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Three types of organic and hybrid photovoltaics, which include poly (3-hexylthiophene) 

(P3HT), [6, 6]-phenyl C61 butyric acid methyl ester (PCBM) and zinc oxide (ZnO) in their 

active layer as normal, inverted and hybrid solar cells, were prepared by fine-channel 

mist–spray coating in air. In particular, we investigated the donor/acceptor blending effect for 

increasing reproducibility in normal type, annealing temperature control for more effective 

ZnO layer in inverted type solar cells. Patterns of sparse and vertical distribution by solvent 

polarity were discussed in fabrication for hybrid solar cells. Consequently, enough blending 

of donor/acceptor solution, the combination of pre/post heat treatment for ZnO layer and 

trade-off relation between crystallization of ZnO and ordering of the P3HT matrix were 

factors to be considered for enhanced results in terms of high photovoltaic performance. 

 
 
1. Introduction 

 

Organic photovoltaics (OPV) is fast emerging potential renewable, lightweight, large area 

and low-cost solar cell technology [1-12]. One of the most famous bulk heterojunction (BHJ) 

OPV structures is the device based on the composites of poly (3-hexylthiophene) (P3HT) as 

an electron donor and [6, 6]-phenyl C61 butyric acid methyl ester (PCBM) as an electron 

acceptor [13-16]. Recently, the power-conversion efficiency of state-of-the-art in polymer 
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solar cells (PSCs) has exceeded 10 % [17, 18]. These remarkable evolution of performance 

has made stimulated the progress more and more actively.  

For normal devices using aluminum as a cathode, degradation takes place by diffusion of 

oxygen and water through the electrode. Long-term stability is another critical problem 

because poly (3, 4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) used as an 

anode buffer layer is hygroscopic and acidic [19-24]. In addition, it has been reported that a 

vertically uneven distribution of donors and acceptors in BHJ disturbs charge transport in 

conventional PSCs [25, 26]. One approach to overcome this issue is using inverted structure 

where the charge collection is reversed. The degradation in interface of ITO/PEDOT:PSS 

does not happen and the inverted structure employs stable and less air sensitive electrode 

material with high work function. Sol-gel derived ZnO film, which has high electron mobility, 

environmental stability and high transparency, is widely applied for inverted solar cells 

[27-30].  

Organic-inorganic hybrid solar cells are focused on the advantage obtained with the 

inorganic acceptor materials, which have stability in environment [31], complimentary light 

absorption [32, 33], photogeneration of charge carriers [34, 35], quantum confinement effect 

[36] with low cost device production [2]. Well-controlled nanorod or nanofiber structure 

provide electron transporting pathways and efficient excitonic dissociation with blocking 

recombination.   

To fabricate these three types of solar cells, multiple methods have been developed by 

many research groups. Spin-coating is the general fabrication method in the research field of 

organic solar cells (OSCs). The spin-coating method has been widely used in laboratories, due 

to its high precision and reproducibility. However, there is inherently a large amount of waste 

of materials in spin-coating and it is not compatible with roll to roll or large area 

manufacturing. Among the other solution processes recently used for the fabrication of OSCs, 

such as screen printing [37], doctor blading [38], inkjet printing [39, 40], and spray process 
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[41-47], the spray process is considered as one of the most promising. This is largely due to 

the fact that the spray coating process can be done at high production speed and is compatible 

with various substrates since the sprayed droplets are transferred from the spray nozzle to the 

substrate without direct contact with the surface. Also, the spray process allows for patterning 

of the coated film at a sub-millimeter scale with the use of shadow masks. In addition, the 

spray process can facilitate much more dilute solutions than the spin-coating method, 

allowing for the use of various organic materials that have poor solubility in solvents [48].  

Recently, the implementation of the modified spray-mist coating technology for fabrication 

of an organic-based bulk heterojunction solar cell was reported [26]. The modified spray-mist 

coating method utilizes atomized droplets by ultrasonic generator, which is commonly known 

as a commercial ultrasonic humidifier or diffuser. It is plausible to be applied for large scale 

fabrication of polymer based solar cells. In addition, the modified spray-mist coating 

technology allows to pattern on the targeted area easily. This is critical, for instance, for 

fabricating a monolithic photovoltaic device that is integrated and connected to one large 

module. Another characteristic of this modified spray-mist coating method is a simple coating 

method, in which the liquid solution is ultrasonically atomized and the aerosol droplets are 

transferred onto the substrate by carrier gas. In our experiment, the fine channel mist 

deposition process consists of the donor and/or acceptor spray coating by gas pressure without 

chemical reaction of the precursors. Therefore, well-controlled deposition is expected to be 

produced a reproducible morphology in fabricating active layers, electron transport layers and 

hole transport layers. Moreover, this apparatus can blend droplets with different polarity. That 

is why carried droplets are not emitted out into the air instantly, but once reserved and mixed 

before being sprayed. It can be meaningful that simple and direct coating for mass production 

is actualized. Moreover, it is possible to avoid complicated preparation and procedures for 

ZnO nanoparticles and nanorods in hybrid solar cells. However, inevitable heat treatment for 

stable coating and limitation of size of droplets emitted should be considered before applying 
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to fabrication in solar cells. In this report, on the basis of optical morphology and topography, 

we investigated required considerations to fabricate a well-performed various typed solar cells 

of normal, inverted, and hybrid types, respectively.  

      

2. Experimental 

 

In the preparation of solar cell devices, indium-tin-oxide (ITO) coated glass substrates 

(Geomatec, 5 Ω cm-2) were first patterned by etching and then cleaned thoroughly with a 

sequence of solvents: detergent, deionized water, acetone and isopropanol, for 10 min each in 

an ultrasonic bath. The cleaned substrates were purified further by oxygen plasma treatment 

for 10 min. The ultrasonic transducer produces vibration with 6 oscillators in the water. The 

solution was atomized by the ultrasonic transducer (2.9 MHz) and the aerosols formed were 

transferred with the nitrogen carrier gas at a flow rate of 4 L min-1. The mixed aerosols in the 

nozzle were finally supplied through the linear source nozzle onto the heated substrate at a 

rate of 1.2 mL min-1. The substrate temperature and number of coating exposures were 

controlled after the surface morphology investigation in the pretest, adapting for experiments. 

The stage was moved at a constant rate of 1 mm s-1. The distance of the nozzle from the 

substrate was 1 mm. 

For normal type solar cell, we prepared thin films and solar cell active layers based on a 

1:0.8 mixture of P3HT (Rieke Metal) and PCBM (Nano C) dissolved in chlorobenzene (CB) 

by the fine-channel mist-spray deposition (FCMSD). Solutions of the active layer components, 

P3HT and PCBM, were prepared separately with a concentration of 8 mg mL-1 in CB and 

stirred in ultrasonic bath at 50 °C for 2 h. These solutions of active layer components were 

each loaded to its corresponding ultrasonic bottle for mist generation. For FCMSD (MIX) 

coating, P3HT and PCBM dissolved in CB respectively were blended for 40 min. An 

additional solvent mist spray coating was done by spraying o-dichlorobenzene (DCB) onto 
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the active layers at a rate of 100 µl min-1 at ambient temperature. The active layer was then 

allowed to dry for about 10 s. For the spray coating process as a reference, the airbrush 

(XP-727, Airtex Co., Ltd.) was powered by N2 gas at 70 psi, a relatively low pressure that 

ensures fine atomization and prevents blowing off the droplets already deposited on the 

substrate. The solution was also prepared based on a 1:0.8 mixture of P3HT (Rieke Metal) 

and PCBM (Nano C) dissolved in CB. The distance of the airbrush from the substrate was 

10 cm. An additional solvent spray coating was done by spraying DCB onto the active layers 

for 1 min at a rate of about 100 µl min-1. The substrate was kept at atmospheric condition 

during all spray coating process. Before active layer coating, the substrates were then spin 

coated with a 0.45 µm filtered PEDOT:PSS solution (Clevios P), purchased from HC Starck, 

at 4000 rpm for 60 s to produce a 40 nm thick layer. The substrates were subsequently heated 

on a hotplate in air at 200 °C for 10 min to remove excess water. An additional solvent mist 

spray coating was done by spraying DCB onto the active layers at a rate of 100 µL min-1 at 

ambient temperature. The active layer was then allowed to dry for about 10 s. 

For the inverted solar cell, the starting solution used was zinc acetate dehydrate, 

Zn(CH3COOH)2·2H2O, diluted at 0.02 mol L-1 in a solvent, where the volume ratio of 

methanol:water mixture is 4:1. Zinc acetate precursor directly contact on the substrate heated 

at 90, 120, 150, 180 and 210 °C. All devices are post-heated at 250 °C for 6 min after 

pre-heated coating. The thickness of ZnO layer was around 60-80 nm. Active layer coating 

was performed as method for normal type solar cell. For efficient FCMSD coating, 

PEDOT:PSS was mixed with water with a volume ratio of 1:3. 

In hybrid system, zinc acetate dehydrate, Zn(CH3COOH)2·2H2O, was diluted at 0.069 mol 

L-1 in a solvent, where the volume ratio of methanol:water mixture is 40:1. The amount of 

water was minimized for reproducibility in organic-inorganic solar cell. Solutions of the 
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P3HT was prepared with a concentration of 10 mg mL-1 in CB and stirred in ultrasonic bath at 

50 °C for 2 h. 

Thermal annealing was performed at 150 °C in a glove box. Lithium fluoride (1 nm), 

molybdenum trioxide (5 nm), aluminum (100 nm) and silver (100 nm) were deposited by 

thermal evaporation in ultra-high vacuum at 5 × 10-3 Pa. The photovoltaic characteristics were 

measured under nitrogen atmosphere using an Agilent 4156C parameter analyzer under 

AM1.5G (100 mW cm-2) simulated illumination using a solar simulator with a 1000 W xenon 

arc lamp.  

For device characterization, the thickness was measured using an Alpha-Step IQ surface 

profiler of KLA-Tencor Co. which has a precision of ±10 nm. The surface image was 

measured with a Wyko NT9100 optical profilometry.  

UV–visible absorption spectra were obtained using a Shimadzu UV-1601PC UV–visible 

spectrophotometer. Thin polymer films were deposited onto previously cleaned quartz slides 

with the same settings used for the production of solar cells. 

To investigate the effect of the additional solvent sprayed on the morphology of the active 

layer, X-ray Diffraction (XRD) and surface profiler were used. The morphology of the active 

layer was observed by Transmission electron microscopy (TEM) (JEM2100). 

Field-emission scanning electron microscope (FE–SEM, SU6600) and Energy Dispersive 

Spectroscopy (EDS) was used for investigating the distribution of components. 

 
3. Results and Discussion 

 

3.1 Normal type solar cell 

 

Figure 1 shows a schematic illustration of the FCMSD apparatus in our experiment [26]. 

Flow rate is controlled by carrier gas (N2). Donor (P3HT) and acceptor (PCBM) solutions are 

changed to tiny droplets in two separate mist sources. Fog or mist from two sources is 
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transferred seperately to nozzle along plastic tube. Heated substrate moves on the stage 

repeatedly and accurately. Device performance of the deposited films was investigated based 

on common device configuration: glass-ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al. The film is 

formed by spreading of droplets and combining of adjacent droplets. The film morphology 

usually depends on the solution in the mist sources such as vapor pressure, boiling point, 

surface tension as well as flux of the droplets and ambient conditions [41-45, 47, 49]. In the 

FCMSD method, the flux of the solution is the most influential factor because of the short 

distance between the nozzle and the substrate. In our experiment, the moving substrate was 

kept at 110 ℃ to allow the active layer to have the better morphology. Many droplets are 

accumulated rapidly and led to liquid phase below 100 ℃. The high temperature enables the 

quality of the layers to be reproducible and under control. Even though this high drying 

temperature affect badly to formation of an well-established crystallite in the active layer [42, 

50-52], the damage can be recovered by DCB additional solvent coating [26, 47]. The DCB 

additional solvent coating leads to dissolve the uneven and rough surface, which was 

attributed to fast drying.  

To look into the morphology of the surface after FCMSD coating, we investigated the 

surface of a specific area, where Al was coated. The Al on the back reflects the light and 

shows the some defect and pin-hole on the surface easier. Even though DCB additional 

solvent coating was sprayed, the perfect layer without pin-holes is hardly obtained, 

considering the principle of being coated on the substrate. In this respect, we should take into 

account the optimal thickness, for both transportation of carriers and prevention of defects. 

Because the active layer is formed by the accumulation of dried droplets, an optimal active 

layer is comparatively thick. Too thin active layer cannot cover pinholes and cracks, which 

are formed by dried droplets [53, 54]. In addition to the thicker active layer, the additional 

DCB coating is applied to build proper carrier path and connect the isolated droplets. Finally, 
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it was found that the minimum thickness of the active layer for stable and reproducible 

performance was around 300 nm after the additional DCB solvent coating. In previous report, 

we found the optimal thickness of active layer can be variable according to the main coating 

process [54]. 

In Figure 2, we compared a current density-voltage (J-V) characteristic and incident 

photon-to-current efficiency (IPCE) of three devices with different coating method. Among 

the two devices by the FCMSD method, one utilizes only a single channel for blended 

P3HT/PCBM (triangle - FCMSD (MIX)) and the other one is fabricated by two separate 

channels for each donor and acceptor (rectangle - FCMSD). It is compared by spray coated 

device with same structure and thickness (a broken line). The device fabricated from two 

separate channel (FCMSD) has open circuit voltage (Voc) = 0.54 V, current density (Jsc) = 

6.75 mA cm-2, fill factor (FF) = 0.56 and efficiency (Eff) = 2.03 %. Notably, the J-V 

characteristic of the device used one single channel (FCMSD (MIX)) (Voc = 0.57 V, Jsc = 8.02 

mA cm-2, FF = 0.60 and Eff = 2.75 %) are superior to the performance of a spray coated 

device with a non-heated substrate by an airbrush. This value is also compatible to the 

performance of spin coated one in air, even if it is not shown here but reported previously[47]. 

It is thought that the additional DCB solvent annealing method compensate for losses, which 

would result from a hot substrate. It is found that the devices fabricated by FCMSD (MIX) 

have the maximum IPCE at 560 nm, broader peak between 500 nm and 650 nm of 

wavelength compared to spray coated device. 

Figure 2 (a), (b) show that the two channels system is not enough to blend the donor and 

acceptor totally in the space of nozzle. Moreover, the low electrical characteristic in two 

channels system may come from the unbalanced deposition caused by the density gap of 

donor and acceptor. It is known that the density of PCBM (1.50 g cm-3) is higher than the one 

of P3HT (1.10 g cm-3) [55, 56]. The PCBM has better solubility in CB than P3HT, so the 

dried PCBM droplets are lifted up by a rising current air from the hot substrate. It leads to the 
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vertical distribution of P3HT and PCBM in the coating process [26]. Finally, this 

phenomenon restricts the formation of proper BHJ nanostructure. Accordingly, when this 

FCMSD is used for active layer deposition, it should be considered that degradation may 

happen due to imperfect blending and property of donor/acceptor materials. Neverdeless, this 

FCMSD is still more effective and attractive in the way that each donor/acceptor dissolved 

with even different solvents could be coated under a well-controlled manner. 

 

3.2 Inverted type solar cell 

 

The surface properties of zinc actate/ZnO films on glass substrates were investigated by a 

surface profiler and an optical microscope. The topography and optical images (inset) are 

respectively depicted in Figure 3. The topography by the surface profiler are obtained over 

93.8 µm x 125.1 µm scanning range. Zinc acetate precursor directly contact on the substrate 

heated at 90, 120, 150, 180 and 210 °C. Using zinc acetate as a precursor, the acetate groups 

as contaminants of the gel decompose under annealing producing combustion volatile 

by-products [57]. The temperature of substrate, which is pre-heat treatment, is one of the most 

prominent factors in growth orientation of ZnO. The orientation of crystallites changes under 

the influence of solvent evaporation and existence of organic compounds. Therefore, the 

optimum pre-heat temperature is controlled, according to the solvent and additives. Usually, 

the temperature above 300 °C is required to produce (002) oriented films in the case of 

2-methoxythanol and monoethanolamine [58, 59]. However, low pre-heat temperature also 

achieved good results recently in solvent of 2-methoxythanol (200 °C), 2-propanol (100 °C) 

and methanol (80 °C) [60-62]. In FCMSD deposition for ZnO thin film, zinc acetate 

dehydrate diluted in a methanol-water mixture which produce aerosol particles easily and 

evaporate quickly. To confirm the relation between the pre-heat and the post-heat treatment 

temperatures, all devices are post-heated at 250 °C for 6 minutes after pre-heated coating. The 
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character of (H) in Figure 3 represents the post-heating process. Surface profiler and optical 

images shows smooth films when pyrolysis happened at above 150 °C. When only pre-heat 

treatment below 120 °C is performed, the speed of removal of solvent does not catch up the 

speed of emission from nozzle and consequently some traces of undried excess solvent are 

left with rough morphology on the surface. Even at 150 °C, the ZnO precursor film gave a 

poorly or uniquely patterned morphology with high height differences. This morphology like 

patterned-print was also found in previous report [29]. Interestingly, post-heat treatment at 

250 °C changed remarkably both morphology and topography, especially in the case of the 

devices prepared through pre-heat treatment at 120, 150 and 180 °C. It is attributed that the 

solvent vaporization, zinc acetate decomposition and zinc oxide crystal growth occur in entire 

layer as post-heat treatment proceeds. Significant change of optical images in inset of Figure 3 

supports these facts. The pinholes left during pre-heat treatment at 90 °C come from 

insufficient coating by too low temperature than boiling point of the solvent. On the contrary, 

large agglomeration at 210 °C is caused by too quick vaporization of methanol-water mixture. 

XRD characterization of ZnO pyrolyzed at various temperature as pre-heat or post-heat 

treatment was investigated in Figure 4. The thermodynamically stable crystal structure of 

ZnO is wurtzite, which exhibits strong diffraction peaks at 2Ө values of 31.8 ° (100), 34.5 ° 

(002) and 36.3 ° (101). There is no typical peak in the films coated between 90 °C and 180 °C 

as pre-heat treatment. Because the strange peak at 2Ө values of 33.9 ° found at low pre-heat 

treatment disappears after post-heat treatment at 250 °C, it is considered that the peak 

originates from organic compounds resulting from incomplete decomposition of the 

metal-organic source. Weak crystalline ZnO peaks start to appear during pre-heat treatment at 

210°C and the typical peaks shows no enhancement after post-heat treatment. This shows that 

optimized temperature as pre-heat treatment leads to pyrolysis and induce to form crystalline 

ZnO simply without post-heat treatment [30]. The reason of the (002) higher peak at 120°C 
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(H) is not clear here because the orientation of the ZnO thin film is sensitively dependent on 

various parameters as Zn concentration, solvent, additive and aging time [27, 28, 64]. Simply 

taking account of the pre-heated temperature as only parameter, a pre-heated process at 

120 °C favors a preferred crystal orientation along (002) plane. The pre-heat temperature 

seems to be more critical factor for obtaining (002) orientation at least because there is no 

remarkable change at typical peak by post-heat treatment after the pre-heated treatment from 

150 °C to 210 °C [60, 65, 66]. 

UV- vis absorption spectra in Figure 5 indicates what process is more significant factor for 

ZnO pyrolysis during the heat treatment. To form ZnO through only pre-heat treatment, 

higher temperature above 180 °C is required, as shown in Figure 5. In addition, the effect of 

post-heat treatment after pre-heat treatment at high temperature is limited, comparing each 

absorbance in the region between 300 nm and 370 nm of 210 °C (solid, red) and 210 °C (H) 

(dotted, red). An additional consideration with these experimental results before deciding the 

optimum heat process is that the too high pre-heat treatment affect the quality of surface in 

repeated process of FCMSD. In other words, ZnO formed very fast adheres to the nozzle and 

disturb effective coating between the nozzle and substrate. Consequently, formation of ZnO at 

150 °C (H), which is combined with pre-heat at 150 °C and post-heat at 250 °C, is promising 

for electron transport layer in inverted OSC.           

In order to investigate the application of ZnO as an electron transport layer in inverted OSC, 

we fabricated two inverted structure devices of ITO/ZnO(F)/P3HT:PCBM(S)/MoO3(E)/Ag(E) 

and ITO/ZnO(F)/P3HT:PCBM(F)/PEDOT:PSS(F)/Ag(E) and compared the J-V 

characteristics as shown in Table 1. The abbreviation of F, S and E means FCMSD method, 

spin coating, evaporation respectively. Figure 6 shows representative J-V characteristics and 

IPCEs of the two devices. It shows the performance of the inverted type is better than that of 

normal typed device having ITO/PEDOT:PSS(S)/P3HT:PCBM(S)/LiF(E)/Al(E), compared to 

the results as shown in Figure 2. This fact exhibits that ZnO layer was stably formed by the 
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FCMSD method at relatively low temperature. The second device for roll-to-roll continuous 

coating, which is fabricated by FCMSD method as much as possible, shows degradation of 

J-V characteristic, especially FF. Although the factors affecting FF have not been completely 

identified yet, it has generally been accepted that FF is derived from the morphology of the 

active layer, charge-carrier transport, the balance between hole and electron mobility, and the 

interface of layers in OSC [65]. The degradation of FF also means increased Rs and decreased 

Rsh, as shown Figure 6. Heterogeneous and voided surface by consecutive FCMSD coating 

process leads to inferior contact among three interlayers. The contact resistance between 

interlayers affects the increment of Rs more significantly than the resistance of the ZnO, 

P3HT:PCBM, PEDOT:PSS layer itself [67]. For devices comprising only ZnO film by 

FCMSD, the maximum IPCE is 65 % in Figure 6 (b), which is indicative of efficient 

photon-to-elctron conversion. It is thought that the performance of ZnO layer in inverted type 

solar cell fabricated by FCMSD is limited particularly by the morphology and the extent of 

the contact between ZnO layer and active layer at the interface with active layer. 

 

2.1 Hybrid type solar cell 

 

Figure 7 shows optical images of surface coated with P3HT/ZnO. Considering that polar 

and non-polar solvent coexist in the state of droplets, perfect blending in the nozzle is actually 

not expected. Note that any nanorods and nanoparticles were not applied here. Generally, the 

ZnO nanorods and nanoparticles in hybrid solar cells play an important role in providing 

percolating pathways and carrier separation on ZnO/organic semiconductor. To achieve 

original purpose that the FCMSD was designed for speedy and simple mass production, the 

additional enhancement by nanostructures was excluded on purpose. Additionally, relatively 

low temperature unlike in inverted type solar cell was examined because high temperature 

annealing is not compatible with organic semiconductors. When the temperature of pre-heat 
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treatment is below 120 °C, uneven distribution of P3HT (red color) and ZnO (gray color) is 

found, as shown in Figure 7 (a), (b). This trend is somewhat avoided through controlled 

pre-heat treatment at 150 °C, drying the solvents including P3HT and ZnO effectively as 

shown in Figure 7 (c). However, hot substrate rapidly evaporates methanol-water mixture 

mixed solvent, and makes the formation of ZnO not on the substrate but near the nozzle as 

described above. Unfortunately, this phenomenon is distinguished in repeated process to get 

an optimal thickness of the active layer. In that case, bad morphology and agglomeration of 

donor/acceptor affects exciton diffusion and charge separation negatively. The additional 

DCB solvent coating can relieve bad morphology [47], however, extra DCB in the domain of 

ZnO remains on the surface as shown in Figure 7 (d). 

TEM was carried out to investigate the morphology of the thin film. TEM image of the 

domain of P3HT and ZnO constituting the thin film is shown in Figure 8. It reveals that its 

own domain of P3HT and ZnO is formed independently, not showing heterogeneous 

interblending in tens of nanometer. Closer inspection in Figure 8 (b) also shows that the 

boundary exists between donor and acceptor. It is attributed to the each solvent with different 

property, namely polar (methanol) and non-polar (CB). Generally, the large droplet can then 

collide with small droplet and combine to form even larger drops in the nozzle. However, the 

two different polar droplets are not blended enough and each droplets are separately emitted 

out. This implies that the boundary between ZnO and P3HT may appear and consequently 

donor-acceptor are separated in the active layer. In Figure 8, ZnO shows up as the darker 

regions due to a consequence of a higher electron density. ZnO is not homogenously 

dispersed inside the polymer matrix. In this case, exciton dissociation at donor/acceptor 

interface seldom happens. Larger of P3HT domains than the exciton diffusion lengths (~10 

nm) of the polymer means that recombination occurs easily and charge extraction is limited.  

Figure 9 shows the distribution of sulfur (S) and zinc (Zn) in P3HT/ZnO active layer, 

measured by EDS on the Scanning Electron Microscopy (SEM). In EDS of P3HT/ZnO active 
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layer, sulfur comes from P3HT, which means that we can estimate the distribution of P3HT 

by dots of sulfur. The spatial distribution of S and Zn in P3HT/ZnO active layer was further 

analyzed by the observation of cross-sectional views with EDS technique. For clearer 

observation, the active layer was coated repeatedly until the thickness of active layer reached 

to 10 µm. We found that the distribution of S is unbalanced and abundant near the bottom of 

the layer as shown in Figure 9 (b). Analogous phenomenon was found in previous report [26]. 

This phenomenon can be explained as follows: Zn acetate precursor dissolved in methanol 

dries faster when aerosol emits. Subsequently, ZnO lifted up by ascending air current cover 

P3HT repeatedly. In particular, this trend occurred readily as the thickness of active layer 

increases. However, this phenomenon is improved partly when DCB additional coating is 

performed effectively in active layer of thickness below 300 nm. 

Figure 10 (a), (b) show UV-vis absorption spectra of P3HT, ZnO and the blend of 

P3HT:ZnO films through the coating on the ITO substrate at 100, 150 (heat treatment during 

6 min after the coating at 100 °C), and at 180 °C. When the P3HT exist only, the vibronic 

absorption shoulder at 550 nm and 600 nm become larger as the temperature goes up. 

However, the remarkable increase of the absorption in the region of 320-360 nm ascribed to 

ZnO is observed in the ZnO film through the post-annealing at 150 °C for 6 min. In contrast, 

the peak intensity of ZnO pre-heated at 180 °C without post-annealing is not strong. It means 

that the extent of pyrolysis of zinc acetate need to enough time and high temperature. Because 

the starting solution includes excessive methanol for coating effectively, the formation 

reaction of ZnO quickly happens in the state of vapor before the ZnO precursors reach to the 

high-temperature substrate. However, this phenomenon is weakened by existence of 

non-polar solvent like CB as shown in Figure 10 (b). CB with high boiling point suppresses 

the evaporation of methanol and induces to contact onto substrate for pyrolysis of zinc acetate. 

In coating process by blending P3HT:ZnO droplets, the increment of relatively large-sized 

ZnO hinders the formation of highly ordered lamella by disrupting the interchain interactions 
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between P3HT chains, resulting in decrease of intensity and vibronic shoulders between 500 

nm and 550 nm as shown in Figure 10 (b). In addition, the spectrum of P3HT in the 

P3HT/ZnO composite film resulted in a blue shift from 520 nm (100 °C) to 500 nm (180 °C) 

with increasing pre-heated temperature. It is caused by the fast formation of ZnO at high 

temperature, which evokes to disordering of P3HT interchains.   

Table 2 summarizes J-V characteristics of P3HT/ZnO hybrid solar cells with different 

post-treatment. In this experiment, it is hard to obtain ZnO below 150 °C within short coating 

time. However, too high temperature should be avoided because the fast removal of the 

solvent CB like in FCMSD prevents the formation of highly ordered lamella by disrupting the 

interchain interactions between P3HT chains [68-71]. Therefore, we applied the solvent 

additional coating to disordered P3HT domain through all of the devices 1-4. Interestingly, 

Voc and Eff decrease sharply in device 2, which is applied by heat treatment after DCB solvent 

coating. It is thought that unabsorbed DCB in domain of ZnO prevent removal of residual 

organic compounds. This estimation is confirmed by the increased efficiency of device 3, 

where heat treatment is performed before DCB solvent annealing. However, repeated and 

longer heat treatment is negative to the performance as shown in device 4. 

Consequently, the trade-off between crystallization of ZnO and ordering of the P3HT 

matrix regarding to temperature of heat treatment should be reflected in fabrication of hybrid 

solar cell. In addition, the DCB solvent annealing is recommended to be performed after heat 

treatment in order to remove residual organic compounds in ZnO more effectively. 

  

4. Conclusion 

 

We have investigated the critical factors to apply the three types of solar cells through new 

coating process with the FCMSD technique. The experiments were proceeded to overcome 

against limitations such as use of a heated substrate and difficulty of detail manipulation on 
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process, maintaining advantages of the FCMSD method as like well-controlled mass 

production. Fully enough blending donor/acceptor solution is required to obtain a comparable 

and reproducible performance in normal type solar cell. In inverted type device, the 

combination of pre and post heat treatment (at 150 °C and 180 °C, respectively) induced 

better crystallization of ZnO. As a result, vertical distribution and trade-off between ordering 

of P3HT and growth of ZnO happened in the way of applying the FCMSD to hybrid solar 

cells directly. We expect this new technique will be an all-around alternative process for large 

scaled manufacturing production as well as various types of solar cells, keeping in mind the 

discussed factors. 
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(a) 

(b) 

Fig. 1 (a) Schematic illustration and photograph of FCMSD apparatus. The mist from the two sources are 

then transferred to the nozzle by N2 gas and combined prior to deposition to the substrate [26]. (b) the device 

structure of conventional, invert and hybrid type solar cell from left to right. The pattern inside a layer 

means fabrication by FCMSD method. 
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    (a)                                (b) 

 

 

Fig. 2 (a) J-V characteristic of devices of glass-ITO/PEDOT:PSS/P3HT:PCBM /LiF/Al (100 

mW cm-2, AM 1.5G) fabricated by FCMSD, FCMSD (MIX) and spray deposition. (b) IPCE 

comparison of three devices according to coating method.  
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Fig. 3. Surface topographies of zinc acetate/ZnO (FCMSD) on glass substrate by surface 

profiler (scanning size 93.8 μm x 125.1 μm) and optical images (inset). The substrate was pre-

heated at 90, 120, 150, 180 and 210 °C from top to down. All devices are investigated again 

after post-heat treatment (H) in right side. The bar scale of inset is 50 µm. 



   

4 

 

 
Fig. 4. XRD patterns of of zinc acetate/ZnO (FCMSD) on glass substrate by the FCMSD 

method. The substrate was pre-heated at 90, 120, 150, 180 and 210 °C (bottom). All devices 

are investigated again after post-heat treatment (H) (top). 
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Fig. 5. UV-vis absorption spectra of zinc acetate/ZnO on glass substrate by the FCMSD method. 

The substrate was pre-heated at 90, 120, 150, 180 and 210 °C. All devices are investigated again 

after post-heat treatment (H). 
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(a)                                     (b) 

 

 

Fig. 6. (a) J-V characteristic, (b) IPCE of two inverted devices of ITO/ZnO(F)/P3HT: 

PCBM(S)/MoO3(E)/Ag(E) and ITO/ZnO(F)/P3HT:PCBM(F)/PEDOT:PSS(F)/Ag(E). The 

abbreviation of F, S and E means FCMSD method, spin coating, evaporation respectively. 
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(a)                          (b) 
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Fig. 7. Optical images of surface on the active layer (P3HT/ZnO) coated by FCMSD method. 

The pre-heat temperature of (a), (b) is 120 °C and that of (c), (d) is 150 °C. The image of (d) 

was investigated after additional solvent coating. The bar scale is 40 μm.  
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(a)                                     (b) 

 

 

Fig. 8. TEM images of P3HT/ZnO coated by FCMSD method. 
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Fig. 9. EDS analyses for zinc (Zn) and sulfur (S) distributed in thicker P3HT/ZnO layer. 
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(a)                                      (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. UV-vis absorption spectra of (a) P3HT, ZnO and (b) the blend of P3HT/ZnO films 

coated by the FCMSD method. The substrates were pre-heated at 90, 180 °C. Only one device 

(blue line with circle) was investigated again after post-heat treatment at 150 °C for 6 min. The 

change as to the ratio of P3HT/ZnO is shown in (b) 
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MoO3(E)/Ag(E) and ITO/ZnO(F)/P3HT:PCBM(F)/PEDOT:PSS(F)/Ag(E) 

 

 

 

 

  

Table 1. The Device performance and characteristics of glass-ITO/ ZnO(F)/P3HT:PCBM(S)/ 

 Eff (%) Jsc (mA cm-2) Voc (V) FF 

ITO/ZnO(F)/P3HT:PCBM(S)/ 

MoO3(E)/Ag(E) 
3.03  7.36 0.63 0.66 

ITO/ZnO(F)/P3HT:PCBM(F)/ 

PEDOT:PSS(F)/Ag(E) 
1.19  6.73  0.47 0.38 
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No. 
Temp. of 

substrate 

Post-treatment 
Eff 
(%) 

Jsc 
(mA 

cm-2) 

Voc 
(V) 

FF Heat 1 

(150 °C,  

6 min) 

DCB 

Heat 2 

(150 °C,  

6 min) 

1 150°C  O  0.0012  0.0087  0.5447  0.2473  

2 150°C  O O 0.0003  0.0679  0.0172  0.2561  

3 150°C O O  0.0300  0.3558 0.1886  0.4474  

4 150°C O O O 0.0233  0.3862  0.1562  0.3859  

Table 2. Current density-voltage (J-V) characteristics of P3HT/ZnO hybrid solar cells with 

different post-treatment processes. 


