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Abstract

Background: For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be
reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs
exhibited a preference for differentiation into their original cell lineages, while others did not. Therefore, the type of cell
which is most appropriate as a source for iPSCs needs to be clarified.

Methodology/Principal Findings: Genetically matched human iPSCs from different origins were generated using bone
marrow stromal cells (BMSCs) and dermal fibroblasts (DFs) of the same donor, and global gene expression profile, DNA
methylation status, and differentiation properties into the chondrogenic and osteogenic lineage of each clone were
analyzed. Although genome-wide profiling of DNA methylation suggested tissue memory in iPSCs, genes expressed
differentially in BMSCs and DFs were equally silenced in our bona fide iPSCs. After cell-autonomous and induced
differentiation, each iPSC clone exhibited various differentiation properties, which did not correlate with cell-of-origin.

Conclusions/Significance: The reprogramming process may remove the difference between DFs and BMSCs at least for
chondrogenic and osteogenic differentiation. Qualified and genetically matched human iPSC clone sets established in this
study are valuable resources for further basic study of clonal differences.
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Introduction

The establishment of induced pluripotent stem cells (iPSCs) has

had a profound impact on both basic biology and clinical

medicine. iPSCs were first generated in mice by Takahashi and

Yamanaka in 2006 [1], where mouse somatic cells were

reprogrammed into pluripotent embryonic stem cell (ESC)-like

cells through retroviral infection of four transcription factors,

Oct3/4, Sox2, Klf4, and c-Myc. These cells closely resemble ESCs

in terms of the expression of pluripotency-associated genes,

differentiation in vitro into three germ layers, formation of

teratomas in vivo, contribution to chimeras, and transmission into

germ lines [1,2]. Subsequently, several groups reported the

successful generation of human iPSCs using similar strategies

[3,4,5]. Because of their infinite proliferative ability and plurip-

otent differentiation properties, human iPSCs have been regarded

as a promising source for cell-based regenerative therapy.

Avoiding ethical issues related to the use of fertilized eggs is an

advantage of iPSCs, and the application of HLA-matched iPSCs

may be able to minimize adjuvant immunosuppressive therapy

after transplantation.

An issue related to cell therapy using iPSCs is whether the type

of original somatic cell has any influence on the properties of the

iPSCs generated from it. It has been shown that iPSCs can be

generated from a wide variety of cells [3,6,7,8,9,10,11,12]. The

efficiency of iPSC generation differs, and it is difficult to determine

the best cell type, because efficiency also differs with the

reprogramming method. The difference in differentiation proper-
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ties is a more serious issue than efficiency. Blood cells are one of

the most promising sources for reprogramming because they can

be obtained with minimal invasion and the reprogramming

efficiency is sufficient [12,13]. It has been reported that blood-

derived low-passage mouse iPSCs were less able to differentiate

into osteoblasts than mouse ESCs and fibroblast-derived iPSCs

[14], and that blood-derived low-passage human iPSCs were less

able to differentiate into keratinocytes than human ESCs [15],

which suggests that blood-derived iPSCs are not an appropriate

source for bone or skin regeneration.

Bone marrow stromal cells (BMSCs) include mesenchymal stem

cells (MSCs), which are tissue stem cells able to differentiate into

multiple cell types in mesenchymal tissues such as chondrocytes,

osteoblasts, and adipocytes [16,17,18]. The differentiation prop-

erties of MSCs into non-mesodermal cells such as neuronal cells

and hepatocytes have also been demonstrated [19,20]. Because

MSCs can be obtained from bone marrow or adipose tissue by

relatively simple methods, their application to regenerative

medicine has been investigated in a wide variety of pathological

conditions. In the case of skeletal bone tissues, the efficacy of MSC

transplantation has been shown in applications to delayed unions

and avascular necrosis. If iPSCs derived from BMSCs still possess

the influence of their origins in early passages, they may

differentiate into mesenchymal cells such as chondrocytes and

osteoblasts more efficiently than iPSCs derived from dermal

fibroblasts (DFs), which have little ability to differentiate into cells

of other lineages. A simple comparison between established iPSCs

derived from BMSCs and DFs may not answer this question,

because the properties of iPSCs may be affected by the genomic

information of each individual.

To overcome this, we have generated two types of iPSCs in this

study, one derived from BMSCs (BM-iPSCs) and the other from

DFs (DF-iPSCs) of the same donor, and compared gene expression

profiles, DNA methylation status, and differentiation properties of

each type. Although the capacity for differentiation differs among

iPSC clones, there is no evidence that BM-iPSCs are superior to

DF-iPSCs in terms of differentiation properties into the chondro-

genic and osteogenic lineage, even though they are low-passage

cells. Clone verification should be of critical importance to future

regenerative medicine.

Materials and Methods

Preparation of BMSCs and DFs from the Same Donor
BMSCs were prepared from iliac bone as described previously

[21] and expanded as a monolayer. Circular skin tissue was

collected from the volar side of the forearm with a skin biopsy

device (Kai medical, Gifu, Japan), cut into small pieces, and plated

onto a plastic dish. After several days, fibroblastic cells appeared

around the pieces and expanded. Informed consent was obtained

from all donors with written consent, and these procedures were

approved by the Ethics Committee of the Department of Medicine

and Graduate School of Medicine, Kyoto University.

Cell Culture
DFs and PLAT-A cells (kindly provided by Dr. T. Kitamura,

University of Tokyo; [22]) were maintained in Dulbecco’s

modified eagle medium (DMEM; Nacalai Tesque, Kyoto, Japan)

containing 10% fetal bovine serum (FBS; Nichirei Inc., Tokyo,

Japan) and 0.5% penicillin and streptomycin (Invitrogen Co.,

Carlsbad, CA). BMSCs were maintained in a minimal essential

medium with GlutaMAX (Invitrogen) supplemented with 10%

fetal bovine serum and 0.5% penicillin and streptomycin. iPSCs

were generated and maintained in Primate ES cell medium

(ReproCELL, Tokyo, Japan) supplemented with 4 ng/ml recom-

binant human basic fibroblast growth factor (bFGF; WAKO,

Osaka, Japan).

Establishment of iPSCs by Retroviral Infection
PLAT-A packaging cells were plated at 86106 cells per 100-mm

type I collagen-coated dish (Corning Inc., Corning, NY) and

incubated overnight. The next day, cells were separately

transfected with pMXs vectors harboring four human Yamanaka

factors (OCT3/4, SOX2, KLF4, and c-MYC) with FuGENE 6

transfection reagent (Roche, Basel, Switzerland). Twenty-four

hours after transfection, the medium was collected as virus-

containing supernatant. DFs and BMSCs were seeded at 1.56105

cells per 60-mm dish 1 day before infection. Before reseeding of

DFs and BMSCs, 4 ng/ml of bFGF was added to the medium.

Virus-containing supernatants were filtered through a 0.45-mm

pore-size filter and supplemented with 4 mg/ml polybrene. Equal

amounts of supernatant containing each of the four retroviruses

were mixed, transferred to DFs and BMSCs, and incubated

overnight. Six days after infection, DFs and BMSCs were

harvested by trypsinization and replated at 16105 cells per 100-

mm dish covered with mitomycin C-treated mouse embryonic

fibroblasts cell line (SNL; [23]). The next day, the medium was

replaced with Primate ES cell medium supplemented with 4 ng/

ml bFGF. The medium was changed every other day. Thirty days

after infection, colonies were picked up.

RT-PCR and qPCR
Total RNA was purified with an RNeasy kit (Qiagen, Valencia,

CA) and treated with a DNase-one kit (Qiagen) to remove

genomic DNA. One microgram of total RNA was reverse

transcribed for single-stranded cDNA using an oligo (dT) primer

and Superscript III reverse transcriptase (Invitrogen), according to

the manufacturer’s instructions. PCR was performed with ExTaq

(Takara, Shiga, Japan). Quantitative PCR was performed with

Power SYBR Green qPCR mastermix (Invitrogen) and analyzed

with the 7300 real-time PCR system or StepOne real-time PCR

system (Applied Biosystems, Forester City, CA). Human iPSCs

(201B7) were used as a control [3]. Primer sequences are listed in

Table S1. We repeated this assay at least two times and results

showed a similar tendency.

Karyotyping
The karyotype of each clone was analyzed by G-band staining

using 50 metaphase cells (Nihon Gene Research Laboratories Inc.,

Sendai, Japan).

Teratoma Formation
Feeder cells were removed by treatment with CTK solution

containing 0.25% trypsin (Invitrogen), 0.1 mg/ml collagenase IV

(Invitrogen), 0.1 mM CaCl2, and 20% KSR (Invitrogen). iPSCs

were then harvested with scrapers, collected into tubes, centri-

fuged, and suspended in DMEM/F12 (Invitrogen). Half of the

cells from a confluent 100-mm dish were injected subcutaneously

into the dorsal flank of a SCID mouse (CREA, Tokyo, Japan).

From eight to twelve weeks after injection, tumors were dissected

and fixed with PBS containing 10% formaldehyde.

Animal Welfare
Animal studies were carried out in strict accordance with

recommendations in the Regulations on Animal Experimentation

at Kyoto University. The protocol in this study was approved by

the Animal Research Committee of Kyoto University. All
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injections were performed under anesthesia, and all efforts were

made to minimize suffering. Mice were humanely sacrificed prior

to tissue collection.

Chondrogenic Differentiation
When the colonies reached 70–80% confluence, undifferentiat-

ed iPSCs on SNL feeder cells were used for differentiation. Cells

were treated with CTK solution and rinsed twice with PBS to

remove feeder cells. iPSCs were then collected with a scraper and

suspended as clumps in EB formation medium (DMEM/10%

KSR/10% FBS). EBs were cultured for 7 days on non-adherent

petri dishes (bacterial petri dish, #31-001-002; IWAKI Co.,

Tokyo, Japan). The medium was changed every 3 days. Next, EBs

were seeded onto 10-cm gelatin-coated dishes. After outgrowth

cells became confluent (within 10 days), cells were incubated with

0.25% trypsin/EDTA at 37uC for 3–5 min, filtrated through a cell

strainer (70 mm,#352350; BD falcon, Franklin Lakes, NJ), and re-

seeded on new gelatin-coated dishes. Once confluent (5–7 days),

cells were collected with trypsin/EDTA. Cells (2.56105) were

placed in a 15-ml polypropylene tube, centrifuged at 1200 rpm for

3 min at room temperature, and re-suspended in chondrogenic

medium (hMSC Chondrogenic Differentiation BulletKitH; Lonza,
Basel, Switzerland) supplemented with 10 ng/ml TGFb3 (R&D

system, Minneapolis, MN). Cells were re-centrifuged and main-

tained as a small pellet for 14 days. The culture medium was

replaced every three days.

Glycosaminoglycan (GAG) Value
GAG content in pellets was quantified with BLYSCAN Dye and

Dissociation reagents (BIOCOLOR, Belfast, UK). DNA content

was quantified using a PicoGreen dsDNA Quantitation kit

(Invitrogen).

Histology
Pellets were fixed with PBS containing 4% paraformaldehyde

overnight after 14 days of induction. Fixed pellets were dehydrated

with a series of graded alcohol solutions, cleaned by treatment with

Clear Plus (FALMA, Tokyo, Japan), and infiltrated with paraffin.

Figure 1. Generation of iPSCs from BMSCs and DFs of the same donor. A) Schematic representation of the generation of iPSCs from dermal
fibroblasts (DFs) and bone marrow stromal cells (BMSCs) of the same healthy donor. B) Donor information and established clones’ names. %, iPSC
derivation efficiency. -, not established as validated clones. C) Time course of iPSC generation.
doi:10.1371/journal.pone.0053771.g001
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Figure 2. Characterization of iPSCs. A) Relative expression of retroviral transgenes in DF90 (left panel) and BM90 (right panel)-iPSC clones
analyzed by RT-qPCR. The value of each transgene 6 days after infection of DF90 (DF90 4F day 6) and 7 days after infection of BM90 (BM90 4F day 7)
was set to 1, and relative values of four transgenes in each clone are shown on a log scale. We selected four clones of which transgene expression was
silenced less than 1/1000 compared to the control. B) Expression of ESC-marker genes. Primers used for OCT3/4 and SOX2 detect transcripts from
endogenous genes, but not retroviral transgenes. All clones express ESC-marker genes similar to hESCs (KhES3) and hiPSCs (201B7). C) Karyotype
analyses. PN, passage number. D) Histological analyses of teratomas derived from iPSCs (DF90-iPSC B3) by hematoxylin and eosin staining. Typical
tissue features of each of the three germ layers were found. Scale bar, 200 mm. E) Comparison of global gene-expression patterns between each iPSC
clone and hESCs (H9). The two green lines above and below the diagonal green lines indicate the boundary of 2-fold changes between the two
samples.
doi:10.1371/journal.pone.0053771.g002
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Figure 3. Global gene expression profiles do not differ between BM- and DF-derived iPSCs. A) Correlation coefficients between each cell
were calculated using gene sets differentially expressed in DFs and BMSCs. Differentially expressed genes were defined as genes of which expression
varied 2-fold in all pairs, between each BMs and each DFs (9 pairs). Passage number (PN) of cells were as below; BM90 (PN 1), BM 91 (PN 3), BM 94 (PN
2), DF90 (PN 5), DF 91 (PN 5), DF 94 (PN 5), DF90-iPSC B3 (PN 9), F2 (PN 4), BM90-iPSC a3 (PN 4), a12 (PN 4), a16 (PN 4), b6 (PN 4), DF91-iPSC A1 (PN 5),
A5 (PN 6), A11 (PN 5), A18 (PN 7), BM91-iPSC a15 (PN 4), a18 (PN 4), b14 (PN 4), b17 (PN 4). B) Hierarchical clustering analysis in iPSC clones and hESC
lines (H9) using differentially expressed gene sets in DFs and BMSCs.
doi:10.1371/journal.pone.0053771.g003

Figure 4. Reprogramming extinguishes lineage-specific gene expression. We presented the top six genes that were BMSC-specific (A) or
DF-specific (B). Expression in BM90 (A) or DF90 (B) was set to 1 in each graph.
doi:10.1371/journal.pone.0053771.g004
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Paraffin-embedded sections were rehydrated and stained with

Alcian blue and eosin or with hematoxylin and eosin (WAKO).

Osteogenic Differentiation
For osteogenic induction from iPSCs, EBs were formed as

shown above. During EB formation and osteogenic induction,

100 ng/ml Activin-A was added to each medium. EBs were

seeded on a 10-cm gelatin-coated dish. After 5 days, outgrowth

cells were collected and filtered through a cell strainer. A total of

26106 cells/well were seeded on a 6-well gelatin-coated dish and

cultured in osteogenic induction medium (aMEM, 10% FBS,

0.1 mM Dexamethasone, 50 mg/ml Ascorbic acid, 10 mM b-
glycerophosphate). The culture medium was replaced every three

days.

DNA Microarray
Total RNA was prepared using the RNeasy Mini Kit (Qiagen).

cDNA was synthesized using the GeneChip WT (Whole

Transcript) Sense Target Labeling and Control Reagents kit as

described by the manufacturer (Affymetrix, Santa Clara, CA,

USA). Hybridization to GeneChip Human Gene 1.0 ST expres-

sion arrays, washing, and scanning were performed according to

the manufacturer’s protocol (Affymetrix). Data were analyzed

using GeneSpring GX 11.5.1 (Agilent Technologies) for scatter

plotting, hierarchical clustering, and Venn diagram generation.

For hierarchical clustering, we used the Chebyshev correlation for

similarity measures and for average linkage clustering. Reported

microarray data have been deposited in the public database Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under

accession no. GSE41202.

Genome-wide DNA Methylation Profiling
To analyze the genome-wide DNA methylation status, we

performed Illumina’s 450 K Infinium methylation assay according

to the manufacturer’s protocol. The 450 K data was subtracted

from the background and normalized to the control in the

GenomeStudio. For clustering analysis, we first selected probes of

differentially methylated regions (DMR) between DFs and BMs

(difference of average beta value, .0.5). Hierarchical clustering

was performed with hclust program in R, with Euclidian distance

and average linkage using additional ES data in GSE31848.

Results

Generation and Characterization of Human iPSCs from
BMSCs and DFs of the Same Donor
We isolated paired BMSCs and DFs from the same healthy

donor in three cases, with ages ranging from 35 to 54 (Figures 1A,

B). Paired BMSCs and DFs from each donor were designated

BM90 and DF90, BM91 and DF91, and BM94 and DF94.

OCT3/4, SOX2, KLF4, and c-MYC were introduced with

retroviral infection into each cell group at passage 1–2 (BMSCs)

and passage 5–7 (DFs) (Figure 1C). ESC-like colonies appeared at

day 28 after infection. The colony forming efficiency in DF91 was

comparable to that reported previously, but that in BM91 was less

than in DF91 (DF91, 0.267%; BM91, 0.020%; Figures 1B and

S1). Similar results were obtained in the case of donor 90 and 94

Figure 5. DNAmethylation profiles of BM- and DF-iPSCs were similar in general, but had distinct features. Hierarchical clustering using
Euclidian distance with probe sets of differentially methylated regions between DFs and BMSCs.
doi:10.1371/journal.pone.0053771.g005
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(DF90, 0.006%; BM90, 0.001%; DF94, 0.080%; BM94, 0.051%;

Figure 1B). Twenty nine, twenty one, eleven, forty seven, twenty,

and thirteen colonies of DF90, BM90, DF91, BM91, DF94, and

BM94, respectively, were randomly picked up and expanded as

clones. To select clones for further investigation, we primarily

evaluated the grade of silencing of exogenous OCT3/4, and then

checked silencing of other transgenes (SOX2, KLF4, and c-MYC),

karyotype abnormalities, and the expression of pluripotent stem

cell markers (Figures 2A, B, C, S2, and S3). As a result, four clones

of DF90-iPSCs (B3, B13, B14, and F2), four clones of BM90-

iPSCs (a3, a12, a16 and b6), four clones of DF91-iPSCs (A1, A5,

A11 and A18), and four clones of BM91-iPSCs (a15, a18, b14 and

b17) were selected (Figure 1B; BM94 and DF94 were used for

estimations of reprogramming efficiency and transgene silencing,

but not for further analyses). All clones tested developed teratomas

in vivo, which contained tissues featuring each of the three germ

layers (DF90-iPSC B3, B13, B14, F2, BM90-iPSC a3, a12, b6,

DF91-iPSC A1, A18; Figures 2D and S4). Global gene expression

profiles of DF90- or BM90-iPSC clones were comparable to those

of human ESCs (Figures 2E, S5; correlation coefficients between

each iPSC clone .0.985). Similar results were obtained in DF91-

and BM91-iPSC clones (Figure S5). All these data indicate that the

selected clones satisfy criteria for iPSCs [24,25].

BM- and DF-iPSCs were Indistinguishable by Global Gene
Expression Profiles
We next compared gene expression patterns of each iPSC clone

since it was reported that low-passage human iPSCs retained

a transcriptional memory of the original cells [26]. First, we

compared global gene expression profiles of BM90, 91, and 94

with those of DF90, 91, and 94, and found that 356 genes were

commonly up- (171 genes) or down- (185 genes) regulated in

BMSCs (over two fold; Table S2). These genes, however, were not

differentially expressed between DF90- and BM90-iPSC clones or

DF91- and BM91-iPSC clones. Correlation coefficients were over

Figure 6. The propensity for EB-mediated cell-autonomous differentiation in iPSC clones differs regardless of developmental
origin. Gene expression of EB outgrowth cells (A) and reseeded cells (PN1; B). RNA was extracted from cells that reached semi-confluency. RT-PCR
was performed with genes related to chondrogenesis (SOX9 and ACAN), osteogenesis (RUNX2 and OSTERIX), or adipogenesis (PPARc). The capacity
to differentiate into bone and cartilage lineages was similar between DF- and BM-iPSC clones. The expression of genes representative of each of the
three germ layers was also analyzed, which showed no difference among clones.
doi:10.1371/journal.pone.0053771.g006
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0.986 (donor 90 clones, Figure 3A) and 0.976 (donor 91 clones,

Figure S6). Hierarchical clustering analysis in the donor 90 and 91

clones using the differentially expressed gene sets produced mixed

branches regardless of their origins (Figure 3B). Most of the

differentially expressed genes were silenced in BM- and DF-iPSC

clones in a similar fashion (Figures 4A, B). These data indicated

that BM- and DF-iPSC clones did not possess gene expression

profiles of the original cells, and that BM- and DF-iPSCs were

indistinguishable by gene expression.

DNA Methylation Profiles of BM- and DF-iPSCs were
General, but had Distinct Features
Since most published studies identified epigenetic differences

among iPSCs from different origins [10,11,14,15,27,28,29], we

Figure 7. Induction of chondrogenic differentiation in iPSCs. A) Time course of chondrogenic differentiation. EB, embryoid body. OG,
outgrowth. Pas, passaged once. B) Macroscopic views and Alcian blue staining of a section of a pellet. The red arrow indicates a pellet at the bottom
of a 15-ml conical tube. Middle column, scale bar, 1 mm. Right column, scale bar, 200 mm. C) Alcian blue staining of sections of pellets. Scale bar,
100 mm. D) GAG/DNA of pellets. GAG/DNA differed with clones regardless of cell-of-origin. E-I) Comparison of the relative expression of
chondrogenesis-related genes (SOX9, COL2, ACAN NLRP3 and COMP) by RT-qPCR. The value of DF-iPSC B13 was set to 1 in each experiment.
doi:10.1371/journal.pone.0053771.g007

Comparison of Genetically Matched hiPSC Clones
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next analyzed genome-wide DNA methylation profiles of DFs,

BMSCs, and each iPSC clone. Using probe sets of differentially

methylated regions (DMR) between DFs and BMSCs (6,176 in

485,531 probes), the overall methylation patterns of iPSC clones

were similar to each other and those of ESCs, and distinct from

those of original DFs and BMSCs (Figure 5). Hierarchical

clustering and heat map analyses, however, revealed a set of

DMR probes shared by iPSC clones derived from one origin but

not from the other. These observations indicate that a certain level

of tissue memory is preserved in iPSCs derived from DFs and

BMSCs. To gain insight into the character of each iPSC clone, we

focused on loci near the top 30 DF-specific and BM-specific genes

(15 in 185 genes and 15 in 171 genes, respectively), and also genes

important for chondrogenic and osteogenic differentiation (nine

and nine genes, respectively). The methylation status of these loci

changed with reprogramming processes and differences were

almost diminished in all iPSC clones regardless of their origins

(data not shown).

Taken together, these results revealed that iPSC clones derived

from BMs and DFs are similar in global DNA methylation status,

whereas they retain epigenetic memory during the reprogramming

process.

Cell-autonomous Differentiation Properties of iPSCs
Differ with Clones Regardless of their Developmental
Origin
Several reports demonstrated that low-passage iPSCs exhibited

the differentiation properties of original cell types

[11,14,15,27,28,30,31,32], while others contradicted it

[10,29,33,34]. To investigate the existence of such intrinsic

differentiation properties of our iPSC clones, EBs were formed

using low passage DF90- and BM90-iPSCs (between passage 12–

20), and then transferred into a monolayer culture system. RNAs

were extracted from cells outgrowing from EBs. Each clone had its

own tendency to express markers for ectodermal, mesodermal,

and endodermal lineages, and there were no data to support BM-

iPSC clones’ tendency to differentiate into bone and cartilage

lineages (Figure 6A). Similar results were obtained when we

analyzed cells passaged once (Figure 6B). Experiments using

another pair gave similar results (Figure S7A). Based on these

results, we conclude that clonal differences, rather than original

cell types, affect the differentiation property of human iPSCs even

if they are of low-passage-number.

Induced Differentiation Properties of iPSCs Differ with
Clones, but not with Original Cell Types
Finally, differentiation properties after induction were com-

pared between DF- and BM-iPSC clones. Chondrogenic and

osteogenic differentiation was used since BMSCs are more

Figure 8. Induction of osteogenic differentiation in iPSCs. A) Time course of osteogenic differentiation. EB, embryoid body. OG, outgrowth. B-
E) Comparison of the relative expression of osteogenesis-related genes (RUNX2, COL1A1, OCN and OSX) by RT-qPCR. The value of DF-iPSC B13 was
set to 1 in each experiment.
doi:10.1371/journal.pone.0053771.g008
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potently differentiated into chondrocytes, osteoblasts, and adipo-

cytes than DFs (Figure S8).

Cells outgrowing from EBs were expanded, passaged once, and

then used for the 3D pellet culture system (Figures 7A, B). These

procedures enriched mesodermal and endodermal cells and

omitted neuronal cells (compare Figure 6A with 6B). After

fourteen days of induction, we observed extracellular matrix-rich

chondrocyte-like cells in the DF90 and BM-90 iPSC clones

analyzed (Figure 7C). GAG content was increased in all clones

at comparable but various levels (Figures 7D and S7B), and the

expression of SOX9, a master transcriptional regulator of

chondrogenesis, was induced in accordance with GAG content

(Figure 7E). We checked the expression of cartilage-specific genes,

Aggrecan (ACAN), COL2A1, NLRP3, and COMP, and found

that clone F2 in DF-iPSCs expressed these genes at higher levels

than other clones (Figures 7F–I).

For osteogenic induction, we used cells outgrowing from EBs,

plated them at a high density, and cultured them for fourteen days

in medium commonly used for the osteogenic induction of MSCs

(Figure 8A). The expression of osteogenic markers was induced

higher in DF-derived clone B14 than other clones (Figures 8B–E).

Statistical analyses revealed that, although we recognized

a tendency that DF-derived iPSCs are well differentiated into

osteogenic and chondrogenic lineages compared with BM-derived

iPSCs, there are no significant differences between iPSCs from

BMs and DFs (Figure S9). Taken together, these results indicate

that BM-iPSCs are not superior to DF-iPSCs in terms of

differentiation properties into the chondrogenic and osteogenic

lineage.

Discussion

We generated human iPSCs derived from BMSCs and DFs of

the same donor, and compared differentiation properties of

genetically matched iPSC clones with different origins. We

observed no marked differences between BM- and DF-iPSCs in

global gene expression profiles. BM- and DF-iPSCs also share

a general methylation profile but have a set of methylation features

related to cell-of-origin. Differentiation properties for chondro-

genic and osteogenic lineages by our induction methods, however,

showed no clear difference between BM- and DF-iPSCs. These

data in part contradict the prevailing theory that tissue origins

affect the differentiation potentials of iPSC both in mice [14,27]

and humans [11,15]. However, at least two groups reported that

regardless of their epigenetic memory, human iPSCs derived from

distinct origins could efficiently differentiate into an endoderm or

hepatic lineage [10]. Therefore, the relationship between tissue

memory and differentiation properties is still controversial. Our

results shown here indicate that the differentiation property of

iPSCs into at least two types of mesenchymal cells (chondrocyte

and osteoblast) differs with clones, but not the cell type of origin.

Different results may be obtained in different types of mesenchy-

mal cells or by different methods for differentiation.

We observed clonal differences regardless of cell type of origin,

consistent with several other reports [10,29,33,34]. It has been

reported that epigenetic and transcriptional properties of iPSC

clones affect their capacity to differentiate into several lineages.

Our transcriptome analyses showed no correlation between global

gene expression profiles and differentiation capacities (Figures 3

and 4). When we hypothesized representative iPSCs by averaging

the gene expression of iPSC clones of the same origin and donor,

hierarchical clustering separated iPSCs according to donors

(Figure S10), suggesting the existence of donors’ memory and

the importance of comparing iPSC clones derived from the same

donor. Recently, a bioinformatic scorecard was proposed to

predict the differentiation efficiency of individual human ESC

lines and iPSC clones [35,36]. Although they used iPSC clones

derived from varying characteristics including age, sex, and health

status, comparisons of scorecards drawn by genetically matched

iPSC clones may be a future challenge.

This is the first report that compares chondrogenic properties

between iPSC clones. Using our induction method, we found that

expression of chondrogenic markers varied with clones regardless

of cell type of origin (Figures 7E–I). We repeated this assay at least

two times and results showed a similar tendency (data not shown).

Although we detected expression of chondrogenic lineage markers

after induction, immunohistochemical analysis revealed that the

number of type II collagen-positive cells was very small (data not

shown). To compare the number of chondrocytes induced by

a different method, we generated teratomas, made serial sections,

and calculated the size of Alcian blue-positive chondrogenic areas

(Figure S11). Although preliminary analysis showed no preference

for chondrogenesis between DF- and BM-iPSC clones, it was

difficult to perform quantitative analyses because the chondro-

genic area varied with sections and induction efficiency was too

low (around 1% in sections, ranging from 0% to 1.6%; Figure

S11). Moreover, clone F2, which exhibited a relatively high

chondrogenic capacity through our 3D pellet culture method, had

minimum chondrogenic areas in teratomas. Differences in

chondrogenic efficiency depending on the methods may have

reflected some clonal characteristics (i.e. different responses to

exogenous factors), which we will address in the near future.

We used BMSCs as a source of cells to be reprogrammed

because our primary working hypothesis was that BMSCs,

including mesenchymal stem cells (MSCs), exhibit higher efficien-

cy of reprogramming and/or require fewer Yamanaka factors such

as neural stem cells (NSCs) [37]. Our results, however, showed less

efficiency of reprogramming in BMSCs (Figure S1). We also failed

to generate iPSCs from BMSCs by infecting 3 factors (without c-

MYC; data not shown). In contrast to our observations, one report

showed that mouse MSCs purified with FACS exerted a higher

reprogramming rate and produced high-quality iPSCs [38]. That

report also found that transgenes were completely silenced in iPSC

clones derived from MSCs. However, we observed no differences

in efficiency of transgene silencing between BM- and DF-iPSC

clones (Figure S12). Although continuous expression of transgenes

has already been overcome using episomal vectors or other

excisable gene delivery systems [39], it is still intriguing how

transgenes are efficiently silenced.

Supporting Information

Figure S1 Ratio of ALP-positive colonies and trans-
duction efficiency of retrovirus in DFs and BMSCs.
Upper panel shows the ratio of ALP-positive colonies per plated

DFs or BMs (16105 cells). Lower panel shows fluorescence

micrographs indicating transfection efficiency. Shown are per-

centages of cells expressing GFP.

(TIF)

Figure S2 Expression levels of transgenes and ESC-
marker genes of each DF91- and BM91-iPSC clone.
hESCs, KhES3, hiPSCs, 201B7.

(TIF)

Figure S3 Karyotypes of each iPSC clone.

(TIF)
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Figure S4 Teratomas derived from each iPSC clone.
Hematoxylin and eosin staining of teratomas derived from each

iPSC clone showed differentiation in three germ layers.

(TIF)

Figure S5 Global gene expression patterns compared
between each iPSC clone and hESCs. Global gene

expression patterns were compared between each iPSC clone

and hESCs (H9) with microarrays. The two green lines above and

below the diagonal green lines indicate the boundary of 2-fold

changes between the two samples.

(TIF)

Figure S6 Correlation coefficients between each cell
from donor 91 were calculated using gene sets differen-
tially expressed in DFs and BMSCs.
(TIF)

Figure S7 The propensity for differentiation in iPSC
clones derived from donor 91 differs regardless of
developmental origin. A) The propensity for EB-mediated

cell-autonomous differentiation in iPSC clones (donor 91) differs

regardless of the developmental origin. B) Induction of chondro-

genic differentiation in iPSCs (donor 91). GAG/DNA differed

with clones regardless of cell-of-origin.

(TIF)

Figure S8 Chondrogenic, osteogenic, and adipogenic
differentiation assays with the original BMSCs and DFs.
A) Macroscopic views and Alcian blue staining of a section of

a pellet (left panel) and expression of chondrogenesis-related genes

(SOX9 and COL2) by RT-PCR (right panel). B) Alizarin red

staining of osteogenic induction samples (left panel) and calcium

contents (right panel). C) Oil-Red-O staining (left panel) and the

amount of triglycerides (TG). We used DFs at passage 5–7 and

BMs at passage 1–2 for differentiation and confirmed that the DFs

used in this study could not differentiate into either chondrocytes,

osteoblasts, or adipocytes. Experiments were performed as

described previously [21].

(TIF)

Figure S9 Statistical analyses of differentiation poten-
tials between DF-derived and BM-derived iPSCs. A)

Chondrogenic markers. B) Osteogenic markers. Each dot

corresponds to each clone. P values are 0.36 (SOX9), 0.49

(ACAN), 0.49 (COL2A1), 0.37 (NLRP3), 0.23 (COMP), 0.052

(RUNX2), 0.11 (COL1A1), 0.24 (OCN), and 0.19 (OSX)

(Unpaired t tests). n.s., not significant.

(TIF)

Figure S10 Hierarchical clustering analysis of iPSCs.
BM90-iPSCs (average of BM90-iPSC a3, a12, a16, and b6),

DF90-iPSCs (average of DF90-iPSC B3 and F2), BM91-iPSCs

(average of BM91-iPSC a15, a18, b14, and b17), DF91-iPSCs

(average of DF91-iPSC A1, A5, A11, and A18), and hESCs (H9)

were subjected to clustering analysis using all gene sets.

(TIF)

Figure S11 Ratio of cartilage area in teratomas. The

cartilage area in teratomas was investigated. Five sections were

prepared. Total area and cartilage area detected by Alcian blue

staining were calculated using software in BIOREVO (Keyence,

Osaka, Japan).

(TIF)

Figure S12 Ratio of transgene-silenced clones. The ratio

of clones in which retroviral transgene expression was silenced was

less than 1/1000 compared to controls (the value of each transgene

6 days after infection of DF (DF 4F day 6) and 7 days after

infection of BM (BM 4F day 7)).

(TIF)

Table S1 Primer sequences.

(XLS)

Table S2 Genes differentially expressed in DFs and
BMSCs. A) Genes highly expressed in DFs compared with

BMSCs. B) Genes highly expressed in BMSCs compared with

DFs.

(XLS)
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