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Abstract 

We examined the genetic background of nonalcoholic fatty liver disease (NAFLD) in the 

Japanese population, by performing a genome-wide association study (GWAS).  For GWAS, 

372 Japanese NAFLD subjects and 934 control individuals were analyzed.  For replication 

studies, 172 NAFLD and 1012 control subjects were monitored.  After quality control, 261,540 

single-nucleotide polymorphisms (SNPs) in autosomal chromosomes were analyzed by using a 

trend test.  Association analysis was also performed by using multiple logistic regression 

analysis using genotypes, age, gender and body mass index (BMI) as independent variables.  

Multiple linear regression analyses were performed to evaluate allelic effect of significant SNPs 

on biochemical traits and histological parameters adjusted by age, gender, and BMI.  

Rs738409 in the PNPLA3 gene was most strongly associated with NAFLD after adjustment (P 

= 6.8 × 10-14, odds ratio = 2.05).  Rs2896019, and rs381062 in the PNPLA3 gene, rs738491, 

rs3761472, and rs2143571 in the SAMM50 gene, rs6006473, rs5764455, and rs6006611 in the 

PARVB gene had also significant P-values (<2.0 × 10-10) and high odds ratios (1.84 to 2.02).  

These SNPs were found to be in the same linkage disequilibrium block and were associated 

with decreased serum triglycerides and increased aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT) in NAFLD patients.  These SNPs were associated with steatosis grade 

and NAFLD activity score (NAS).  Rs738409, rs2896019, rs738491, rs6006473, rs5764455, 
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and rs6006611 were associated with fibrosis.  Polymorphisms in the SAMM50 and PARVB 

genes in addition to those in the PNPLA3 gene were observed to be associated with the 

development and progression of NAFLD. 

 

Key words: genome-wide association study (GWAS), nonalcoholic fatty liver disease (NAFLD), 
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Introduction 

Nonalcoholic fatty liver disease (NAFLD) is now recognized as an important health concern (Angulo 

2002; Farrell 2003).  NAFLD has a broad spectrum of effects, including simple steatosis, nonalcoholic 

steatohepatitis (NASH), fibrosis/cirrhosis, and hepatocellular carcinoma.  Excess fat accumulation in the 

liver is observed in 20–30% of the population in American and European countries, where NASH is 

associated with approximately 1–3% of the population (Ludwig et al. 1980).  NAFLD is now considered 

to be a part of metabolic syndrome (Marchesini et al. 2001, Stefan N, et al. 2008).  Genetic as well as 

environmental factors are important in the development of NAFLD (Wilfred et al. 2008). 

Single-nucleotide polymorphisms (SNPs) are useful tools for identifying genetic factors and 

have been intensively investigated for various common diseases.  We previously reported that variations 

in peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A), angiotensin II type 1 

receptor (ATGR1), and nitric oxide synthase 2 (inducible) (NOS2) genes are associated with NAFLD in 

Japanese individuals (Yoneda et al 2008; Yoneda et al. 2009; Yoneda et al. 2009).   

 Genome-wide association studies (GWASs) have revealed that SNPs in the patatin-like 

phospholipase domain containing 3 (PNPLA3) and other genes influence NAFLD and liver enzyme levels 

in the plasma (Romeo et al. 2008; Chalasani et al. 2010; Speliotes et al. 2011; Kawaguchi et al. 2012).  

We previously reported that the risk allele (G-allele) of PNPLA3 rs738409 is strongly associated with 
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NAFLD as well as with increases in aspartate transaminase (AST), alanine transaminase (ALT), ferritin 

levels, and fibrosis stage in the patients with NAFLD in the Japanese population (Hotta et al. 2010). 

 To elucidate the detailed genetic background of NAFLD in the Japanese population, we 

performed genome-wide analysis for NAFLD. 

 

Materials and Methods 

Subjects 

For GWAS, 392 Japanese patients with NAFLD (NAFLD-1; 345 with NASH and 47 with simple 

steatosis) were enrolled.  Genome-wide scan data for 934 general Japanese control subjects (control-1) 

described in the JSNP database (IMS-JST: Institute of Medical Science-Japan Science and Technology 

Agency Japanese SNP database, http://snp.ims.u-tokyo.ac.jp/) were used for GWAS.  For the replication 

study, 172 patients with NAFLD (NAFLD-2, 97 with NASH, 4 with simple steatosis, and 71 with 

NAFLD) and 1012 control subjects (control-2) were analyzed.  Control-2 subjects included Japanese 

volunteers who had undergone medical examination for common disease screening.  All the NAFLD-1 

and 101 NAFLD-2 patients underwent liver biopsy.  Computed tomography (CT) or magnetic resonance 

imaging (MRI) was performed on 71 NAFLD-2 patients.  Patients with the following diseases were 

excluded from the study: viral hepatitis (hepatitis B and C, Epstein–Barr virus infection), autoimmune 

hepatitis, primary biliary cirrhosis, sclerosing cholangitis, hemochromatosis, α1-antitrypsin deficiency, 
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Wilson’s disease, drug-induced hepatitis, and alcoholic hepatitis (present or past daily consumption of 

more than 20 g alcohol per day).  None of the patients showed clinical evidence of hepatic 

decompensation such as hepatic encephalopathy, ascites, variceal bleeding, or a serum bilirubin level 

greater than 2-fold the normal upper limit. 

Liver biopsy tissues were stained with hematoxylin and -eosin, reticulin, and Masson’s 

trichrome stain.  Histological criterion for NAFLD diagnosis is macrovesicular fatty change in 

hepatocytes with displacement of the nucleus toward the cell edge (Sanyal 2002).  When more than 5% 

of hepatocytes are affected by macrovesicular steatosis, patients are diagnosed as having either steatosis 

or NASH.  The minimal criteria for the diagnosis of NASH includes the presence of >5% 

macrovesicular steatosis, inflammation, and liver cell ballooning, typically with predominantly 

centrilobular (acinar zone 3) distribution (Matteoni et al.1999; Teli et al. 1995).  Steatosis degree was 

graded as follows based on the percentage of hepatocytes containing macrovesicular fat droplets: grade 0, 

no steatosis; grade 1, <33% hepatocytes containing macrovesicular fat droplets; grade 2, 33–66% of 

hepatocytes containing macrovesicular fat droplets; and grade 3, >66% of hepatocytes containing 

macrovesicular fat droplets (Brunt 2001).  The activity of hepatitis (necroinflammatory grade) was also 

determined on the basis of the composite NAFLD activity score (NAS) as described by Kleiner et al. 

(2005).  NAS is the unweighted sum of the scores for steatosis, lobular inflammation, and hepatocellular 

ballooning, and ranges from 0 to 8.  Fibrosis severity was scored according to the method of Brunt 
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(2001) and was expressed on a 4-point scale, as follows: 0, none; 1, perivenular and/or perisinusoidal 

fibrosis in zone 3; 2, combined pericellular portal fibrosis; 3, septal/bridging fibrosis; 4, cirrhosis. 

Entire study was conducted in accordance with the guidelines of the Declaration of Helsinki.  

Written informed consent was obtained from each subject, and the protocol was approved by the ethics 

committee of Kyoto University, Yokohama City University, Hiroshima University, and Kurume 

University. 

Clinical and laboratory evaluation 

The weight and height of patients were measured using a calibrated scale after removing shoes and heavy 

clothing, if present.  Venous blood samples were obtained from subjects after overnight fasting (12 h) to 

measure plasma glucose, hemoglobin A1c (HbA1c), total cholesterol, high-density lipoprotein (HDL) 

cholesterol, triglycerides, serum AST, ALT, iron, ferritin, hyaluronic acid, and type IV collagen 7S.  All 

the laboratory biochemical parameters were measured using conventional methods. 

DNA preparation, genome-wide genotyping and quality control 

Genomic DNA was extracted using Genomix (Talent Srl, Trieste, Italy) for blood samples collected from 

each subject.  Genome scans were conducted for NAFLD-1 patients using the Human660W-Quad 

BeadChip (n = 104) or the HumanOmniExpress BeadChip (n = 288; Illumina, Inc., San Diego, CA, USA).  

Genome scan data from control-1(n = 934) were genotyped using the Illumina HumanHap550 BeadChip 

and 515,286 SNPs in the autosomal chromosome were available in the JSNP database.  A total of 
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295,887 common SNPs in the autosomal chromosomes were determined among 3 BeadChips.  

Individual call rates were all > 0.99 in the patients and the control group.  A total of 31,177 SNPs with 

minor allele frequency (<0.01), 901 SNPs with a lower success rate (<0.95), and 2,269 SNPs with 

distorted Hardy-Weinberg equilibrium (P < 0.001) were excluded; thus, 261,540 SNPs were subjected to 

case-control association analysis.  Using phase II and III HapMapJPT, HCB and CEU data 

(http://hapmap.ncbi.nlm.nih.gov/), we confirmed that NAFLD-1 subjects in this study were derived from 

the Japanese population by using multi-dimensional scaling (MDS) analysis (Supplementary Fig. 1).  

The number of alleles that shared identity-by-descent (PI_HAT) was calculated, and it was found that the 

PI_HAT value was less than 0.05 for the NAFLD-1 patients. 

 For the replication study, Invader probes (Third Wave Technologies, Madison, WI, USA) were 

constructed for 56 SNPs with P-values less than 5.0 × 10-5.  SNPs were genotyped for NAFLD-2 and 

control-2 using Invader assays as previously described (Ohnishi et al. 2001).  The success rates of the 

Invader assays were > 99.0%.  To validate GWAS, NAFLD-1 patients analyzed by GWAS were also 

genotyped using the Invader assay and SNPs with concordance rate of both genotyping more than 99% 

were used for further analysis.  Thirteen SNPs showed a lower concordance rate (<0.99) and were 

excluded from further analysis. 

Statistical analysis 
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A case-control association analysis was performed using the Cochran-Armitage trend test.  Combined 

P-values were obtained using Fisher’s combined probability test.  Hardy–Weinberg equilibrium was 

assessed using the χ2-test (Nielsen 1998).  PI_HAT and MDS analysis were performed using PLINK 

1.07 (http://pngu.mgh.harvard.edu/purcell/plink) (Purcell et al.2007).  A Manhattan plot of GWAS and 

linkage disequilibrium (LD) was drawn using HaploView (Barrett et al. 2005).  We categorized the 

genotypes as 0, 1, or 2 depending on the number of copies of risk alleles present.  Multiple linear 

regression analyses were performed to test the independent effect per allele of each SNP on biochemical 

traits and histological parameters, accounting for effects of the other variables (i.e., age, gender, and body 

mass index [BMI]).  BMI, fasting plasma glucose, triglycerides, ferritin, hyaluronic acid, and type IV 

collagen 7s values were logarithmically transformed before performing multiple linear regression analysis.  

Statistical analyses were performed using R software (http://www.r-project.org/).   

 

Results 

Genome-wide case-control association studies 

We performed GWAS using NAFLD-1 (n = 392) and control-1 (n = 934).  The characteristics of the 

study samples are presented in Table 1.  After quality controls of genotyping results, 261,540 SNPs in 

autosomal chromosomes were used for case-control association analysis.  To assess population 

stratification, we examined the quantile-quantile P-value plot (Fig. 1A).  A slight inflation in P-values 
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was observed according to the genomic control method (λGC = 1.09).  Because we used the JSNP 

Database as a control, we were unable to evaluate population stratification between NAFLD-1 and 

control-1 subjects.  Instead, we confirmed that all the NAFLD-1 subjects were collected from the 

Japanese population by using MDS analysis (Supplementary Fig. 1). 

 To identify SNPs susceptible to causing NAFLD, we compared NAFLD-1 and control-1 

subjects using the trend test.  A Manhattan plot showed that 1 peak located on chromosome 22q13 was 

significantly associated with NAFLD and that some SNPs were marginally associated with NAFLD (Fig. 

1 B, Supplementary Fig. 3).  To evaluate significant and marginally NAFLD-associated SNPs, we 

selected 56 SNPs with P-values less than 5.0 × 10-5.  We performed a replication study of NAFLD-2 (n 

= 172) and control-2 (n = 1012) subjects.  After the replication study, 12 SNPs remained with P-values 

less than 1.0 × 10-5, and 8 SNPs were significantly associated with NAFLD even when conservative 

Bonferroni’s correction was applied (P < 1.0 × 10-9, Table 2).  All the 8 SNPs were in the same LD 

block (Fig. 1 B, Supplementary Fig. 2) and located at chromosome 22q13, which was previously reported 

to be NAFLD-susceptible (Romeo et al. 2008; Speliotes et al. 2011; Kawaguchi et al. 2012; Hotta et al. 

2010).  NAFLD patients have higher BMI compared with the Japanese general population (Table 1); 

thus, we performed multiple logistic regression analysis using genotypes, age, gender, and BMI as 

independent variables, involving NAFLD-1, NAFLD-2 and control-2 subjects.  We also genotyped 

rs738409 since this SNP was most extensively examined.  After adjusting for age, gender, and BMI, 9 
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SNPs were strongly associated with NAFLD (P < 1.0 × 10-9, Supplementary Table 1).  SNP rs738409 

was most strongly associated with NAFLD before adjustment (P = 2.1 × 10-18); however, after adjustment, 

8 SNPs (rs2896019, rs3810622, rs738491, rs3761472, rs2143571, rs6006473, rs5764455, and rs6006611) 

had also smaller P-values (1.8 × 10-10 to 1.8 × 10-13) compared to rs738409 (P = 6.8 × 10-14).  Moreover, 

9 SNPs had high odds ratios (ORs; 1.84 to 2.05). 

When 8 SNPs was adjusted with rs738409 using NAFLD-1, NAFLD-2 and control-2 subjects, 

no SNPs showed significant association (Supplementary Table 2).  P-value of rs738409 was smaller 

than other SNPs, suggesting that rs738409 is most important for the development of NAFLD.  We also 

examined association between 3-SNP (rs738409, rs2896019, and rs3810622) haplotype in the PNPLA3, 

4-SNP (rs738491, rs3761472, rs2143571, and rs6006473) haplotype in the SAMM50, and 2 SNPs 

(rs5764455, and rs6006611) haplotype in the PARVB genes, and NAFLD, using NAFLD-1, NAFLD-2 

and control-2 subjects.  Haplotype GGA in the PNPLA3 (P = 1.3×10-13, OR = 2.19), ACAA in the 

SAMM50 (P = 1.3×10-11, OR = 1.99), and TG in the PARVB (P = 5.0×10-12, OR = 2.06) genes were 

strongly associated with NAFLD (Supplementary Table 3).  Haplotype analysis suggested that PNPLA3 

gene is most important for the pathogenesis for NAFLD. 

Analysis of various quantitative and histological phenotypes 

Next, we investigated metabolic traits and NAFLD-susceptible SNPs since NAFLD is considered to be a 

part of metabolic syndrome (Marchesini et al. 2001; Stefan et al. 2008).  Nine SNPs were associated 
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with decreased serum triglycerides in NAFLD patients, but not in the control group (Table 3).  Allelic 

effects on decreased triglycerides levels in NAFLD patients were similar among the 9 SNPs.  These 

SNPs were associated with increased AST and ALT both in NAFLD and control subjects.  Allelic 

effects of SNPs in the PNPLA3 gene on increased AST levels in NAFLD patients were higher than those 

of other SNPs.  Other metabolic traits were not associated with the 9 SNPs. 

 The 9 SNPs were associated with lobular inflammation, ballooning, and NAS (Table 4).  

Rs3810622 was not associated with lobular inflammation.  Six SNPs (rs738409, rs2896019, rs738491, 

rs6006473, rs5764455, and rs6006611) were associated with fibrosis.  Allelic effects on NAS and 

fibrosis of SNPs in the PNPLA3 and PARVB gene were stronger than those in the SAMM50 genes, 

although the associations were not significant according to multiple testing.  Nine SNPs in the 

chromosome 22q13 region were associated with increased serum ferritin (except rs5764455).  Five 

SNPs in the SAMMM50 and PARVB genes (rs738491, rs3761472, rs2143571, rs6006473, and 5764455) 

were associated with hyaluronic acid, which were high in NASH.  No SNPs were associated with type 

IV collagen 7s.  Nine SNPs showed different association levels with serum metabolic traits and 

histological severity suggesting that 3 genes (PNPLA3, SAMM50, and PARVB) may be involved in both 

the development and progression of NAFLD (Supplementary Fig. 4). 

We have also performed the association tests of 9 SNPs in patients with NASH and simple 

steatosis diagnosed by liver biopsy.  Although the number of simple steatosis was small, 9 SNPs were 
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associated with NASH (OR = 1.76 – 2.79, Supplementary Table 4).  Rs5764455 in the PARVB gene was 

most strongly associated with NASH (P = 3.4×10-6, OR = 2.79).  Hapletype analysis revealed that most 

strongly association with steatosis was haplotype GGA in the PNPLA3 (P = 5.0×10-4) and that haplotype 

TG in the PARVB gene was most strongly associated with NAS (P = 9.6×10-7) and fibrosis (P = 4.4×10-4, 

Supplementary Table 5). 

 

Discussion 

To elucidate the genetic background of NAFLD, we identified the candidate genes (Yoneda et al. 2008; 

Yoneda et al. 2009; Yoneda et al. 2009; Hotta et al. 2010).  We performed GWAS and found that the 

PNPLA3-SAMM50-PARVB genetic region was significantly associated with NAFLD in the Japanese 

population.  According to our previous study (Hotta et al. 2010), rs738409 in the PNPLA3 gene was 

most strongly associated with NAFLD.  NAFLD patients are overweight to obese, and many have 

metabolic syndrome (Marchesini et al. 2001; Stefan et al. 2008).  Even after adjusting for age, gender, 

and BMI, 3 SNPs (rs738409, rs2896019, and rs3810622) in the PNPLA3, 4 SNPs (rs738491, rs3761472, 

rs2143571, and rs6006473) in the SAMM50, and 2 SNPs (rs5764455 and rs6006611) in the PARVB genes 

showed significant P-values.  Our previous study indicated that the P-value for the association between 

rs738409 and NAFLD increased after adjusting for age, gender, and BMI (Hotta et al. 2010).  A recently 

reported GWAS showed the strongest association of rs738409 in the PNPLA3 gene with NAFLD in the 
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Japanese population; however, the study did not adjust for age, gender, or BMI (Kawaguchi et al. 2012).  

Although numerous reports and a meta-analysis have indicated that rs738409 is associated with NAFLD 

(Sookoian et al. 2011) and that the PNPLA3 gene is thought to be responsible for the NAFLD, we 

demonstrated that SAMM50, and PARVB, and PNPLA3 are probably involved in NAFLD development. 

 NAFLD-susceptible SNPs were also associated with histological severity; however, the effects 

differed among the 9 SNPs.  Steatosis grade was equally affected by the 9 SNPs.  Association with 

histological activity (NAS) and severity (fibrosis stage) of NAFLD were stronger with SNPs in the 

PNPLA3 and PARVB genes.  Among biomarkers, AST and ALT, which are commonly used to evaluate 

liver function, were highly associated with the 2 SNPs in the PNPLA3 gene, in NAFLD and in the control 

subjects.  Ferritin and hyaluronic acid, the level of which increase in NASH, were associated with SNPs 

in the SAMM50 gene.  SNP in the PARVB gene also showed strong association with NASH compared 

with simple steatosis.  Haplotype analysis indicated that PNPLA3 gene would be most important for the 

development for NAFLD and that PARVB gene would be most important for the progression of NAFLD.  

Our data suggested that SNPs in PNPLA3, SAMM50 and PARVB contribute to the increased NAFLD 

activity, resulting in the progression from simple steatosis to NASH.  It has been suggested that NASH 

is induced in 2 consecutive steps (the so-called 2-hit hypothesis): (i) excess fat accumulation in the liver 

and (ii) subsequent necroinflammation in the liver (Day and James 1998).  Our results indicate that 

SNPs in PNPLA3 may be involved in the first hit and that SNPs in PNPLA3, SAMM50 and PARVB may 
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be involved in the second hit.  The associations were not significant for multiple tests; therefore, further 

analysis is necessary. 

 We previously reported that rs738409 is associated with decreased serum triglycerides in 

NAFLD patients (Hotta et al. 2010).  In this study, we observed that SNPs, particularly in the SAMM50 

gene, were associated with deceased levels of serum triglycerides.  The association between SNPs in the 

PNPLA3 gene and decreased triglycerides levels in NAFLD is controversial (Kollerits et al. 2009; 

Speliotes et al. 2010; Speliotes et al. 2011).  Recent reports indicate that rs738409 are associated with 

decreased serum triglycerides in type 2 diabetes (Palmer 2012; Krarup et al. 2012).  The controversy 

may be due in part to the observation that SNPs in the SAMM50 gene showed a stronger effect on 

triglyceride levels than the SNP in the PNPLA3 gene.  Further investigation is necessary to elucidate the 

association between SNPs in PNPLA3 and SAMM50 genes and serum triglycerides levels. 

 PNPLA3 rs738409 has been extensively investigated, and a strong association with NAFLD 

has been confirmed (Day and James 1998).  The PNPLA3 gene is thought to be involved in abnormal 

lipid metabolism in the liver of NAFLD patients.  PNPLA3-deficient mice and transgenic mice did not 

show a fatty liver (Chen et al.2010; Basantani et al. 2011; Li et al. 2012).  Overexpression of 

PNPLA3I148M in mouse liver developed to fatty liver, but not into NASH (Li et al. 2012).  Thus, 

PNPLA3 plays an important in the development, but not in the progression of NAFLD.  Our study 

suggests that the SAMM50 and PARVB genes may also be involved in the progression 
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(necroinflammation and fibrosis) of NAFLD.  Sam50, encoded by the SAMM50 gene, is a member of 

the sorting and assembly machinery for β-barrel proteins in the mitochondrial outer membrane.  Sam50 

was reported to be involved in the structural integrity of mitochondrial cristae, assembly of respiratory 

complexes, and maintenance of mitochondrial DNA.  Long-term depletion of Sam50 influences the 

amounts of proteins in all the large respiratory complexes in the mitochondria (Ott et al. 2012).  

Mitochondrial abnormalities (loss of mitochondrial cristae and paracrystalline inclusions) have been 

described for liver biopsy specimens of patients with NASH (Sanyal et al. 2001; Caldwell et al. 1999).  

These reports and our results suggest that the SAMM50 gene may be involved in mitochondrial 

dysfunction and subsequent decreased removal of reactive oxygen species (ROS), leading to progression 

of NAFLD.  The PARVB gene encodes parvin-β, which forms integrin-linked kinase-pinch-parvin 

complex, transmits signals from integrin to Akt/protein kinase B (PKB) (Kimura et al. 2010).  Integrins 

are a large family of heterodimeric cell surface receptors that act as mechanoreceptors by relaying 

information between cells and from the extracellular matrix (ECM) to the cell interior.  Since integrin 

receptors directly bind to ECM components to control remodeling, they are thought to play a crucial role 

in the evolution and progression of liver fibrosis (Desgrosellier et al. 2010; Patsenker et al. 2011).  Loss 

of parvin-β contributes to increased integrin-linked kinase activity and cell-matrix adhesion.  

Overexpression of parvin-β increases mRNA expression, serine 82 phosphorylation, and activity of 

peroxisome proliferator-activated receptor γ (PPARγ), leading to a concomitant increase in lipogenic gene 
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expression (Johnstone et al. 2008).  Our data and previous reports suggest that the PARVB gene is 

involved in lipid accumulation and/or fibrosis in the liver, resulting in NAFLD. 

 In summary, we demonstrated that polymorphisms in the SAMM50 and PARVB genes, as well 

as those in thePNPLA3 gene, were associated with NAFLD development and progression.  SNPs in the 

PNPLA3 gene may be involved in the first hit and the SAMM50 and PARVB genes (and PNPLA3 gene) in 

the second hit, although further studies are necessary to confirm our results. 
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Figure legend 

Fig. 1  Quantile-quantile plot for genome-wide association (A) and regional plots of genome-wide 

significant loci (B). 
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A. The -log10(P-value) of observed association statistics is shown in y-axis, compared with 

-log10(P-value)of the association statistics expected under the null hypothesis of no association in x-axis.  

B. SNPs are plotted by their position on the chromosome against their association with NAFLD using 

GWAS data.  The SNPs surrounding the top SNP (rs2896019) are colored to reflect their LD with the 

top SNP (using pairwise r2 values from GWAS data of NAFLD-1 and control-1).  The positions of genes 

as well as the direction of transcription are shown above the plots. 
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Table 1  Clinical characteristic of the subjects 

 GWAS Replication 

 NAFLD-1 
(n=392) 

Control-1 
(n=934) 

NAFLD-2 
(n=172) 

Control-2 
(n=1012) 

No. of NASH 345 - 97 - 
Men/Women 199/193 - 95/77 500/512 
Age (year) 49.9 ± 14.8 - 53.5 ± 13.8 53.1 ± 15.3 
BMI (kg/m2) 28.0 ± 5.0 - 27.4 ± 4.6 22.7 ± 3.2 
FPG (mg/dL) 118.8 ± 37.3 - 114.8 ± 36.8 98.2 ± 19.0 
Hb.A1c (%) 6.4 ± 1.3 - 6.3 ± 1.1 5.5 ± 0.7 
T.Chol. (mg/dL) 213.7 ± 41.4 - 205.0 ± 39.6 208.5 ± 36.2 
Triglycerides (mg/dL) 172.2 ± 120.6 - 153.3 ± 74.4 110.0 ± 88.5 
HDL-C (mg/dL) 52.9 ± 15.7 - 53.8 ± 12.7 62.7 ± 15.5 
SBP (mmHg) 127.5 ± 15.0 - 129.6 ± 14.0 124.5 ± 19.1 
DBP (mmHg) 78.0 ± 11.7 - 81.1 ± 9.4 76.3 ± 11.6 
AST (IU/L) 51.3 ± 31.5 - 47.9 ± 25.4 23.0 ± 10.2 
ALT (IU/L) 84.3 ± 60.2 - 75.4 ± 53.6 20.3 ± 11.8 
Ferritin (ng/ml) 237.1 ± 225.0 - 229.1 ± 227.3 - 
Hyaluronic acid (ng/dL) 44.5 ± 70.2 - 74.8 ± 208.2 - 
Type IV collagen 7s (ng/dL) 4.4 ± 1.3 - 6.2 ± 12.8 - 
Steatosis grade (1-3) 1.6 ± 0.7 - 1.5 ± 0.8* - 
Lobular inflammation (0-3) 1.2 ± 0.8 - 1.5 ± 0.6* - 
Hepatocyte ballooning (0-2) 1.1 ± 0.7 - 1.2 ± 0.5* - 
NAS (0-8) 4.0 ± 1.7 - 4.2 ± 1.3* - 
Fibrosis stage (0-4) 1.6 ± 1.0 - 2.0 ± 1.0* - 

*, n = 101, AST, aspartate transaminase; ALT, alanine transaminase; DBP, diastolic blood 
pressure; FPG, fasting plasma glucose; HDL-C, high density lipoprotein cholesterol; SBP, 
systolic blood pressure; SNP, single-nucleotide polymorphism; T. Chol., total cholesterol. 

 

26 



Table 2  List of the SNPs showing combined P < 1.0 × 10-5 

dbSNP ID Chr 
BP 

(Build36.3) 

Nearby 

genes 

Allele 

1/2 

GWAS Replication 

Combined 

P-value 

Genotype 

(risk allele frequency) P-value 
OR 

(95%CI) 

Genotype 

(risk allele frequency) P-value 
OR 

(95%CI) 
NAFLD-1 Control-1 NAFLD-2 Control-2 

rs6691847 1 30,038,239 PTPRU T/C* 11/106/275 

(0.84) 

48/355/531 

(0.76) 

7.2×10-6 1.63 

(1.31 - 2.03) 

8/46/116 

(0.82) 

47/366/599 

(0.77) 

0.063 1.32 

(0.98 - 1.77) 

7.3×10-6 

rs7552722 1 115,722,878 NGF A*/G 70/180/142 

(0.41) 

100/390/444 

(0.32) 

7.9×10-6 1.49 

(1.26 - 1.78) 

22/84/66 

(0.37) 

124/394/490 

(0.32) 

0.059 1.27 

(1.00 - 1.61) 

7.2×10-6 

rs2051090 13 35,352,193 DCLK1 A/G* 4/108/280 

(0.85) 

51/328/555 

(0.77) 

1.6×10-6 1.72 

(1.38 - 2.16) 

2/52/118 

(0.84) 

40/299/669 

(0.81) 

0.27 1.19 

(0.88 - 1.62) 

7.1×10-6 

rs2896019 22 42,665,027 PNPLA3 T/G* 75/155/162 

(0.61) 

290/453/191 

(0.45) 

1.3×10-13 1.94 

(1.64 - 2.30) 

23/83/66 

(0.63) 

300/509/202 

(0.45) 

2.5×10-9 2.02 

(1.60 - 2.56) 

1.6×10-20 

rs3810622 22 42,669,467 PNPLA3 A*/G 208/141/43 

(0.71) 

291/470/172 

(0.56) 

3.9×10-12 1.90 

(1.59 - 2.27) 

92/63/17 

(0.72) 

314/517/180 

(0.57) 

1.0×10-7 1.95 

(1.52 - 2.51) 

1.7×10-17 

rs738491 22 42,685,444 SAMM50  A*/G 162/170/60 

(0.63) 

266/448/220 

(0.52) 

1.2×10-6 1.54 

(1.30 - 1.83) 

66/87/19 

(0.64) 

247/506/258 

(0.49) 

1.0×10-6 1.79 

(1.41 - 2.27) 

3.9×10-11 

rs2073082 22 42,691,340 SAMM50  A/G* 28/142/221 

(0.75) 

102/419/413 

(0.67) 

5.0×10-5 1.48 

(1.22 - 1.78) 

11/66/95 

(0.74) 

140/457/412 

(0.63) 

1.0×10-4 1.67 

(1.29 - 2.17) 

1.0×10-7 

rs3761472 22 42,699,455 SAMM50 T/C* 80/186/126 

(0.56) 

326/430/178 

(0.42) 

3.0×10-10 1.74 

(1.47 - 2.06) 

33/86/53 

(0.56) 

328/515/168 

(0.42) 

1.5×10-6 1.74 

(1.38 - 2.19) 

1.5×10-14 

rs2143571 22 42,723,019 SAMM50 A*/G 124/185/81 

(0.56) 

184/427/323 

(0.43) 

3.9×10-9 1.68 

(1.42 - 1.99) 

53/86/33 

(0.56) 

171/518/323 

(0.42) 

2.9×10-6 1.71 

(1.36 - 2.15) 

3.5×10-13 

rs6006473 22 42,724,408 SAMM50,  

PARVB 

A*/G 163/170/59 

(0.63) 

274/446/214 

(0.53) 

3.6×10-6 1.96 

(1.65 - 2.32) 

67/86/19 

(0.64) 

257/506/248 

(0.50) 

3.4×10-6 1.74 

(1.38 - 2.21) 

3.2×10-10 

rs5764455 22 42,729,857 PARVB T*/C 115/180/97 

(0.52) 

164/422/348 

(0.40) 

3.0×10-8 1.63 

(1.38 - 1.93) 

47/90/35 

(0.53) 

155/495/362 

(0.40) 

1.5×10-6 1.74 

(1.38 - 2.19) 

1.6×10-12 

rs6006611 22 42,732,031 PARVB A/G* 51/167/174 

(0.66) 

187/471/276 

(0.55) 

2.4×10-7 1.58 

(1.33 - 1.88) 

17/72/83 

(0.69) 

213/502/296 

(0.54) 

2.3×10-7 1.90 

(1.49 - 2.43) 

1.8×10-12 
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*, risk allele.  P-values were calculated by Cochran-Armitage trend test.  Odds ratios (ORs) were calculated for risk allele with 95% confidence interval (CI).  Combined P-values were 

obtained using Fisher's combined probability test. 
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Table 3  Association between significant SNPs and metabolic traits 

SNP ID Subjects 
FPG (mg/dL) T. Chol. (mg/dL) Triglycerides (mg/dL) HDL-C (mg/dL) 

β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value 

rs738409 Control-2  0.002 (0.003) 0.38 -0.269 (1.579) 0.86  0.007 (0.010) 0.47  0.518 (0.630) 0.41 

 NAFLD-1,2  0.001 (0.006) 0.84 -2.732 (2.458) 0.27 -0.049 (0.013) 1.3×10-4  0.463 (0.863) 0.59 

rs2896019 Control-2  0.003 (0.003) 0.36 -0.862 (1.575) 0.58  0.011 (0.010) 0.26  0.390 (0.629) 0.54 

 NAFLD-1,2  0.002 (0.006) 0.78 -2.750 (2.438) 0.26 -0.044 (0.013) 5.0×10-4  0.448 (0.855) 0.60 

rs3810622 Control-2  0.000 (0.003) 0.91 -0.260 (1.597) 0.87  0.011 (0.010) 0.25  0.396 (0.638) 0.53 

 NAFLD-1,2 -0.003 (0.007) 0.69 -0.723 (2.621) 0.78 -0.047 (0.014) 5.1×10-4  0.667 (0.915) 0.47 

rs738491 Control-2  0.004 (0.003) 0.19 0 .084 (1.555) 0.96  0.010 (0.009) 0.28  0.779 (0.620) 0.21 

 NAFLD-1,2  0.005 (0.006) 0.40 -4.251 (2.558) 0.097 -0.041 (0.013) 0.0024 -0.023 (0.895) 0.98 

rs3761472 Control-2  0.002 (0.003) 0.44 -0.277 (1.607) 0.86  0.008 (0.010) 0.39  0.618 (0.642) 0.34 

 NAFLD-1,2  0.003 (0.006) 0.66 -3.636 (2.491) 0.15 -0.051 (0.013) 9.1×10-5  0.394 (0.874) 0.65 

rs2143571 Control-2  0.004 (0.003) 0.19 -0.017 (1.608) 0.99  0.010 (0.010) 0.30  0.548 (0.642) 0.39 

 NAFLD-1,2  0.002 (0.006) 0.71 -3.789 (2.494) 0.13 -0.052 (0.013) 6.3×10-5  0.325 (0.876) 0.71 

rs6006473 Control-2  0.005 (0.003) 0.055  0.191 (1.554) 0.90  0.012 (0.009) 0.21  0.515 (0.620) 0.41 

 NAFLD-1,2  0.005 (0.006) 0.42 -4.341 (2.559) 0.090 -0.042 (0.013) 0.0016 -0.123 (0.896) 0.89 

rs5764455 Control-2  0.005 (0.003) 0.077  0.017 (1.610) 0.99  0.013 (0.010) 0.18  1.004 (0.642) 0.12 

 NAFLD-1,2  0.002 (0.006) 0.74 -1.593 (2.453) 0.52 -0.042 (0.013) 0.0011 -0.097 (0.859) 0.91 

rs6006611 Control-2  0.002 (0.003) 0.41  0.060 (1.561) 0.97  0.012 (0.009) 0.21  0.934 (0.623) 0.13 

 NAFLD-1,2  0.000 (0.007) 0.97 -1.181 (2.608) 0.65 -0.039 (0.014) 0.0045 -0.627 (0.906) 0.49 

SNP ID Subjects 
SBP (mmHg) DBP (mmHg) AST (IU/L) ALT (IU/L) 

β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value 

rs738409 Control-2  0.271 (0.726) 0.71 -0.571 (0.462) 0.22 0.026 (0.007) 2.4×10-4 0.032 (0.009) 4.4×10-4 

 NAFLD-1,2  0.383 (1.135) 0.74 -0.101 (0.904) 0.91 0.063 (0.013) 1.2×10-6 0.073 (0.015) 1.1×10-6 

rs2896019 Control-2  0.422 (0.724) 0.56 -0.337 (0.462) 0.47 0.025 (0.007) 3.5×10-4 0.032 (0.009) 4.3×10-4 

 NAFLD-1,2  0.275 (1.121) 0.81  0.016 (0.893) 0.99 0.063 (0.013) 1.2×10-6 0.071 (0.015) 1.9×10-6 

rs3810622 Control-2 -0.134 (0.734) 0.85 -0.534 (0.468) 0.25 0.016 (0.007) 0.022 0.020 (0.009) 0.033 

 NAFLD-1,2  0.719 (1.240) 0.56  0.991 (0.987) 0.32 0.053 (0.014) 1.3×10-4 0.050 (0.016) 0.0018 

rs738491 Control-2  0.441 (0.714) 0.54 -0.333 (0.455) 0.47 0.021 (0.007) 0.0024 0.027 (0.009) 0.0027 

 NAFLD-1,2 -0.006 (1.172) 1.00 -0.111 (0.933) 0.91 0.049 (0.014) 2.9×10-4 0.052 (0.016) 9.5×10-4 

rs3761472 Control-2  0.278 (0.739) 0.71 -0.430 (0.471) 0.36 0.022 (0.007) 0.0018 0.030 (0.009) 0.0011 

 NAFLD-1,2 -0.223 (1.144) 0.85 -0.079 (0.911) 0.93 0.047 (0.013) 4.2×10-4 0.054 (0.015) 4.2×10-4 

rs2143571 Control-2  0.258 (0.739) 0.73 -0.499 (0.471) 0.29 0.022 (0.007) 0.0022 0.030 (0.009) 0.0013 

 NAFLD-1,2 -0.095 (1.137) 0.93 -0.133 (0.905) 0.88 0.047 (0.013) 3.6×10-4 0.054 (0.015) 4.4×10-4 

rs6006473 Control-2  0.292 (0.714) 0.68 -0.391 (0.455) 0.39 0.020 (0.007) 0.0041 0.028 (0.009) 0.0024 

 NAFLD-1,2  0.156 (1.167) 0.89 -0.195 (0.930) 0.83 0.049 (0.014) 3.5×10-4 0.053 (0.016) 6.9×10-4 
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rs5764455 Control-2  0.213 (0.740) 0.77 -0.500 (0.471) 0.29 0.015 (0.007) 0.034 0.025 (0.009) 0.0070 

 NAFLD-1,2 -0.414 (1.122) 0.71  0.059 (0.894) 0.95 0.046 (0.013) 4.0×10-4 0.050 (0.015) 9.7×10-4 

rs6006611 Control-2  0.151 (0.718) 0.83 -0.492 (0.457) 0.28 0.018 (0.007) 0.012 0.026 (0.009) 0.0046 

 NAFLD-1,2  0.102 (1.217) 0.93  0.701 (0.969) 0.47 0.043 (0.014) 0.0018 0.050 (0.016) 0.0019 

Data were derived from linear regression analysis.  NAFLD-1, NAFLD-2 and control-2 were used for analysis.  Values of FPG, triglycerides, AST, 
and ALT were logarithmically transformed.  Each metabolic phenotype was adjusted for age, gender, and logarithmically transformed BMI.  AST, 
aspartate transaminase; ALT, alanine transaminase; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL-C, high density lipoprotein 
cholesterol; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism; T. Chol., total cholesterol. 
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Table 4  Association between SNPs and histological traits and serum biomarker in NAFLD-1 and NAFLD-2 subjects 

SNP ID 
Steatosis grade* Lobular inflammation* Haptocyte ballooning* NAS* 

β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value 

rs738409 0.136 (0.043) 0.0016 0.155 (0.044) 5.4×10-4 0.137 (0.043) 0.0014 0.44 (0.097) 7.3×10-6 

rs2896019 0.141 (0.042) 9.7×10-4 0.148 (0.044) 8.1×10-4 0.137 (0.042) 0.0013 0.438 (0.096) 6.5×10-6 

rs3810622 0.147 (0.046) 0.0014 0.086 (0.048) 0.072 0.141 (0.046) 0.0023 0.395 (0.105) 1.9×10-4 

rs738491 0.116 (0.045) 0.0095 0.126 (0.046) 0.0069 0.131 (0.045) 0.0035 0.393 (0.102) 1.3×10-4 

rs3761472 0.131 (0.044) 0.0028 0.109 (0.045) 0.017 0.123 (0.044) 0.0052 0.387 (0.100) 1.2×10-4 

rs2143571 0.127 (0.044) 0.0039 0.106 (0.046) 0.021 0.120 (0.044) 0.0068 0.377 (0.100) 1.9×10-4 

rs6006473 0.103 (0.045) 0.022 0.118 (0.046) 0.011 0.134 (0.045) 0.0028 0.375 (0.102) 2.7×10-4 

rs5764455 0.113 (0.043) 0.0091 0.155 (0.044) 5.2×10-4 0.136 (0.043) 0.0016 0.426 (0.098) 1.6×10-5 

rs6006611 0.122 (0.045) 0.0074 0.152 (0.047) 0.0012 0.189 (0.045) 2.7×10-5 0.475 (0.102) 4.1×10-6 

SNP ID 
Fibrosis* Ferritin (ng/ml) Hyaluronic acid (ng/dL) Type IV collagen 7s (ng/dL) 

β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value β (s.e.) P-value 

rs738409 0.18 (0.062) 0.0036 0.076 (0.025) 0.0028 0.042 (0.023) 0.061 0.003 (0.01) 0.77 

rs2896019 0.183 (0.061) 0.0029 0.072 (0.025) 0.0044 0.042 (0.022) 0.062 0.004 (0.01) 0.66 

rs3810622 0.110 (0.066) 0.097 0.083 (0.027) 0.0023 0.045 (0.024) 0.064 0.010 (0.011) 0.36 

rs738491 0.149 (0.064) 0.021 0.066 (0.026) 0.013 0.079 (0.023) 7.8×10-4 0.006 (0.011) 0.60 

rs3761472 0.091 (0.063) 0.15 0.087 (0.026) 8.7×10-4 0.069 (0.023) 0.0028 0.009 (0.010) 0.37 

rs2143571 0.101 (0.063) 0.11 0.089 (0.026) 6.5×10-4 0.066 (0.023) 0.0039 0.009 (0.011) 0.37 

rs6006473 0.157 (0.064) 0.015 0.071 (0.026) 0.0076 0.072 (0.023) 0.0022 0.005 (0.011) 0.65 

rs5764455 0.222 (0.061) 3.3×10-4 0.046 (0.025) 0.068 0.059 (0.022) 0.0083 0.001 (0.010) 0.95 

rs6006611 0.195 (0.065) 0.0027 0.057 (0.027) 0.033 0.041 (0.024) 0.089 0.004 (0.011) 0.73 

Data were derived from linear regression analysis.  NAFLD-1, NAFLD-2 and control-2 were used for analysis.  Values of ferritin, 

hyaluronic acid, and type IV collagen 7s were logarithmically transformed.  Each phenotype was adjusted for age, gender, and 

logarithmically transformed BMI.  *, Histological diagnosed patients from NAFLD-1 (n=392) and NAFLD-2 (n = 101) subjects were 

used for analysis. 

 

31 



Fig. 1 

A 

 

 

32 



B 

 

 

33 



Supplementary Table 1  Association between SNPs and NAFLD before and after adjustment 

dbSNP ID Chr 
Nearby 

genes 

Allele 

1/2 

Genotype 

(risk allele frequency) 
Unadjusted 

P-value 

Adjusted 

P-value† 

Adjusted OR 

(95%CI)† 
NAFLD Control 

rs6691847 1 PTPRU T/C* 19/152/391 

(0.83) 

47/366/599 

(0.77) 

1.0×10-4 0.0041 1.39 

(1.11 - 1.75) 

rs7552722 1 NGF A*/G 92/264/208 

(0.40) 

124/394/490 

(0.32) 

1.8×10-5 4.1×10-4 1.39 

(1.16 - 1.66) 

rs2051090 13 DCLK1 A/G* 6/160/398 

(0.85) 

40/299/669 

(0.81) 

0.012 0.13 1.20 

(0.94 - 1.54) 

rs738409 22 PNPLA3 C/G* 96/241/227 

(0.62) 

300/513/199 

(0.45) 

2.1×10-18 6.8×10-14 2.05 

(1.70 - 2.47) 

rs2896019 22 PNPLA3 T/G* 98/238/228 

(0.62) 

300/509/202 

(0.45) 

8.3×10-18 1.8×10-13 2.02 

(1.67 - 2.43) 

rs3810622 22 PNPLA3 A*/G 300/204/60 

(0.71) 

314/517/180 

(0.57) 

1.3×10-15 1.7×10-11 1.95 

(1.60 - 2.36) 

rs738491 22 SAMM50  A*/G 228/257/79 

(0.63) 

247/506/258 

(0.49) 

2.1×10-13 2.3×10-11 1.90 

(1.57 - 2.29) 

rs2073082 22 SAMM50  A/G* 39/208/316 

(0.75) 

140/457/412 

(0.63) 

3.6×10-10 1.5×10-8 1.78 

(1.46 - 2.17) 

rs3761472 22 SAMM50 T/C* 113/272/179 

(0.56) 

328/515/168 

(0.42) 

1.1×10-13 2.3×10-11 1.91 

(1.58 - 2.31) 

rs2143571 22 SAMM50 A*/G 177/271/114 

(0.56) 

171/518/323 

(0.42) 

1.4×10-12 1.8×10-10 1.85 

(1.53 - 2.24) 

rs6006473 22 SAMM50 

PARVB 

A*/G 230/256/78 

(0.63) 

257/506/248 

(0.50) 

3.1×10-12 1.2×10-10 1.85 

(1.53 - 2.23) 

rs5764455 22 PARVB T*/C 162/270/132 

(0.53) 

155/495/362 

(0.40) 

4.4×10-12 1.4×10-10 1.84 

(1.53 - 2.21) 

rs6006611 22 PARVB A/G* 68/239/257 

(0.67) 

213/502/296 

(0.54) 

9.7×10-12 4.2×10-11 1.89 

(1.56 - 2.28) 
*, risk allele.  †, P-value and odds ratios (ORs) adjusted for age, gender, and logarithmically transformed BMI were calculated 
using multiple logistic regression analysis.  NAFLD-1, NAFLD-2, and control-2 subjects were used for analysis. 
 



Supplementary Table 2  Association between SNPs and NAFLD adjusted with rs738409 

  Explanatory variable 

dbSNP ID Nearby genes 
rs738409 Each dbSNP 

P-value OR (95%CI) P-value OR (95%CI) 

rs2896019 PNPLA3 0.13 1.75 (0.85 - 3.61) 0.66 1.18 (0.57 - 2.42) 

rs3810622 PNPLA3 1.9×10-4 1.71 (1.29 - 2.26) 0.090 1.29 (0.96 - 1.72) 

rs738491 SAMM50  2.2×10-4 1.77 (1.31 - 2.40) 0.23 1.21 (0.89 - 1.63) 

rs3761472 SAMM50 3.1×10-4 1.89 (1.34 - 2.68) 0.60 1.10 (0.77 - 1.56) 

rs2143571 SAMM50 4.0×10-5 2.00 (1.44 - 2.79) 0.87 1.03 (0.74 - 1.44) 

rs6006473 SAMM50, PARVB 5.5×10-5 1.84 (1.37 - 2.47) 0.36 1.15 (0.85 - 1.55) 

rs5764455 PARVB 1.8×10-5 1.79 (1.37 - 2.34) 0.17 1.21 (0.93 - 1.57) 

rs6006611 PARVB 2.7×10-5 1.71 (1.33 - 2.19) 0.034 1.32 (1.02 - 1.70) 

P-value and odds ratios (ORs) adjusted for age, gender, logarithmically transformed BMI, and rs738409 were calculated using 
multiple logistic regression analysis.  NAFLD-1, NAFLD-2, and control-2 were used for analysis. 
 
 
 



Supplementary Table 3  Association between haplotypes and NAFLD 

   Frequency Unadjusted Adjusted Adjusted OR 

Gene SNPs Haplotype NAFLD Control P-value P-value* (95% CI)* 

PNPLA3 
rs738409 

rs2896019 

rs3810622 

GGA 0.603 0.440 8.1×10-18 1.3×10-13 2.19 (1.79 - 2.7) 

 CTG 0.275 0.423 4.2×10-16 Reference Reference 

 CTA 0.100 0.118 0.15 0.095 1.32 (0.95 - 1.82) 

SAMM50 rs738491 

rs3761472 

rs2143571 

rs6006473 

ACAA 0.551 0.413 1.3×10-13 1.3×10-11 1.99 (1.63 - 2.43) 

 GTGG 0.363 0.496 1.6×10-12 Reference Reference 

 ATGA 0.078 0.077 0.95 0.037 1.45 (1.02 - 2.06) 

PARVB 

rs5764455 

rs6006611 

TG 0.521 0.394 9.2×10-12 5.0×10-12 2.06 (1.68 - 2.52) 

 CA 0.328 0.455 8.5×10-12 Reference Reference 

 CG 0.146 0.147 0.94 0.0042 1.49 (1.14 - 1.97) 

NAFLD-1, NAFLD-2, and control-2 were used for analysis.  The program Haplo.Stats 
(http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm) was used to explore associations of PNPLA3, SAMM50 and PARVB haplotypes 
with NAFLD.  *, P-value and odds ratios (ORs) adjusted for age, gender, and logarithmically transformed BMI were calculated using multiple logistic 
regression analysis.



Supplementary Table 4  Association tests of SNPs in patients with NASH and simple steatosis  

dbSNP ID Chr 
Nearby 

genes 

Allele 

1/2 

Genotype 

(risk allele frequency) P-value† 
OR 

(95%CI)† 
NASH (n=442) Steatosis (N=51) 

rs738409 22 PNPLA3 C/G* 72/183/187 

(0.63) 

17/24/10 

(0.43) 

1.8×10-4 2.21 

(1.46 - 3.35) 

rs2896019 22 PNPLA3 T/G* 74/180/188 

(0.63) 

17/23/11 

(0.44) 

3.7×10-4 2.10 

(1.40 - 3.17) 

rs3810622 22 PNPLA3 A*/G 237/158/47 

(0.71) 

18/24/9 

(0.59) 

0.0079 1.76 

(1.16 - 2.67) 

rs738491 22 SAMM50  A*/G 185/199/58 

(0.64) 

14/22/15 

(0.49) 

0.0014 1.99 

(1.30 - 3.03) 

rs2073082 22 SAMM50  A/G* 87/209/146 

(0.57) 

16/26/9 

(0.43) 

0.0075 1.78 

(1.17 - 2.72) 

rs3761472 22 SAMM50 T/C* 87/210/143 

(0.56) 

17/25/9 

(0.42) 

0.0057 1.83 

(1.19 - 2.8) 

rs2143571 22 SAMM50 A*/G 186/199/57 

(0.65) 

14/22/15 

(0.49) 

0.0013 2.01 

(1.31 - 3.06) 

rs6006473 22 SAMM50 

PARVB 

A*/G 136/208/98 

(0.54) 

7/22/22 

(0.35) 

2.0×10-4 2.28 

(1.48 - 3.53) 

rs5764455 22 PARVB T*/C 211/181/50 

(0.68) 

11/25/15 

(0.46) 

3.4×10-6 2.79 

(1.81 - 4.3) 

rs6006611 22 PARVB A/G* 72/183/187 

(0.63) 

17/24/10 

(0.43) 

1.8×10-4 2.21 

(1.46 - 3.35) 
*, risk allele.  †, P-value and odds ratios (ORs) adjusted for age, gender, and logarithmically transformed BMI were 
calculated using multiple logistic regression analysis.  Histological diagnosed patients from NAFLD-1 (345 NASH and 47 
simple steatosis) and NAFLD-2 (97 NASH and 4 simple steatosis) subjects were used for analysis. 
 
 
 
 



Supplementary Table 5  Association between haplotypes and histological traits 

   Steatosis NAS Fibrosis 

Gene SNPs Haplotype β (s.e.) P-value* β (s.e.) P-value β (s.e.) P-value 

PNPLA3 
rs738409 

rs2896019 

rs3810622 

GGA  0.167 (0.048) 5.0×10-4 0.467 (0.108) 2.0×10-5  0.164 (0.069) 0.017 

 CTG Reference Reference Reference Reference Reference Reference 

 CTA  0.102 (0.081) 0.21 0.097 (0.183) 0.60 -0.061 (0.116) 0.60 

SAMM50 rs738491 

rs3761472 

rs2143571 

rs6006473 

ACAA  0.132 (0.046) 0.0045 0.422 (0.105) 7.1×10-5  0.142 (0.066) 0.033 

 GTGG Reference Reference Reference Reference Reference Reference 

 ATGA -0.008 (0.089) 0.93 0.213 (0.202) 0.29  0.262 (0.128) 0.041 

PARVB 

rs5764455 

rs6006611 

TG  0.137 (0.047) 0.0039 0.527 (0.106) 9.6×10-7  0.239 (0.067) 4.4×10-4 

 CA Reference Reference Reference Reference Reference Reference 

 CG  0.102 (0.070) 0.14 0.418 (0.156) 0.0078  0.083 (0.100) 0.41 

Histological diagnosed patients from NAFLD-1 (345 NASH and 47 simple steatosis) and NAFLD-2 (97 NASH and 4 simple steatosis) subjects were used 
for analysis.  The program Haplo.Stats (http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm) was used to explore associations of 
PNPLA3, SAMM50 and PARVB haplotypes with NAFLD.  *, P-value and β adjusted for age, gender, and logarithmically transformed BMI were calculated 
using multiple regression analysis. 
 
 
 



 

 
 
Supplementary Fig. 1  MDS plot for NAFLD, HapMap JPT, HapMap HCB and HapMap CEU 
Relatedness between the NAFLD-1 (n = 392) patients as well as 71 European (CEU) and 250 East-Asian (113 
JPT and 137 CHB) individuals from the phase II and III HapMap project was analyzed.  Genotype data for 
256,869 SNPs were analyzed using PLINK 1.07 (http://pngu.mgh.harvard.edu/purcell/plink) (Purcell et al.2007).  
The individuals were plotted in a 2-dimensional graph, with the first (x-axis) and the second (y-axis) 
components of the Eigenvector factors. 
 
 



 

 
 

 
Supplementary Fig. 2  LD coefficients (D′ and r2) in the PNPLA3, SAMM50 and PARVB genes 
LD coefficients (D' and r2) were calculated for every pair of SNPs using HaploView (Barrett et al. 2005).  
NAFLD-1, NAFLD-2, and control-2 were used for analysis. 
 



 

 
 
Supplementary Fig. 3  Manhattan plots of association of SNPs with NAFLD in the GWAS. 
Association P-values are calculated by trend test and plotted along the chromosome in –log10 scale.   
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Supplementary Fig. 4  P-values obtained using multiple regression analysis for the 7 SNPs 
Multiple linear regression analyses were performed to test the independent effect per allele of each SNP on 
biochemical traits (A) and histological parameters (B) by accounting for the effects of the other variables (i.e., 
age, gender, and BMI).  The BMI, triglycerides, ferritin, and hyaluronic acid values were logarithmically 
transformed before performing multiple linear regression analysis.  NAFLD-1 and NAFLD-2 were used for 
analysis. 
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