jp 
*3 JSAM Member, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, 

Japan 



 
Engineering in Agriculture, Environment and Food Vol. X, No. X (20XX) 2 

al., 1996). Researchers from Carnegie Mellon University 1 
and the National Aeronautic and Space Administration 2 
(NASA) developed an automated guidance system that 3 
employs a color camera to extract the uncut crop edges 4 
to perform the automatic guiding task. This system was 5 
tested on a New Holland hay windrower and has 6 
successfully performed a harvesting task in an alfalfa 7 
field (Ollis and Stentz, 1997). Researchers from 8 
Cemagref Institute in France proposed an automatic 9 
guidance method for agricultural vehicles in either a 10 
structured environment, such as a windrow harvester, or 11 
an iterative structured environment, such as a combine 12 
harvester, by implementing a 1D scanning laser range 13 
finder (Chateau, et al., 2000). Benson, et al. (2003) 14 
developed and demonstrated a machine-vision-based 15 
guidance system for small-grain harvesters with the use 16 
of a monochrome camera mounted on the machinery cab. 17 
Rovira-Más, et al. (2007) developed an autonomous 18 
guidance system that extracts the edges of uncut crops on 19 
the basis of 3D information obtained from stereo vision. 20 

This study proposes a vision-based uncut crop edge 21 
detection method for an automated guidance system that 22 
can be utilized for a head-feeding combine harvester, 23 
which is widely used in Japan for harvesting rice and 24 
wheat. The proposed method detected the uncut crop 25 
edges a processing speed of 33 ms per frame in the 26 
paddy field under the conditions of various noise 27 
elements, shadows casted by irregular crop distribution 28 
and the driving direction of the combine harvester as 29 
well as dust particles generated by harvesting. Moreover, 30 
unlike previous researchers who detect uncut crop edges 31 
without removing the perspective effect existing on the 32 
images acquired from a single vision sensor (Ollis and 33 
Stentz, 1997; Benson, et al., 2003), the present study 34 
identifies the relative lateral distance of the uncut crop 35 
edge from the center of origin of the vision sensor  36 
because this way it extracts the uncut crop edges by 37 
applying the inverse perspective mapping (IPM) 38 
algorithm to an image that uses the extrinsic and intrinsic 39 
parameters of the single-vision sensor. This process 40 
removes the perspective effect existing within the images 41 
and converts the location information of the image plane 42 
to that of the world coordinate system. 43 

 44 

II  Materials and Methods 45 

1.  Experimental setup 46 
A VY446LM model head-feeding combine harvester 47 

(Mitsubishi Agricultural Machinery Co., Ltd., Japan) was 48 
used for experiments in this study. This harvester can 49 

simultaneously harvest four rows of rice in a paddy field. 50 
The harvester driven by a human operator harvested rice 51 
at a speed of 0.8 m/s. The Microsoft LifeCam Studio 52 
vision sensor (Microsoft Co., Ltd.), which supports the 53 
USB 2.0 interface, was used for uncut crop edge 54 
detection. The vision sensor operates within a 55 
temperature range of 0 °C to 40 °C and a relative 56 
humidity range of 5% to 80%. A complementary 57 
metal-oxide semiconductor image sensor was used, 58 
which has a field of view of 75°. The sensor captures 10 59 
frames of color images in 640 pixel (horizontal) by 480 60 
pixel (vertical) resolution per second. As shown in Fig. 1, 61 
the camera is mounted on the frame located at the front 62 
of the cab of the head-feeding combine harvester. The 63 
center of the lens is located 1.5m vertically (h) from the 64 
ground, with a tilt angle (𝜃𝜃) of 10°. A computer with 65 
Corei5 CPU 2.40 GHz and 4GB memory was used. 66 

This study utilized the machine vision function of the 67 
integrated sensor control platform (ISCP) for combine 68 
harvesters, which is currently under development for the 69 
implementation of a vision-based guidance method. 70 
ISCP supports various types of navigation sensors such 71 
as machine vision, laser range finder, and global 72 
positioning system (GPS), which are used for the 73 
automated guidance system of the combine harvester. 74 
This platform can also express graphic user interface 75 
(GUI)-based real-time data. Moreover, the open-source 76 
platform can freely be modified and re-distributed 77 
without license restrictions. The proposed vision-based 78 
guidance method was developed by using Visual C# 79 
language, and the open source computer vision (OpenCV) 80 
library was utilized for image processing. 81 

 82 
Fig. 1. Coordinate system of the camera mounted on the 83 

combine harvester. 84 
 85 

2.  Inverse perspective mapping 86 
In the paddy fields of Japan, rice plants are evenly 87 

planted at approximately 0.3 m in the inter-row (𝑑𝑑𝑟𝑟) and 88 
approximately 0.15 m in the intra-row (𝑑𝑑𝑐𝑐) in a parallel 89 
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row formation. However, owing to the perspective effect, 1 
the crop rows shown in the image planes acquired by the 2 
camera are not shown in parallel formation but rather as 3 
rows that converge to a single vanishing point, as shown 4 
in Fig. 2.  5 

 6 

 7 
Fig. 2. Geometry of the central projective model. 8 

 9 
For the purpose of this study, IPM was utilized to 10 

remove the perspective effect and restore the crop rows 11 
to their original parallel state. IPM is a technique that 12 
geometrically transforms an image by constructing a new 13 
image on inverse 2D planar by projecting each of the 14 
pixels of a 3D object in 2D perspective view and 15 
remapping them to new positions (Bertozzi and Broggi, 16 
1998). IPM removes the perspective effect by the use of 17 
intrinsic (angular aperture and resolution) and extrinsic 18 
(pitch angle, yaw angle, and height above ground) 19 
parameters of the camera. It also has the ability to 20 
calculate lateral distances between the crop rows from 21 
the point of origin of the camera because it converts the 22 
position information of the image plane to that of the 23 
world coordinate system. IPM, in the mathematical sense, 24 
is a transformation of a 3D Euclidean space, 𝑊𝑊 =25 
{(𝑥𝑥,𝑦𝑦, 𝑧𝑧)} ∈ 𝐸𝐸3  (world space), into a 2D Euclidean 26 
space, 𝐼𝐼 = {(𝑢𝑢, 𝑣𝑣)} ∈ 𝐸𝐸2  (image space). Whereas 27 
Space 𝐼𝐼  corresponds to the image acquired, the 28 
remapped image is defined under the flatness assumption 29 
on the 𝑥𝑥𝑥𝑥  plane of Space 𝑊𝑊 , namely the 𝑆𝑆 ≜30 
{(𝑥𝑥,𝑦𝑦, 0) ∈ 𝑊𝑊}  surface. Fig. 3 shows the extrinsic 31 
parameters of the camera mounted on the combine 32 
harvester. Parameters 𝛾̅𝛾, 𝜃̅𝜃, and ℎ denote the yaw angle, 33 
pitch angle, and the height of the camera from the 34 
ground, respectively, and 𝑙𝑙  and 𝑑𝑑  represent the 35 
longitudinal and transverse distances of the camera to the 36 
center of origin on the 𝑥𝑥𝑥𝑥  plane. The intrinsic 37 
parameters are expressed as the angular aperture 2𝛼𝛼 and 38 
resolution 𝑚𝑚 × 𝑛𝑛. By using the extrinsic and intrinsic 39 
parameters, the mapping function from Space 𝐼𝐼  to 40 
Space 𝑆𝑆 can be defined as in Eq. (1): (𝑓𝑓: 𝐼𝐼 → 𝑆𝑆).  41 
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 43 
Moreover, Eq. (2) defines the projection 44 

transformation used to remove the perspective effect, 45 
which recovers the texture of the 𝑆𝑆 surface (the 𝑧𝑧 = 0 46 
plane in Space 𝑊𝑊).  47 
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 49 
Each pixel scanned from the coordinates (𝑥𝑥,𝑦𝑦, 0) ∈50 

𝑊𝑊, which forms the remapped image, is assigned the 51 
value of its corresponding pixel in the coordinates 52 
(𝑢𝑢(𝑥𝑥,𝑦𝑦, 0), 𝑣𝑣(𝑥𝑥,𝑦𝑦, 0)) ∈ 𝐼𝐼. Once these two equations are 53 
applied, the window of interest from the input image can 54 
be projected onto the ground plane. Fig. 4 shows the 55 
original image acquired from the camera and the image 56 
transformed by the IPM algorithm. The original image 57 
(640 × 480  pixels) is shown in Fig. 4(a), with the 58 
region of interest (ROI; 640 × 400 pixels) shown in the 59 
square (red); the transformed IPM image (320 × 240 60 
pixels) is shown in Fig. 4(b). As indicated in the figure, 61 
the IPM image shows the crop rows in fixed width 62 
intervals as vertical, straight lines in a parallel 63 
configuration. 64 

 65 
(a) 𝑧𝑧η  plane. 66 

 67 
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 1 
(b) 𝑥𝑥𝑥𝑥 plane. 2 

Fig. 3. Extrinsic parameters of the camera. 3 

 4 
(a) Input image, the region of interest marked off. 5 

 6 

(b) Inverse perspective mapping (IPM) view. 7 
Fig. 4. Original image and the converted inverse 8 

perspective mapping (IPM) image. 9 
 10 
3.  Color space transformation 11 
The IPM images, transformed in the RGB color space, 12 

contain the surrounding information about shadows, dust 13 
particles floating in air, and any potential noise that 14 
might have been generated as the result of radical 15 
brightness changes in the surroundings. Therefore, prior 16 
to applying the uncut crop edge detection algorithm, a 17 
robust segmentation method is required to filter out the 18 
noise in the images and extract the uncut crop areas. 19 
Under this backdrop, color indices have been developed 20 
that can distinguish crops from other image elements 21 
(Woebbecke, et al., 1995; Meyer, et al., 1998; Kataoka, 22 
et al., 2003; Neto, 2004; Hague, et al., 2006). By the 23 

image transformation into these indices, the spectral 24 
differences between plants and the rest of the image 25 
areas are contrasted. In the present study, the excess 26 
green minus excess blue index (ExGB), based on the 27 
visible spectral indices proposed by early researchers, 28 
has been applied to the images to perform segmentations. 29 
ExGB is defined as 30 

,  ,  

Excess green: ExG 2
Excess blue: ExB 1.4
Excess green minus excess blue: ExGB ExG ExB

R G Br g b
R G B R G B R G B

g r b
b g

= = =
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= − −

= −

= −

  (3) 31 

where R, G, and B are normalized RGB coordinates that 32 
range from 0 to 1. They are obtained from Eq.(4):  33 

max max max

,  ,  R G BR G B
R G B

= = =
          (4) 34 

where 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 255  (for 24-bit color 35 
images). Thus, on the basis of normalized RGB 36 
coordinates, these indices become insensitive to the 37 
changes that arise from ambient light conditions as well 38 
as to the differences in the angles to target surfaces. Fig. 39 
5 shows the results of the uncut crop segmentation by 40 
applying the ExGB method to transformed IPM images. 41 
In the grayscale-converted ExGB images, it is likely that 42 
the higher pixel values represent uncut crop areas and 43 
that the lower values indicate harvested crops or image 44 
noise. 45 

 46 

Fig. 5. Excess green minus excess blue index (ExGB) 47 
image. 48 

 49 
4.  Uncut crop edge detection 50 
The precise steering of a harvesting machine along 51 

uncut crop edges would leave no uncut crops in the rows 52 
from the previous harvesting path as shown in Fig. 6(a). 53 
However, if the steering is not precise, there would be 54 
uncut remains in the crop rows from the harvesting path, 55 
as shown in Fig. 6(b). In such cases, unless the next 56 
harvesting path is determined by detection of the uncut 57 
crop edges of the previous harvest path, re-harvesting is 58 
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required after the completion of the overall harvesting, 1 
which would decrease the harvest efficiency.  2 

 3 

(a) No uncut crops after precise steering 4 

 5 

(b) Remaining uncut crops after imprecise steering. 6 
Fig. 6. Uncut crop remainders in planned harvest paths 7 

due to differences in steering performance. 8 
 9 
Therefore, in this study, the outer-most boundary point 10 

of the uncut crop area is detected from the image for 11 
configuring the uncut crop edge. In this process, two 12 
techniques are applied. ExGB images are first scanned 13 
left to right for each row. The average gray level for each 14 
column is then calculated and stored in an array of 𝑆𝑆 =15 
{𝑝𝑝𝑖𝑖|𝑖𝑖 = 1, … ,𝑛𝑛}; n is number of columns. Fig. 7 shows 16 
the average distribution of the gray level for the pixels of 17 
each column; the abscissa is the number of columns for 18 
the grayscale image, and the vertical axis is the average 19 
pixel gray level for each column.  20 

 21 

 22 
Fig. 7. Average distribution of the gray level value per 23 

column pixels. 24 

Because harvesting was performed counter-clockwise 25 
in the course of this study, the uncut crop area is located 26 
on the left side of the uncut crop edge in the acquired 27 
image, and the harvested area appears on the right. 28 
Leveraging on such characteristics, the line segment (𝑙𝑙)̅, 29 
the connection between the maximum value of the 30 
average gray level (𝑝𝑝ℎ) and the end point (𝑝𝑝𝑛𝑛) within 31 
dataset 𝑆𝑆 is calculated. Then, the point (𝑝𝑝𝑘𝑘), in which 32 
the distance of the line perpendicular (𝑑𝑑𝑘𝑘) to segment 𝑙𝑙 ̅33 
from data set 𝑉𝑉 = {𝑝𝑝𝑖𝑖|𝑖𝑖 = ℎ, … ,𝑛𝑛}  reaches the 34 
maximum, is calculated by Eq. (5) (Kimberling, 1998) .  35 

   ( )( ) ( )( )

( ) ( )
2 2

n h h k h k n h
k

n h n h

x x y y x x y y
d

x x y y

− − − − −
=

− + −

   (5) 36 

Because the 𝑥𝑥 value of the calculated pk represents 37 
the outer-most boundary point of the uncut area, the 38 
uncut and harvested areas can be distinguished from the 39 
image on the basis of this value. Fig. 8 shows the results 40 
of the application of the proposed methods to Fig. 6(a) 41 
and Fig. 6(b). Because the proposed detection method 42 
defines the uncut crop edges on the basis of the 43 
outer-most boundary point of the uncut area, it can 44 
ideally and accurately detect the edges from that shown 45 
in Fig. 6(a), in which the previous harvest is precisely 46 
completed, and for that shown in Fig. 6(b), in which 47 
uncut remainders exist in the crops rows of the previous 48 
harvest. 49 

 50 

 51 
(a) Edge detection in Fig. 6(a). 52 

 53 

 54 
(b) Edge detection in Fig. 6(b). 55 

Fig. 8. Successful uncut crop edge detection. 56 
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III  Results and Discussion 1 

For the evaluation of the outdoor performance of the 2 
proposed method, actual rice harvesting images from a 3 
rice paddy field in Nantan City, Kyoto Prefecture, Japan, 4 
were acquired under sunny conditions. Oryza sativa L. 5 
(cv. Kinu-hikari) was the crop harvested for the 6 
experiment. As a human operator steered the combine 7 
harvester, the scenes were stored and saved in video 8 
format (Audio Video Interleave). Because the combine 9 
harvester travelled counter-clockwise during the 10 
harvesting period, as shown in Fig. 9, the noise levels in 11 
the acquired images differ as the light conditions 12 
changed depending on the movement direction.  13 

 14 
Fig. 9. Travelling path of the combine harvester obtained 15 

from Google Maps. 16 
 17 

For easier comparison of the results, all of the 18 
acquired images were categorized into four datasets, 19 
according to the directions of the harvester movement, as 20 
shown in Table 1. The success of the uncut crop edge 21 
detection was determined through human eye perception. 22 
The video results can be accessed at http://youtu.be/wJ5u 23 
850aQlI. 24 

Table 1 Results determined by the proposed method. 25 
Dataset Movement 

direction 
Frames Success 

Rate [%] 
A South 950 100 
B East 300 100 
C North 950 94 
D West 300 100 

 26 
The evaluation results show that the proposed method 27 

is effective in detecting the uncut crop edges from the 28 
images under various conditions. The average detection 29 
accuracy of the uncut crop edge by the proposed method 30 
was 97% at an average processing speed of 33 ms per 31 

frame. The evaluation results show that the proposed 32 
method can detect the edges of the uncut crops with 33 
relatively high accuracy regardless of to the movement 34 
direction of the combine harvest or the noise from the 35 
surrounding conditions, as shown in Fig. 10.  36 

However, as shown in Fig. 11(a), in which the 37 
combine harvester was heading north (dataset C), the 38 
uncut crop detection was not successful owing to the 39 
combination of image information including shadows 40 
cast by the machine and the uncut crops and the random 41 
patterns of uncut crops left in the previous harvesting 42 
path. Of course, because uncut crop edges were 43 
successfully detected in Fig. 11(b), the image was 44 
consecutively acquired after Fig. 11(a), the detection can 45 
be corrected by adjusting the guidance path by steering. 46 
However, it is likely that the rapid steering of the 47 
combine harvester may cause uncut crops to remain in 48 
the rows of the previous harvest paths. Therefore, an 49 
algorithm to calibrate and adjust the failures in detecting 50 
uncut crop edges should be developed. 51 

 52 
(a) Facing the sun. 53 

 54 
(b) Back to sun and shadow. 55 

 56 
(c) Random uncut crop distribution. 57 
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 1 
(d) Beginnig of harvest. 2 

 3 
(e) End of harvest. 4 

Fig. 10. Results of uncut crop edge detection under 5 
various experimental conditions. 6 

 7 

 8 
(a) Before, unsuccessful detection of uncut crop edge. 9 

 10 
(b) After, Successfully detection of uncut crop edge. 11 
Fig. 11. Detection results in consecutively acquired 12 

images. 13 
 14 

IV  Summary and Conclusions 15 

This study proposed a robust, efficient, and real-time 16 
method for the detection of uncut crop edges to be 17 

utilized in paddy fields. The proposed method acquires 18 
top view images of the field, which are then filtered with 19 
ExGB and uncut edge detection algorithms. The tested 20 
method detected nearly all uncut crop edges, as shown in 21 
still images of the paddy field, and performed image 22 
processing at a speed of 33 ms per frame. However, its 23 
performance was poor under certain environmental 24 
conditions. Thus, a new algorithm to calibrate and adjust 25 
such failures in uncut crop edge detection should be 26 
developed. Moreover, future developments should 27 
consider methods for providing robust guidance by the 28 
use of vision sensors together with other navigation 29 
sensors, such as GPS or laser range finders. 30 

 31 
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