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The weak lensing effect on the cosmic microwave background (CMB) induces distortions in
the spatial pattern of CMB anisotropies, and statistical properties of CMB anisotropies become
a weakly non-Gaussian field. We first summarize the weak lensing effect on the CMB (CMB
lensing) in the presence of scalar, vector, and tensor perturbations. Then we focus on the lensing
effect on CMB statistics and methods to estimate deflection angles and their power spectrum.
We end by summarizing recent observational progress and future prospects.
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1. Introduction

The path of cosmic microwave background (CMB) photons emitted from the last scattering surface
of the CMB is deflected by the gravitational potential of the large-scale structure with typically a few
arcminutes deflection. This leads to distortion in the spatial pattern of observed CMB anisotropies.
Among various cosmological observations, a measurement of weak lensing signals in CMB maps is
a direct probe of intervening gravitational fields along a line of sight, and is considered as one of the
most powerful probes of fundamental issues in cosmology and physics in the near future.

Most of the pioneering work in CMB lensing focused on how the lensing effect modifies the two-
point statistics of CMB temperature anisotropies (e.g., [1–5] and references therein). An accurate
calculation of the lensing effect on the angular power spectrum in Ref. [5] showed that the acoustic
scale imprinted in the temperature is slightly smoothed and the small-scale temperature fluctuations
are enhanced by transferring large-scale power to the small scale. On the other hand, Refs. [6,7]
showed that the lensing effect also modifies the statistics of CMB anisotropies and generates non-
Gaussian signatures in the observed CMB anisotropies. A more interesting and important effect
for future studies of CMB lensing is that the gravitational lensing generates B-mode polarization
converted from E-mode polarization [8].

Although the theoretical framework of CMB lensing was established a decade ago, significant
observational progress has been made only recently. The lensing effect on CMB temperature and
polarization anisotropies as well as the gravitational lensing potential are now measured with both
ground-based and satellite experiments (e.g., [9–11], and see Sect. 5 for details), requiring studies of
more practical issues which are now rapidly developing. The measured lensing signals are already
used for some specific issues in cosmology, e.g., dark energy [12–15], dark matter [16], cosmic
strings [17], and primordial non-Gaussianity [18]. Although the statistical significance of the current
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detections of lensing signals is not so high compared to other cosmological probes, the lensing signals
obtained from upcoming and next-generation experiments will have enough potential to probe the
following fundamental issues:

◦ Dark energy, dark matter, and massive neutrinos: The theoretical understanding of the nature of
dark energy is still limited, and cosmological observations are the only way to reveal its dynami-
cal properties. On the other hand, determination of the neutrino mass is one of the most important
subjects in elementary particle physics, and is the key to understanding physics beyond the stan-
dard model of particle physics. The properties of dark energy, specific models of dark matter,
and mass of neutrinos affect the evolution of gravitational potential, and thus the signals of weak
lensing.

◦ Gravitational waves, cosmic strings, and magnetic fields: A measurement of the curl mode of
deflection angles is also interesting for cosmology (see Sect. 2). The curl-mode deflection angles
are produced by vector and tensor metric perturbations, but not by scalar perturbations. That is,
the non-vanishing curl-mode signal is a smoking gun of non-scalar metric perturbations which
can be sourced by gravitational waves [19–21] and cosmic strings [20,22,23] which may give
clues about the mechanism of the inflationary scenario in the early universe and implications for
high-energy physics. The magnetic fields at cosmological scales would also be probed with the
curl mode. The rotation of the CMB polarization by the vector and tensor perturbations are also
discussed in Ref. [24].

In addition, the study of CMB lensing has implications for detecting the signature of the primordial
gravitational waves, since the amplitude of CMB B-mode polarization generated from primordial
gravitational waves is smaller than that from lensing if the tensor-to-scalar ratio is very small [25]. In
order to enhance sensitivity to the primordial B-mode polarization, subtraction of the lensed B-mode
would become important [26–29]. Similarly, since the lensing induces non-Gaussian signatures in
CMB anisotropies and non-zero off-diagonal elements in the covariance matrix, the lensing effect
would be a possible confusing source in estimating the primordial non-Gaussianity or testing the
statistical isotropy. For this reason, precise and accurate estimations of the lensing effect on CMB
maps are required.

As the measurements of the lensing effect become more precise, the studies of CMB lensing should
focus more on practical issues rather than on purely theoretical issues. For example, reconstruction of
gravitational potential, which is mainly used for analysis of CMB lensing, is based on the assumption
that the primordial CMB anisotropies are statistically isotropic. There are, however, several possi-
ble sources to generate mode couplings in the anisotropies such as the mask of Galactic emission
and point sources [30,31], inhomogeneous noise [32], beam asymmetry [33], and so on. These con-
taminations potentially lead to a significant bias in the estimation of lensing potentials. For accurate
cosmology with future observations, methods for mitigating all these biases are needed.

This paper is organized as follows. In Sect. 2, we formulate weak gravitational lensing in the pres-
ence of scalar, vector, and tensor metric perturbations, and see how the lensing signals depend on cos-
mological sources. In Sect. 3, we show how the lensing effect modifies the statistics of observed CMB
anisotropies. In Sect. 4, we discuss the method for estimating the deflection angles and their power
spectrum. Section 5 is devoted to a summary of the recent observational status and future prospects.

2. Weak gravitational lensing from scalar, vector, and tensor perturbations

Consider a photon emitted from the last scattering surface of the CMB, which passes through grav-
itational fields before reaching us. The geodesic of the photon is perturbed by the gravitational
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lensing, and the photon is observed in a different direction from the original direction. The difference
between observed and original directions is called the deflection angle, and provides information on
the anisotropies of projected gravitational fields integrated from the last scattering surface to the
observer. In this section, we review how the deflection angle is related to the gravitational fields and
how its power spectrum depends on properties of several cosmological sources such as dark energy,
massive neutrinos, and cosmic strings.

2.1. Gradient and curl modes of deflection angle

The expression for the deflection angle with metric perturbations is obtained by solving the photon
geodesic in a perturbed universe. Let us consider the line element given by

ds2 = a2(η)(ḡμν + δgμν)dxμdxν, (1)

where a is the scale factor in a homogeneous and isotropic universe, ḡμν is the background unper-
turbed metric, and δgμν is the small metric perturbations. Here we assume that the unperturbed metric
is described by the flat Friedman–Lemaître–Robertson–Walker metric:

ḡμνdxμdxν = −dη2 + γ̄i jdxidx j = −dη2 + dχ2 + χ2ωabdθadθb, (2)

withωabdθadθb = dθ2 + sin2 θdϕ2 denoting the metric on the unit sphere. In the conformal Newton
gauge, the metric perturbations are described as1

δg00 = −2
, δg0i = −σi , δgi j = 2�γ̄i j + hi j , (3)

where the quantities
 and� are the scalar components, σi is the divergence-free vector component
(σi

|i = 0), and hi j is the transverse-traceless tensor component (hi j
|i = 0, and hi

i = 0). The vertical
bar (|) denotes the covariant derivative with respect to the background three-dimensional metric, γ̄i j .

To define the deflection angle, let us consider null geodesics in the background and perturbed
spacetime, x̄μ and xμ. Since the photon path is not deflected in the background spacetime, the unper-
turbed path can be parametrized as x̄μ = (η0 − χ, χ n̂i ). Here the quantity η0 denotes the conformal
time today and n̂i is the unit vector describing the observed direction of photon. Assuming a static
observer, we define the deflection angle by projecting the angular components of the deviation vector
xμ − x̄μ on the sphere [23]:

da ≡ [xi (χs)− x̄ i (χs)]ei
a

χs
− θa

O , (4)

where the subscript a means the angular components θ and ϕ. The three-dimensional vectors ei
a are

the basis vectors orthogonal to n̂i , the quantity χs is the conformal distance between the observer and
the last scattering surface of the CMB, and θa

O is the angular coordinate at the observer. Since the
deflection angle has two degrees of freedom, we decompose the deflection angle into two components
by parity symmetry as [19,20,35,36]

da = φ:a + εa
b�

:b, (5)

where (:) is the covariant derivative on the unit sphere, and εa
b denotes the two-dimensional Levi–

Civita symbol. Hereafter, we call the first and second terms in the right-hand side of Eq. (5) the
gradient and curl modes, respectively.

1 Note that Ref. [23] gives the derivation of deflection angles in terms of the gauge-invariant variables in
linear perturbation theory [34].
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The deviation vector is obtained from the geodesic equation in the perturbed spacetime, and the
resultant expressions for the gradient and curl modes are given by [23]

∇2φ = da
:a =

∫ χs

0

dχ

χ

{
χs − χ

χs
∇2[2ψ + A] − Ba

:a

}
, (6)

∇2� = da
:b ε

b
a = −

∫ χs

0

dχ

χ
Ba

:b ε
b

a. (7)

Here ∇2 is the Laplacian operator on the unit sphere, ψ = (
−�)/2, and we define the quantities
generated by non-scalar perturbations:

A = σi n̂
i + hi j n̂

i n̂ j , Ba = σi e
i
a − 2hi j e

i
an̂ j . (8)

In Eqs. (6) and (7), the integral on the right-hand side is evaluated along the unperturbed light path,
usually referred to as the Born approximation (see, e.g., Ref. [37] for the correction terms). The radial
displacement (or the time delay) is also discussed in Ref. [38], but is a negligible effect on statistical
observables.

Equation (7) shows that the curl mode of the deflection angle vanishes if we consider the scalar
perturbations alone, but it is produced by the vector and/or tensor components. Also, beyond the
linear perturbation, the curl mode is generated, e.g., by the second order of the density perturbations
[36,39].

It is also worth noting the relation between the deflection angle and the elements of the Jacobi
matrix which is defined as the mapping between a source and an image plane. The relation between
the deflection angle and the Jacobi matrix is obtained by solving the geodesic deviation equation.
Denoting the symmetric-traceless part of the Jacobi matrix divided by χs as γab (shear components),
the relation becomes [23,40]

γab = d〈a:b〉 + 1

2
[h〈ab〉]

χs
0 , (9)

where, for any quantity, X〈ab〉 = (Xab + Xba − Xc
cωab)/2. The last term arises in the presence of

tensor perturbations as a difference of coordinate system perturbed by the metric at the observer and
source positions [41].

2.2. Angular power spectrum of gradient and curl modes

Once we measure the deflection angle, one of the useful quantities in cosmology is the angular power
spectrum of fluctuations, rather than the fluctuations themselves. Here we turn to discuss the angular
power spectrum of the gradient and curl modes, based on Eqs. (6) and (7). To see how the observable
depends on properties of the cosmological sources, we also show the relation between the angular
power spectrum and the power spectrum of metric perturbations.

2.2.1. Scalar perturbations alone. Let us first consider the case in the presence of scalar per-
turbations alone, since it helps our understanding of derivation in the presence of non-scalar
perturbations.

The fluctuations of gravitational potential are decomposed into Fourier modes with the scalar-mode
function Q(0)(x, k) = e−ik·x as

ψ(x, η) =
∫

d3k

(2π)3
ψk(η)Q

(0)(x, k). (10)
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Substituting the above equation into Eq. (6), we obtain

∇2φ = 2
∫ χs

0
dχ
χs − χ

χsχ

∫
d3k

(2π)3
ψk(η)∇2Q(0)(χ n̂, k). (11)

The angular power spectrum is defined as

δ��′δmm′Cφφ
� = 〈φ�mφ∗

�′m′ 〉, (12)

where the quantities φ�m are the spherical harmonic coefficients of the gradient mode and are defined
with the spin-0 spherical harmonics Y�m(n̂) as

φ(n̂) =
∑
�,m

φ�mY ∗
�m(n̂). (13)

Substituting the above equation into Eq. (11), and using the orthogonality of the spherical harmonics,
we obtain2

φ�m = 2

�(�+ 1)

∫ χs

0
dχ
χs − χ

χsχ

∫
d3k

(2π)3
ψk(η)

∫
d2n̂ Y�m(n̂)∇2Q(0)(χ n̂, k), (14)

where we use ∇2Y�,m = �(�+ 1)Y�,m . To simplify the above equation, we use∫
d2n̂ Y�m(n̂)∇2Q(0)(χ n̂, k) = 4π(−i)� j�(kχ)�(�+ 1)Y ∗

�m(k̂), (15)

where j�(x) is the spherical Bessel function. Substituting the above equation into Eq. (14), we obtain

φ�m = 2
∫ χs

0
dχ
χs − χ

χsχ

∫
d3k

2π2 (−i)� j�(kχ)ψk(η0 − χ)Y ∗
�m(k̂). (16)

With the dimensionless power spectrum defined as

〈ψk(η)ψ
∗
k′(η′)〉 = (2π)3δ(k − k′)

2π2

k3 �ψ(k, η, η
′), (17)

the angular power spectrum of the gradient mode defined in Eq. (12) is given by

Cφφ
� = 16π

∫
dk

k

∫ χs

0
dχ

∫ χs

0
dχ ′χs − χ

χsχ

χs − χ ′

χsχ ′ j�(kχ) j�(kχ
′)�ψ(k, η0 − χ, η0 − χ ′). (18)

2.2.2. General case. Next we consider the case in the presence of all types of metric perturbations.
Similar to Eq. (10), the vector and tensor metric perturbations are also decomposed into Fourier

2 Note that we ignore � = 0 mode since this mode produces the mean value of the gradient mode and is not
observable using a measurement of deflection angles.
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modes with the mode functions of vector Q(±1)
i (x, k) and tensor Q(±2)

i j (x, k), respectively [42]:

σi (x, η) =
∫

d3k

(2π)3
∑

s=±1

σ
(s)
k (η)Q(s)

i (x, k), (19)

hi j (x, η) =
∫

d3k

(2π)3
∑

s=±2

h(s)k (η)Q(s)
i j (x, k), (20)

where the explicit forms of these mode functions are given by [42]

Q(±1)
i (x, k) = ±i√

2
e±,i (k̂)e−ik·x, (21)

Q(±2)
i j (x, k) = −1√

2
e±,i (k̂)e±, j (k̂)e−ik·x. (22)

Here the polarization vector e±(k̂) = eθ (k̂)± ieϕ(k̂) is perpendicular to the wave vector k. Similar to
the case of the scalar perturbations alone, we first substitute Eqs. (19) and (20) into Eqs. (6) and (7).
From Eq. (8), we then compute the similar form of Eq. (15) but for, e.g., ∇2n̂i Q(±1)

i instead of
∇2Q(0). More generally, what we must compute is a quantity J (G)

� (kχ) defined as∫
d2n̂ Y�m(n̂)G(χ n̂, k) = J (G)

� (kχ)Y ∗
�m(k̂), (23)

where G is, for example, ∇2n̂i Q(±1)
i . Reference [42] obtained the functional form of J (G) (see also

Refs. [23,43]) and applied it to the calculation of the CMB angular power spectrum. As shown in
Ref. [23], Eq. (23) also simplifies the computation of the angular power spectra for the gradient and
curl modes. To relate the angular power spectrum of the gradient and curl modes to the dimensionless
power spectrum of the metric perturbations, we assume that the statistical properties of the vector
and tensor modes are given by

〈[σ (s)k (η)]∗σ (s
′)

k′ (η
′)〉 = δss′

1

2
(2π)3δ(k − k′)

2π2

k3 �
(s)(k; η, η′) (s, s′ = ±1), (24)

〈[h(s)k (η)]∗h(s
′)

k′ (η
′)〉 = δss′

1

8
(2π)3δ(k − k′)

2π2

k3 �
(s)(k; η, η′) (s, s′ = ±2). (25)

The angular power spectrum of the curl mode C��
� and the cross power spectrum between the

gradient and curl modes Cφ�
� are also defined in the same form as Eq. (12). The resultant angular

power spectra are decomposed into the contributions from the scalar, vector, and tensor perturbations
as [23]

Cxx
� = 4π

∫ ∞

0

dk

k
k2

∫ χs

0
dχ

∫ χs

0
dχ ′

×
2∑

s=−2

S(s)x,�(kχs, kχ)S
(s)
x,�(kχs, kχ

′)�(s)
(
k; η0 − χ, η0 − χ ′) , (26)

and Cφ�
� = 0, where x = φ or � . The expressions of the transfer function, S(s)x,�(λ, λ

′), are
summarized as follows:

◦ scalar perturbations:

S(0)φ,�(λ, λ
′) = 2

λ− λ′

λλ′ j�(λ
′), (27)

S(0)�,�(λ, λ
′) = 0. (28)
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Fig. 1. The angular power spectrum of the gradient mode generated by matter density fluctuations with the lin-
ear matter power spectrum (black dotted), and with the fitting formula of the non-linear matter power spectrum
given in Refs. [44] (green dashed) or [45] (red solid).

◦ vector perturbations:

S(±1)
φ,� (λ, λ

′) =
√
(�+ 1)!

2(�− 1)!

[
λ− λ′

λλ′
j�(λ′)
λ′ − 1

�(�+ 1)

1

(λ′)2
d[λ′ j�(λ′)]

dλ′

]
, (29)

S(±1)
�,� (λ, λ

′) = ±
√

1

2�(�+ 1)
j�(λ

′), (30)

◦ tensor perturbations:

S(±2)
φ,� (λ, λ

′) =
√

(�+ 2)!

32(�− 2)!

[
λ− λ′

λλ′
j�(λ′)
λ′ − 2

�(�+ 1)

1

(λ′)3
d[λ′ j�(λ′)]

dλ′

]
+ δ�,2

10
√

3
δ(λ′),

(31)

S(±2)
�,� (λ, λ

′) = ±
√
(�+ 2)!

(�− 2)!

1

2�(�+ 1)

j�(λ′)
λ′ . (32)

2.2.3. Angular power spectrum of gradient and curl modes. Figure 1 shows the angular power
spectrum of the gradient mode generated by the matter density fluctuations. Three lines show the
cases with different fitting formulas of the matter power spectrum, i.e., the halofit model [44] and
its revised formula [45], in calculating the angular power spectrum. For comparison, we also show
the case with the linear power spectrum. Note that the lensing power spectrum is computed with
CAMB [46]. The linear approximation to the matter power spectrum would be accurate at the scales
where the signal becomes large (� ∼ 10–100). The non-linear growth of matter density perturbations
enhances the amplitude by 20–30% at � ∼ 2000 compared to linear theory. The sensitivity of Cφφ

� to
the models of the non-linear evolution would be not so significant even at these scales, because the
lensing power spectrum computed with the halofit model of Ref. [44] is only a few percent smaller
than the revised formula.
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Fig. 2. Left : Logarithmic derivatives of the gradient-mode power spectrum d ln Cφφ

� /dp with respect to the
dark-energy equation-of-state parameters w0 (red solid), wa (green dashed), total mass of neutrinos

∑
mν

(blue dotted), and �mh2 (orange long-dashed). The derivatives are normalized with the value at � = 2. Note
that the sign of the derivative with respect to�mh2 is positive, while the others have negative sign. Right : The
angular power spectrum of the curl mode generated by primordial gravitational waves with tensor-to-scalar
ratio r = 0.1 (green dotted) and a specific model of the cosmic string network (red solid/orange dashed).

In the left panel of Fig. 2, to see how the angular power spectrum depends on cosmological sources,
we show the logarithmic derivatives of the angular power spectrum Cφφ

� with respect to w0 and wa ,
a parameterization of the dark-energy equation-of-state as w = w0 + (1 − a)wa , and the total mass
of neutrinos

∑
mν . For comparison, we also show the dependence on the matter density�mh2. Note

that the derivatives are normalized with the value at � = 2. The derivatives with respect to the neu-
trino mass depend on �, since the presence of the massive neutrinos suppresses the matter density
fluctuations at smaller scales than their free-streaming scale after they become non-relativistic parti-
cles [47]. On the other hand, the derivatives with respect to w0 and wa are almost scale independent
because the density fluctuations are affected by the properties of dark energy through the evolution
of the scale factor in the linear perturbation regime. These behaviors imply that the power spectrum
of the gradient mode can distinguish the effect of the neutrino mass from that of the dark energy
through the scale dependence [48]. We note, however, that there exist some parameters that exhibit a
similar scale dependence to the total neutrino mass, which can be a source of parameter degeneracy
(see, e.g., [49]). As shown in Fig. 2, the logarithmic derivative with respect to the matter density gives
a similar trend to that of the neutrino mass. This is because the matter density changes not only the
amplitude of matter density fluctuations but also shifts the peak of the matter power spectrum which
is determined by the radiation–matter equality. Within the CMB data set, the degeneracy between
the total mass of neutrinos and matter density remains and other external datasets would be required
to break this degeneracy.

On the other hand, in the right panel of Fig. 2 we show examples of the curl-mode angular power
spectrum generated by primordial gravitational waves with tensor-to-scalar ratio r = 0.1, and a
specific model of cosmic string networks [50] parametrized by the tension Gμ and reconnection
probability P . The angular power spectrum decreases at smaller scales since the perturbations are
suppressed at sub-horizon scale. That is, a measurement of the curl-mode power spectrum on a large
scale is important to probe the primordial gravitational waves and cosmic string networks.
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3. Lensing effect on CMB anisotropies

The lensing effect on CMB anisotropies modifies the statistical properties of the observed CMB
anisotropies. The non-Gaussian behavior in the lensed anisotropies is particularly important for mea-
suring the angular power spectrum of the gradient and curl modes as discussed in the next section. In
this section, we briefly summarize the weak lensing effect on the angular power spectrum of CMB
temperature and polarization, and non-Gaussian statistics such as the bispectrum and trispectrum, in
the presence of both the gradient and curl modes (see also Ref. [51] for a review of the effects on
non-Gaussian statistics by lensing).

3.1. Lensed CMB angular power spectrum

The lensed temperature anisotropies �̃(n̂) are expressed as a remapping of the unlensed temperature
anisotropies �(n̂) by a deflection angle (e.g., [1]):

�̃(n̂) = �(n̂ + d(n̂)). (33)

The lensing effect on the CMB polarization is also described as a remapping of the Stokes parameters
Q ± iU by the deflection angle.

To analyze the asymptotic property of the lensed angular power spectrum, it is convenient to
express the angular power spectrum in the flat-sky approximation. If we consider a small patch on a
unit sphere and ignore the sky curvature, the CMB anisotropies are approximately given on a two-
dimensional plane. In this limit, the lensed temperature anisotropies are expanded in terms of the
plane wave:

�̃(n̂) =
∫

d2�

(2π)2
�̃�e

i�·n̂. (34)

On the other hand, since the lensed polarization anisotropies Q̃ ± iŨ are spin ±2 quantities, we
define the rotationally invariant quantities Ẽ� and B̃�, usually referred to as E and B modes:

[Q̃ ± iŨ ](n̂) = −
∫

d2�

(2π)2
(Ẽ� ± iB̃�)e

±i2ϕ�ei�·n̂. (35)

Here ϕ� is the azimuthal angle measured from the x-axis of the two-dimensional plane. We can
also expand the unlensed CMB anisotropies and define ��, E�, and B� in the same way. The lensed
(unlensed) angular power spectrum C̃� is then defined with the Fourier multipoles as

〈X̃�Ỹ�′ 〉 = (2π)2δ(� − �′)C̃ XY
� (X, Y = �, E, B). (36)

A method to obtain the angular power spectrum is to expand the lensed anisotropies in terms of
the deflection angle up to the second order of the deflection angle [52]:

s�̃(n̂) = s�(n̂)+ da
s�:a(n̂)+ dadb

2
s�:ab(n̂), (37)

where s = 0 or ±2 and we define 0� = � and ±2� = Q ± iU . The lensed CMB anisotropies in
Fourier space become [19,52]

s�̃� = s�� −
∑

x=φ,�

∫
d2L

(2π)2
[(� − L)�x L]x�−Ls�LeisϕL,�

+ 1

2

∑
x,y=φ,�

∫
d2L

(2π)2

∫
d2L′

(2π)2
[L′ �x L][(� − L − L′)�y L′]xL′ y�−L−L′ s�LeisϕL,�, (38)
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where ϕL,� = ϕL − ϕ� and, for arbitrary two-dimensional vectors a and b, we define the products �φ

and �� as

a �φ b ≡ aθbθ + aϕbϕ, a �� b ≡ aϕbθ − aθbϕ. (39)

Using Eq. (38) and denoting the unlensed CMB angular power spectrum as C�, the lensed angular
power spectrum for temperature and polarization in the flat-sky approximation becomes [19,52]

C̃��
� = b�C

��
� +

∑
x=φ,�

∫
d2L

(2π)2
[L �x (� − L)]2Cxx

|�−L|C
��
L , (40)

C̃�E
� = b�C

�E
� +

∑
x=φ,�

∫
d2L

(2π)2
[L �x (� − L)]2Cxx

|�−L|C
�E
L cos 2ϕL,�, (41)

C̃ E E
� = b�C

E E
� +

∑
x=φ,�

∫
d2L

(2π)2
[L �x (� − L)]2Cxx

|�−L|

× 1

2
[(C E E

L + C B B
L )+ (C E E

L − C B B
L ) cos 4ϕL,�], (42)

C̃ B B
� = b�C

B B
� +

∑
x=φ,�

∫
d2L

(2π)2
[L �x (� − L)]2Cxx

|�−L|

× 1

2
[(C E E

L + C B B
L )− (C E E

L − C B B
L ) cos 4ϕL,�], (43)

where we assume that correlation between the gradient and curl modes vanishes, and define

b� = 1 − �2
∑

x=φ,�

∫
d ln L

4π
L4Cxx

L = 1 − �2

2
〈|d|2〉. (44)

The lensing effect on the polarization has an interesting feature [8]; even in the absence of the
primary B-mode polarization, C B B

� = 0, the spatial pattern of the lensed polarization anisotropies
could have an odd-parity mode. This is because a curl-free pattern is modified at each position and
the resultant pattern is no longer a pure E-mode pattern. Note that a few arcminutes deflection,
〈|d|2〉 ∼ O(10−7) [53], leads to �2〈|d|2〉/2 ∼ O(1) if � ∼ 2500. At these scales, the above expression
is no longer valid because Eqs. (40)–(43) ignore the higher-order terms O(Cxx

� ), and the more accu-
rate approach of Refs. [5,8] is required in which the angular power spectrum is computed using the
correlation function, and the higher-order terms are included non-perturbatively with an exponential
function [54].

In Fig. 3, we plot the lensed angular power spectrum of the temperature (left) and B-mode polariza-
tion (right), where the angular power spectrum is computed with CAMB [46]. The acoustic peaks in
the temperature power spectrum are smeared by the lensing effect, and this can be understood as fol-
lows. The acoustic peaks are determined by typical sizes of hot and cold temperature spots in the sky.
Lensing changes the size distribution of these spots (some get bigger and some get smaller), smear-
ing the acoustic peaks. At small scales, the temperature power spectrum is dominated by lensing due
to the transfer of large-scale power to small scales, where the primary temperature fluctuations are
damped. The lensing also affects the E-mode power spectrum in a similar way to the temperature
case.

The B-mode power spectrum generated by the lensing effect is, on the other hand, a scale-
independent spectrum on large scales (� � 100) which roughly corresponds to 5–6 µK arcmin white
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Fig. 3. Summary of important signatures in the angular power spectra of the lensed anisotropies compared to
those of the unlensed anisotropies. Note that contributions from the curl mode C��

� are ignored. Left: Com-
parison of the angular power spectra between the lensed (red) and unlensed (black) temperature anisotropies.
For illustrative purposes, we multiply the angular power spectrum by �2(�+ 1)2 × 104/2π . Right: The angular
power spectrum of the B-mode polarization from the primordial gravitational waves (blue dotted), compared
with that from the lensing (black solid). For the primordial gravitational waves, the tensor-to-scalar ratio r is
varied from 0.1 to 0.0001. We also plot the white noise spectrum of 5.5μK arcmin (black dashed).

noise. This would be considered as follows. The gradient of the primary E-mode has significant cor-
relation on small scales, but does not correlate very much on scales larger than a few degrees (or
� ∼ 100 [28]). The lensing only remaps these small-scale fluctuations by typically a few arcminutes,
and the resultant B-mode beyond degree scales is roughly an uncorrelated random field. This leads
to the white noise spectrum on large scales.

As shown in Fig. 3, the primary B-mode power spectrum generated by the primordial gravitational
waves is smaller than the lensing B-mode at the recombination bump (� ∼ 10–100) if the tensor-
to-scalar ratio is r � 0.01, and at the reionization bump (� < 10) if r � 0.0001 [25]. Therefore, if
r is small, detection of the primary B-mode requires subtraction of the lensing B-mode, so called
delensing (see, e.g., [28,55,56]).

3.2. Non-Gaussian signatures of lensed CMB anisotropies

3.2.1. Bispectrum. Assuming that the primary temperature anisotropies are a random Gaussian
field, the three-point correlation 〈��1��2��3〉 vanishes. As described in Eq. (38), the lensing, how-
ever, induces mode couplings in the CMB anisotropies. The integrated Sachs–Wolfe (ISW)-lensing
correlation then generates the three-point correlation of lensed CMB anisotropies as [57]

〈�̃�1�̃�2�̃�3〉 = (2π)2δ(�1 + �2 + �3)[C
�φ
�1

C��
�2

�1 �φ �2 + (perms)] + O(|da|2). (45)

The ISW-lensing correlation generated by density perturbations on large scale, C�φ
� , can be used to

probe the late time evolution of the large-scale structure [7,57,58]. The cosmic strings at a late time of
the universe also produce the temperature bispectrum through C�φ

� [59], but contributions from the
curl mode vanish since the cross correlation of temperature and the curl mode is an odd-parity quan-
tity. The curl mode generated by the cosmic strings would be, however, a source of the polarization
bispectrum through, e.g., C B�

� . Note that the lensing bispectrum is a confusing source in estimat-
ing the primordial non-Gaussian signatures, especially for the squeezed type (e.g., �1 ∼ �2  �3),
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and the bias for the local type becomes fNL ∼ O(1) with ongoing and upcoming experiments
[60–62]. The polarization bispectrum generated by lensing is also discussed in Ref. [63].

3.2.2. Trispectrum. The trispectrum of lensed CMB anisotropies has been explored [6,7,64] and
can be used to estimate the power spectrum of the gradient and curl modes as discussed in the next
section.

The four-point correlation of CMB anisotropies is in general decomposed into two terms as

〈�̃�1�̃�2�̃�3�̃�4〉 = 〈�̃�1�̃�2�̃�3�̃�4〉d + 〈�̃�1�̃�2�̃�3�̃�4〉c, (46)

where the first term is the disconnected part expressed in terms of two point correlations as

〈�̃�1�̃�2�̃�3�̃�4〉d = 〈�̃�1�̃�2〉〈�̃�3�̃�4〉 + (�2 ↔ �3)+ (�2 ↔ �4), (47)

while the second term denotes the connected part which is not expressed in terms of the two point cor-
relations of lensed anisotropies alone and reflects the non-Gaussian behavior of the fluctuations. The
four-point correlation of the lensed temperature anisotropies has a contribution from the connected
part as [65]

〈�̃�1�̃�2�̃�3�̃�4〉c � (2π)2δ(�1 + �2 + �3 + �4)

×
∑

x=φ,�

{
Cxx

|�1+�2| f x
�1+�2,�1

f x
�3+�4,�3

+ (�2 ↔ �3)+ (�2 ↔ �4)
}
, (48)

where we define a weight function as

f x
L,L′ = (L �x L′)C��

L ′ + (L′ ↔ L − L′). (49)

In deriving Eq. (48), the lensed temperature anisotropies are expanded only up to the first order of
the gradient and curl modes. The trispectrum of polarization generated by the lensing effect is also
obtained analogously and the expression is given in Ref. [66].

3.2.3. Other statistics. There are also several papers discussing how the non-Gaussian signatures
of the lensing effect change the statistical properties of a random Gaussian field, such as topological
statistics [67,68], and the two-point correlation of hot spots [69,70]. Non-zero lensing trispectrum
also modifies the covariance of the lensed CMB angular power spectrum [71–74].

4. Lensing reconstruction

Estimators for the lensing deflection fields in quadratic form of observed CMB anisotropies have
been derived by several authors. References [75,76] developed a method for extracting lensing fields
from temperature anisotropies with real space quantities. The method was subsequently extended
to the case with polarization [77]. The quadratic estimator mostly used in the recent analysis was
developed in Fourier space by Refs. [78,79] and [80] in flat and full sky, respectively, and was also
extended to include the curl mode by Ref. [19] in flat sky and by Ref. [20] in full sky. On the other
hand, the estimator is also derived in the context of the maximum likelihood [36,81]. These estimators
all utilize the fact that a fixed gradient/curl mode introduces statistical anisotropy into the observed
CMB, in the form of a correlation between the CMB anisotropies and its gradient. With a large
number of observed CMB modes, this correlation may be used to form estimates of the gradient
and curl modes. The lensing power spectrum, which is required for cosmological analysis, is then
estimated from the gradient/curl mode estimators.
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In this section, to see how to estimate the lensing power spectrum, Cφφ
� and C��

� , we first review
the method for estimating the gradient and curl modes, usually referred to as lensing reconstruction,
and their use of measuring the angular power spectrum (see also [82] for a detailed review on lensing
reconstruction). Since the lensing fields will be measured more precisely in the near future, we also
discuss the method for estimating lensing fields and their power spectrum with better accuracy.

4.1. Estimating CMB lensing potentials

4.1.1. Quadratic estimator for gradient and curl modes. For simplicity, let us first consider an
estimator with a CMB temperature map alone in the absence of curl modes. In the following, observed
temperature anisotropies and their angular power spectrum are denoted as �̂� and Ĉ��

� , respectively.
We assume that the observed anisotropies are given by �̂� = �̃� + n�, where n� is the isotropic noise.

The observed direction of the lensed CMB at each position is shifted from the original direction
according to the deflection angle, and the distance between two positions are modified at each position
in a different way. For a fixed realization of the deflection angle, the correlation function of the
primary CMB anisotropies depends not only on the distance between two positions but also on the
position in the sky. In Fourier space, the lensing-induced anisotropy leads to correlations between
two different Fourier modes of the observed CMB anisotropies:

〈�̂L�̂�−L〉CMB,n = φ� f φ�,L, (� �= 0) (50)

where f φ�,L is given in Eq. (49), and we denote the ensemble average over primary CMB anisotropies
and noise by 〈· · ·〉CMB,n, to distinguish it from the usual meaning of the ensemble average, 〈· · ·〉.

Based on Eq. (50), the quantity φ̂�,L, defined as

f φ�,Lφ̂�,L = �̂L�̂�−L, (51)

is an estimator which satisfies the unbiased condition 〈φ̂�,L〉CMB,n = φ�, where L is chosen so that
f φ�,L �= 0. A more optimal and unbiased estimator can be obtained as a sum of φ̂�,L in terms of L,
and the resultant estimator is [78]

φ̂� = Aφ�

∫
d2L

(2π)2
gφ�,L�̂L�̂�−L. (52)

Here the normalization, Aφ� , and the weight function, gφ�,L, are given by

Aφ� = 1

[gφ, f φ]�
; gφ�,L = f φ�,L

2Ĉ��
L Ĉ��

|�−L|
, (53)

where, for convenience, the inner product is defined as

[gx , f y]� ≡
∫

d2L

(2π)2
gx
�,L f y

�,L. (54)

In the presence of the curl mode, Eq. (50) includes the additional term induced by the curl mode:

〈�̂L�̂�−L〉CMB,n = φ� f φ�,L +�� f ��,L. (55)

Even in this case, the estimator for the gradient mode is the same as in Eq. (52), at least, if we
consider the first order of the gradient and curl modes. This is because the property of the parity
symmetry is different for the gradient and curl modes, and the inner product [ f φ, f � ]�, which leads
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to a bias in the gradient-mode estimator, vanishes [20]. The quadratic estimators with the polarization
anisotropies are also constructed in the same way as in the temperature case. The optimal quadratic
estimator is finally obtained by combining all quadratic combinations of temperature and polarization
fluctuations with the appropriate weight functions [79].

4.1.2. Practical cases. In practical situations, any non-lensing anisotropies arising from the mask-
ing [13,31,83], inhomogeneous map noise [32], and the beam asymmetry coupled with the scan
strategy [33] will also generate the off-diagonal elements in the covariance matrix similar to Eq. (50),
and the quadratic estimator is biased, i.e., 〈̂x�〉CMB,n �= 0. In the case of polarization, there are also
several possible sources generating mode couplings such as the temperature to polarization leakage,
rotation of polarization basis, and so on [84].

To see this, let us consider a modulation on temperature anisotropies given by

�̂(n̂) = (1 + ε(n̂))(�̃(n̂)+ n(n̂)), (56)

where ε(n̂) may be regarded as the window function, inhomogeneity of the optical depth [85,86],
Doppler boosting [87,88], and so on. The off-diagonal covariance of temperature anisotropies in the
absence of the curl mode is given, at the first order, by

〈�̂L�̂�−L〉CMB,n = f φ�,Lφ� + f ε�,Lε�, (57)

where f ε�,L = Ĉ��
L + Ĉ��

|�−L|. Substituting the above equation into Eq. (52), we obtain

〈φ̂�〉CMB,n = φ� + Rφ,ε� ε�, (58)

where the response function, Rφ,ε� , or in general, Ra,b
� , is defined as

Ra,b
� = Aa,a

�

Aa,b
�

; Aa,b
� = 1

[ga, f b]�
. (59)

The second term of Eq. (58) is called the mean-field bias, and must be corrected.
One of the methods to correct the mean-field bias is to construct an estimator for ε�. Similar to the

lensing estimator, the estimator for ε� is constructed using the weight function f ε�,L instead of f φ�,L.
The estimator of ε� is, however, biased by the presence of lensing as

〈ε̂�〉CMB,n = ε� + Rε,φ� φ�, (60)

where Rε,φ� is defined in Eq. (59). Combining Eqs. (58) and (60) to eliminate the term proportional
to ε�, we find an unbiased estimator for the gradient mode:

φ̂′
� = φ̂� − Rφ,ε� ε̂�

1 − Rφ,ε� Rε,φ�
. (61)

Note that the above estimator is derived as the optimal estimator in the case when φ� and ε� are
simultaneously estimated.

Even if we know the property of ε� (e.g., the window function), the estimator defined in Eq. (61)
is useful as a cross check of systematics propagated from imperfect understanding of underlying
CMB anisotropies [83]. A similar method can also be applied to reduce the inmohogeneous noise,
unresolved point sources, polarization angle systematics [14,83], as well as for polarization-based
reconstruction to reduce bias from the temperature-to-polarization leakage, rotation of polarization
basis, and so on [89].

14/23

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on A

ugust 20, 2014
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://ptep.oxfordjournals.org/


PTEP 2014, 06B108 T. Namikawa

4.1.3. Maximum likelihood estimator. Here we comment on the maximum likelihood estimator of
Refs. [36,81] (see also Ref. [82] for a thorough review). Given a set of observed CMB anisotropies,
we can formally derive the estimator for the lensing fields based on maximizing the likelihood.
Although the numerical calculation of the maximum likelihood estimator is difficult compared to
the quadratic estimator, it is possible to improve the precision of the estimated gradient and curl
modes. For the gradient mode, the expression of the maximum likelihood estimator is nearly iden-
tical to that of the quadratic estimator if we only use the temperature anisotropies for the lensing
reconstruction [81]. On the other hand, as shown in Ref. [36], the maximum likelihood estimator
with the B-mode polarization significantly improves the sensitivity to the lensing signals, compared
to the quadratic estimator. This is because the sensitivity of the maximum likelihood estimator is
limited by the intrinsic scatter of the primary CMB anisotropies while the sensitivity of the quadratic
estimator is limited by the lensed CMB anisotropies. These situations would be similar for the curl
mode, also. The quadratic estimator is still useful for experiments with the polarization sensitivity
of � 5μK arcmin which corresponds to the amplitude of the B-mode polarization at � � 1000.

4.2. Estimating CMB lensing power spectrum

The angular power spectrum of the gradient and curl modes may be studied through the angular power
spectrum of the estimators discussed in the previous section. The angular power spectrum of the
quadratic estimators, however, includes additional contributions from, e.g., the four-point correlation
of the lensed CMB anisotropies, and methods to accurately estimate these bias terms are required.

To see this, from Eq. (52), we consider the angular power spectrum of the quadratic estimator with
temperature which is given by

〈|̂x�|2〉 = (Ax
� )

2
∫

d2L

(2π)2

∫
d2L′

(2π)2
f x
�,L

2Ĉ��
L Ĉ��

|�−L|

f x
�,L′

2Ĉ��
L ′ Ĉ��

|�−L′|
〈�̂L�̂�−L(�̂L′�̂�−L′)∗〉. (62)

This quantity probes the four-point function of the lensed CMB. Following Eq. (46), we decompose
the above quantity into disconnected and connected parts:

〈|x̂�|2〉 = 〈|x̂�|2〉d + 〈|x̂�|2〉c. (63)

The disconnected part, 〈· · ·〉d, which comes from Eq. (47), contains the contributions which would
be expected if the observed temperature anisotropies �̂L were a Gaussian random variable. On the
other hand, the connected part, 〈· · ·〉c, arising from Eq. (48) has the non-Gaussian contributions
which are a distinctive signature of lensing. As shown in the following, the connected part nearly
corresponds to the power spectrum of the gradient/curl mode, and therefore the disconnected part,
usually referred to as “Gaussian bias,” and the other bias terms must be accurately subtracted to
obtain a clean measurement of the lensing signals.

Let us discuss the explicit expression of the disconnected and connected part.

◦ Disconnected part:
Using Eq. (47), the explicit form of the Gaussian bias is written as

〈�̂L�̂�−L(�̂L′�̂�−L′)∗〉d = (2π)2[δD(L + L′)+ δD(L + L′ − �)]Ĉ��
L Ĉ��

|�−L|. (64)

Substituting Eq. (64) into Eq. (62), and using the expression for the normalization Ax
� , the power

spectrum of the estimator induced by the disconnected part becomes

N x,(0)
� ≡ 〈|̂x�|2〉d =

{∫
d2L

(2π)2
( f x

�,L)
2

2Ĉ��
L Ĉ��

|�−L|

}−1

= Ax
� . (65)
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◦ Connected part:
Substituting Eq. (48) into Eq. (62), the connected part of the quadratic estimator is, on the other
hand, given by [65]

〈|x̂�|2〉c = Cxx
� + N x,(1)

� + O[(Cxx
� )

2]. (66)

Here Cxx
� is the gradient-mode power spectrum which we wish to estimate, while N x,(1)

� is a
nuisance term coming from the “secondary” lensing contractions of the trispectrum [64] which
is usually called the N1 bias.

Combining Eqs. (65) and (66) with Eq. (63), we obtain

〈|x̂�|2〉 = Cxx
� + N x,(0)

� + N x,(1)
� + O[(Cxx

� )
2]. (67)

The above equation means that the lensing power spectrum Cxx
� is measured by computing the power

spectrum of the lensing estimator and subtracting the accurate estimation of bias terms such as N x,(0)
�

and N x,(1)
� .

The Gaussian bias is usually larger than the gradient/curl-mode power spectrum for reconstruc-
tions with a noisy map. A method to improve sensitivity to Cxx

� is to use an observed map filtered by
a realization-dependent power spectrum instead of its ensemble-averaged quantities [90] in Eq. (65).
In addition, the realization-dependent estimate has an advantage in reducing the off-diagonal covari-
ance, 〈Ĉφφ

� Ĉφφ

�′ 〉 [91]. For practical situations in which the covariance of the observed map has
non-negligible off-diagonal components, the following estimator is useful as a realization-dependent
approach [83]:

N̂ x,(0)
� = (Ax

� )
2 1

2

∫
d2L

(2π)2

∫
d2L′

(2π)2
f x
�,L f x

�,L′
(
2CL,�−L′��−L�

∗
L′ − CL,�−L′C�−L,L′

)
. (68)

Here, �� ≡ ∑
�′ C−1

�,�′�̂�′ is the inverse-variance filtered multipoles and C�,�′ is the covariance of

�. The above estimator is naturally derived based on the optimal estimator of the trispectrum [92]
applied to lensing [14,83], and is easily extended to include polarization [89]. Equation (68) has an
additional advantage for accurate estimation of Cxx

� ; if the covariance is biased as C�,�′ → C�,�′ +
��,�′ , the contributions of ��,�′ in Eq. (68) are at second order, while the usual method has the first-

order contributions of ��,�′ . Another way to mitigate uncertainties in N x,(0)
� is that, since a large

fraction of the noise in the lensing reconstruction comes from the CMB fluctuations themselves, we
can construct a Gaussian-bias-free estimator by dividing the CMB multipoles into disjoint regions
in Fourier space, with a cost of signal-to-noise [64,93]. For polarization-based reconstructions, the
Gaussian bias is more simply mitigated by combining, e.g., E E and E B estimators since the four-
point correlation 〈E E E B〉d vanishes.

Other bias terms such as the N1 bias N x,(1)
� should be also corrected. Even in the absence of the

curl mode, N�,(1)
� is generated by the presence of the gradient mode [13,31]. Furthermore, Ref. [91]

pointed out that the term including the second order of Cφφ
� in Eq. (67) also leads to non-negligible

bias. This type of bias can be mitigated by replacing the unlensed power spectrum in the weight
function with the lensed power spectrum [63,94]. The diagonal approximation of the normalization
A� would also lead to a bias in estimating the power spectrum in the presence of, e.g., the window
function. The bias due to this diagonal approximation in the presence of the masking and survey
boundary is not so significant for the temperature-based reconstruction [83], but would be significant
on large scales for polarization-based reconstruction. For known sources such as the window effect,
we would estimate the normalization bias by Monte Carlo simulations, but cross checking with other
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methods would be desirable as a test of the assumptions in the simulations, e.g., underlying CMB
anisotropies.

Since the power spectrum of the quadratic estimator probes the four-point correlation of observed
anisotropies, other possible sources of the four-point correlation may lead to significant bias on
Ĉ xx
�′ . One of the significant trispectrum sources is the point sources [14], and Ref. [95] constructed

an estimator for mitigating the point-source trispectrum by modeling the statistical properties of
the point sources, while Ref. [96] proposed a simulation-based approach. The bias on estimates
of the power spectrum due to the presence of primordial non-Gaussianity would also be a source
of the trispectrum but is negligible even even if fNL ∼ O(10) [97].

In estimating cosmological parameters with the gradient/curl-mode power spectrum, the angular
power spectrum of observed CMB maps is usually added to break degeneracies between parameters.
One concern in this case is the correlation of the angular power spectrum between lensed CMB
and deflection angles. Assuming a Planck-like experiment with temperature alone, this correlation
is negligible [98]. The covariance of the angular power spectrum of lensing fields is investigated in
Refs. [65,91], and is almost diagonal for this case.

5. Recent experimental progress and future prospects

5.1. Current status of observations

Observations of the lensing effect on CMB are rapidly improving (see Table 1). Combining
the Arcminute Cosmology Bolometer Array Receiver (ACBAR) with the Wilkinson Microwave
Anisotropy Probe (WMAP) data, Ref. [9] reported weak evidence of the lensing effect on the
temperature power spectrum by constraining a parameter q which characterizes the lensing effect
as C lens

� = Cno−lens
� + q(C lens

� − Cno−lens
� ). On the other hand, Ref. [116] showed a constraint on

the lensing amplitude A by replacing Cφφ
� → ACφφ

� in computing the lensed temperature power
spectrum, and found A = 3.0+0.9

−0.9, while Ref. [9] showed A = 1.60+0.55
−0.26. The lensing effect on the

temperature power spectrum has also been explored by several high-resolution experiments such as
the Atacama Cosmology Telescope (ACT) [117] and South Pole Telescope (SPT) [118,119]. The
recent Planck result [15] showed clear evidence for the lensing effect on the temperature power
spectrum at � 10 σ statistical significance.3 The polarization signals have also been used to show
evidence for the lensing effect on the CMB anisotropies. The recent SPTpol results showed the detec-
tion of B-mode polarization signals generated from the lensing effect by cross-correlating a map of
the cosmic-infrared background obtained from Herschel [11]. Using the polarization data obtained
from the PolarBear experiment, the B-mode maps were also used to measure the B-mode angular
power spectrum [120].

As shown in Fig. 4, the power spectrum of the gradient mode obtained through the lensed CMB
trispectrum has also been explored by several CMB experiments. The power spectrum has been
measured at ∼4 σ–6 σ significance based on the ACT [10,99] or SPT [13] temperature maps. At the
time of writing this paper, the most precise measurement of the power spectrum is given by Planck
with greater than 25 σ detection [14]. CMB polarization maps from the SPTpol [11] and PolarBear
[111] are also utilized to measure the gradient-mode power spectrum. As shown in Fig. 5, the curl-
mode power spectrum has been measured with ACT [17], SPT [13], and Planck temperature maps
[14], and is consistent with zero.

3 Note that A > 1 is favored at ∼2 σ [15].
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Table 1. Current observational status of the measurement of the CMB lensing power spectrum and cross
power spectrum with other data. Each column shows the gradient-mode power spectrum (φ × φ), the cross
correlation with the galaxy/quasar catalog (φ × G), the cosmic infrared background map (φ×CIB) or other
probes such as the cosmic shear (φ × γ ), the integrated Sachs–Wolfe effect (φ×ISW), and thermal Sun-
yaev–Zel’dovich effect (φ×tSZ). Note that part of the results is obtained by combining additional data e.g.,
WMAP. We also note that the lensing effect has been measured from the power spectrum of CMB anisotropies
with several experiments (see text for details).

Temperature

φ × φ φ×G φ×CIB φ× other probes

ACT 4 σ [10] 3.8 σ [100] — 3.2 σ [101] (×γ )
4.6 σ [99]

Planck 26 σ [14] 7 σ–20 σ [14] 42 σ [102]a 2.5 σ [103] (×ISW)
6.2 σ [104] (×tSZ)

SPT 6.3 σ [13] 4.2–5.3 σ [105] 8.8 σ [106] —
∼7 σ [107] —

WMAP —b ∼3 σ [108–110]c — —d

Polarization

φ × φ φ×G φ×CIB φ× other probes

PolarBear ∼2 σ [111]e — 4.0 σ [112] —
SPTpol ∼3 σ [11]f — 7.7 σ [11] —

a Statistical significance at 545 GHz.
b Ref. [113] showed that the significance is � 1–2 σ .
c The measurement of the cross correlation was first attempted by Ref. [114], but the signals were not
detected.
d Statistical significance of cross correlation with the sum of SZ and ISW is at � 1–2 σ [115].
e The statistical significance for the rejection of the null hypothesis is at 4.6 σ .
f Ref. [11] constrained the lensing amplitude as a consistency test.

Fig. 4. Measurements of the angular power spectrum of the gradient mode obtained from Planck [14], SPT
[13], and ACT [10,99], with temperature-based lensing reconstruction. The solid line shows the theoretical
power spectrum expected from the best-fit cosmological parameters to the Planck temperature data.
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Fig. 5. As Fig. 4 but for the curl mode obtained from Planck [14] and ACT temperature map [17]. The solid
line shows the theoretical power spectrum for a specific model of cosmic string network with Gμ = 10−8 and
P = 10−5. Note that the curl mode from SPT temperature data is also analyzed in Ref. [13].

There are also several efforts to measure the cross correlation between the CMB lensing and other
observables. Cross correlation with matter density fluctuations is detected at 2–3 σ significance with
the data set of WMAP and observations of the large-scale structure such as the Sloan Digital Sky
Survey (SDSS) and the NRAO VLA Sky Survey (NVSS) [108,109]. The first detection of the cross
correlation was made earlier than the measurements of the gradient-mode power spectrum. The
galaxy/quasar–CMB lensing cross correlation has also been measured by Refs. [14,100,105]. Cross
correlations with maps of the cosmic infrared background have also been measured and utilized to
estimate the bias factor of dusty sources [106] and the star formation rate [102]. This correlation is
more significant than the cross correlation with the galaxy/quasar number density since the cosmic
infrared background is sensitive to the density fluctuations of dark matter mostly around z ∼2, cor-
responding to the peak of the CMB lensing kernel [121]. Reference [101] reported a measurement
of the cross correlation with the cosmic shear using data from ACT and the Canada–France–Hawaii
Telescope (CFHT) Stripe 82 Survey (CS82). Measurements of cross correlations with other CMB
secondaries such as the integrated Sachs–Wolfe effect and thermal Sunyaev–Zel’dovich effect are
reported in Refs. [103] and [104], respectively.

Lensing signals are now one of the standard probes in cosmology, and have already been used for
several cosmological issues. The inclusion of the gradient-mode power spectrum breaks degenera-
cies of parameters involved in the angular-diameter distance to the last scattering [122], e.g., the dark
energy density �� and curvature parameter �K, whose degeneracies are difficult to break with the
primary CMB anisotropies alone [123–125] (see also [126] concerning the numerical effect which
breaks degeneracies). As shown in Refs. [12–14], combining the lensing signals with the primary
CMB anisotropies provides the evidence for dark energy with CMB data alone, and the constraints
on the dark energy density without any astrophysical data is now�� = 0.67+0.027

−0.023 (1 σ) [14]. There
have been several studies which used cross correlation for some specific issues. Using cross correla-
tion between the lensing and galaxy survey, constraints on the primordial non-Gaussianity parameter
through a measurement of the galaxy bias are obtained as fNL = 12 ± 21 (1 σ) [18]. Reference [127]
used the Planck lensing map to constrain the bias of the Wide-Field Infrared Survey Explorer (WISE)
for the purpose of estimating the ISW effect. As discussed in Sect. 2, the curl mode of lensing signals
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also has fruitful information on the non-scalar perturbations. Figure 5 shows the measured curl-mode
power spectrum compared with that produced by the cosmic string network. The measured curl-mode
power spectrum is used for excluding the parameter region of cosmic strings [17] which is not ruled
out by the current data of the temperature power spectrum [50,128].

5.2. Future prospects

CMB polarization data on an arcminute scale will soon become the best way to obtain the CMB
lensing power spectrum and cross correlations, and these precise signals will play an important role
in cosmology in the near future (see, e.g., Ref. [129] and references therein). This will be achieved by
ongoing ground-based experiments such as ACTPol,4 PolarBear,5 and SPTpol,6 and upcoming/next-
generation experiments, e.g., Polar,7 CMBPol,8 COrE,9 and PRISM.10

Based on the above planned experiments, let us discuss the future prospects in CMB lensing studies.
For the neutrinos, assuming upcoming/next-generation experiments and combining the gradient-
mode power spectrum with the primary CMB power spectrum, 1 σ constraints on the total mass
of neutrinos would be 35–60 meV (e.g., [48,49,130,131]). On the other hand, the 1 σ constraint on
the effective number of neutrinos will be ∼0.1 [130].

The cross-correlation studies with CMB lensing will also become important in the future. Inclusion
of cross correlations with other observables will further improve the constraints on the total mass of
the neutrinos (e.g., [132,133] and references therein). For example, if we combine the Stage-II class
experiments with other ongoing projects such as the Subaru Hyper Suprime-Cam,11 the constraints
on neutrino mass would be 40 meV [49]. In the future, with the Stage-IV class experiments and other
upcoming spectroscopic surveys, the constraints on the mass of neutrinos and effective number of
neutrinos would be ∼16 meV and 0.02, respectively [133]. This implies that the lower bound on the
neutrino mass

∑
mν ∼ 60 meV obtained from neutrino oscillation experiments would be detected

at 4 σ confidence level with future experiments.
For upcoming and future experiments, the auto and cross power spectrum between CMB lensing

and other observables would have sensitivity to probe the dark-energy equation-of-state parameters
(e.g., [49,122,134]), a specific model of dark energy (e.g., [131,134])/modified gravity (e.g., [116]),
the primordial non-Gaussianity through measurement of galaxy bias (e.g., [135]), and the cosmic
string network (e.g., [22]). In addition to probing the above advanced issues, cross correlation with
other probes will help to control systematics such as multiplicative bias and intrinsic alignment in
the cosmic shear analysis (e.g., [136–139]).

In the future, as mentioned in Sect. 3, delensing may be required to obtain the primary B-mode sig-
nals at the recombination bump (� ∼ 10–100). The B-mode signal at these scales would be important
for ground-based experiments in which the large-scale modes are difficult to obtain. The delens-
ing at the recombination bump is also important for future low-resolution space missions such as

4 http://www.princeton.edu/act/
5 http://bolo.berkeley.edu/polarbear/
6 http://pole.uchicago.edu/
7 http://polar-array.stanford.edu/
8 http://cmbpol.uchicago.edu/
9 http://www.core-mission.org/
10 http://www.prism-mission.org/
11 http://www.naoj.org/Projects/HSC/index.html
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LiteBIRD12 and PIXIE [140] in order to enhance the total signal-to-noise of the primary B-mode as
well as the sensitivity to the tensor spectral index which allows us to explore the details of inflation-
ary physics. Joint analysis for, e.g., LiteBIRD and ground-based CMB experiments would reveal the
primordial B-mode signals from the largest scale to the recombination bump, providing us with much
information on the primordial gravitational waves. The above estimates and prospects are, however,
discussed in simple and idealistic situations, and studies aiming at addressing practical issues are
much needed as data become precise.
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