Title

Whey-hydrolyzed peptide-enriched immunomodulating diet prevents progression of liver cirrhosis in rats

Author(s)

Jobara, Kanta

Citation

Kyoto University (京都大学)

Issue Date

2014-07-23

URL

https://doi.org/10.14989/doctor.k18508

Right

学位規則第9条第2項により要約公開

Type

Thesis or Dissertation

Textversion

none
Whey-hydrolyzed peptide-enriched immunomodulating diet prevents progression of liver cirrhosis in rats

Kanta Jobara

Abstract

Objective: Liver fibrosis and subsequent cirrhosis is a major cause of death worldwide, but few effective anti-fibrotic therapies are reported. Whey-hydrolyzed peptide (WHP), a major peptide component of bovine milk, exerts anti-inflammatory effects in experimental models. A WHP-enriched diet is widely used for immunomodulating diets (IMD) in clinical fields. However, the impact of WHP on liver fibrosis remains unknown. Here, we investigated the anti-fibrotic effects of WHP in a rat cirrhosis model.

Methods: Progressive liver fibrosis was induced by repeated intraperitoneal administration of dimethylnitrosamine (DMN) for 3 wk. Rats were fed either a WHP-enriched IMD (WHP group) or a control enteral diet (Control group). The degree of liver fibrosis was compared between groups. Hepatocyte-protective effects were examined using hepatocytes isolated from rats fed a WHP diet. Reactive oxygen species (ROS) and glutathione (GSH) in liver tissue were investigated in the DMN cirrhosis model.

Results: Macroscopic and microscopic progression of liver fibrosis was remarkably suppressed in the WHP group. Elevated serum levels of liver enzymes and hyaluronic
acid, and liver tissue hydroxyproline content were significantly attenuated in the WHP group. Necrotic hepatocyte rates with DMN challenge, isolated from rats fed a WHP-enriched IMD, were significantly lower. In the DMN cirrhosis model, ROS were significantly lower, and GSH was significantly higher in whole liver tissue in the WHP group.

Conclusion: A WHP-enriched IMD effectively prevented progression of DMN-induced liver fibrosis in rats via a direct hepatocyte-protective effect and an antioxidant effect through GSH synthesis.

References

23. Kim DH, Yang KH, Johnson KW, Holsapple MP. Role of the transfer of metabolites from hepatocytes to splenocytes in the suppression of in vitro antibody

