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ABSTRACT 

Neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic 

lateral sclerosis present a significant medical challenge in the modern world. Recent evidence indicates that perturbation 

of neuronal Ca2+ homeostasis is involved in the pathogenesis of these neurodegenerative disorders. Transient receptor 

potential (TRP) channels are non-selective cation channels that are expressed in various cell types and tissues, and play 

an important role in regulating Ca2+ signaling in both non-neuronal and neuronal cells. TRP channels are related to the 

onset or progression of several diseases, and defects in the genes encoding TRP channels (so-called “TRP 

channelopathies”) underlie certain neurodegenerative disorders due to their abnormal Ca2+ signaling properties. In this 

article, we review recent findings regarding the relationship between TRPs and neurodegenerative disorders, and discuss 

the therapeutic potential of targeting TRP channels pharmacologically. 
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1. INTRODUCTION 

Many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s 

disease (HD) (and related polyglutamine disorders such as spinocerebellar ataxia (SCA)) and amyotrophic lateral 

sclerosis (ALS), present an enormous medical problem in the modern world because, despite intense investigation of 

their causes, little progress has been made in developing cures for them. These disorders are distinguished from each 

other by their clinical symptoms and the specific neuronal sites at which degeneration occurs. AD is characterized by the 

presence of amyloid plaques and neurofibrillary tangles in the neocortex [1], whereas the anatomical hallmark of PD is 

the presence of Lewy bodies in the substantia nigra pars compacta [2]. In a mouse model of HD, the translocation of 



truncated huntingtin protein to the nucleus of medium spiny neurons in the striatum is associated with selective 

degeneration of these cells [3]. ALS is a progressive neurodegenerative disorder involving primarily motor neuronal 

death in the cerebral cortex, brainstem and spinal cord [4]. However, despite their obvious differences in histological 

features and disease progression, they share the common feature of progressive neuronal loss, which can be associated 

with oxidative stress, protein misfolding or aggregation, neuroinflammation, and perturbed neuronal Ca2+ homeostasis 

[5-7], and might therefore be responsible for the dysfunction or neuronal cell death that is characteristic of these 

neurodegenerative disorders. 

Ca2+ is crucial to neuronal development, signal transduction, and the regulation of a variety of different cellular 

responses in the nervous system. There is considerable evidence suggesting that disruption of cellular Ca2+ homeostasis 

plays a critical role in the pathogenesis of neurodegenerative disorders, leading to the breakdown of cellular processes [7]. 

In fact, chronic exposure to amyloid β peptide (Aβ), which is associated with the pathology of AD, induces the elevation 

of intracellular Ca2+ concentration ([Ca2+]i) and leads to neuronal cell death in cultured hippocampal neurons [8]. 

Aggregation of α-synuclein, which has been implicated in the pathogenesis of PD, induces cell death via disruption of 

cellular Ca2+ homeostasis [9]. The polyglutamine-expanded huntingtin protein and mutant superoxide dismutase-1, which 

are involved in the pathogenesis of HD and ALS respectively, also disrupt Ca2+ homeostasis [10, 11]. Therefore, 

ameliorating the dysfunction of Ca2+ homeostasis may be a viable strategy for ameliorating neurodegenerative disorders. 

In many types of cell, Ca2+ influx across the plasma membrane occurs through voltage-dependent, ligand-gated 

(e.g. nicotinic acetylcholine receptor, N-methyl-D-aspartate (NMDA) receptor, etc.), receptor-operated and store-operated 

Ca2+ channels [12-15]. Several members of the transient receptor potential (TRP) channel family have been implicated in 

store-operated Ca2+ entry as well as receptor-operated Ca2+ entry, and play an essential role in the regulation of [Ca2+]i 

[16]. TRPs are non-selective cation channels that are widely expressed in mammalian cells, and are implicated in a 

variety of cellular functions [17]. In addition, there is growing evidence that TRP channels are related to the onset and 

progression of an array of disorders, including neurodegeneration [18]. Here, we review the evidence for the involvement 

of TRP channels in neurodegenerative disorders, and discuss whether TRP channels are putative pharmacological targets 

for treating these disorders. 

 



 

2. TRP CHANNELS 

The TRP gene was first discovered in Drosophila melanogaster, where trp gene mutants suffer defective 

photoreception and impaired processing of light-induced signaling in photoreceptor cells [19]. Based on amino acid 

homology, there are 29 mammalian TRP channels, and this superfamily is divided into six subfamilies: TRPC (canonical), 

TRPM (melastatin), TRPV (vanilloid), TRPA (ankyrin), TRPP (polycystin) and TRPML (mucolipin) [18]. TRP channels 

are mostly ubiquitously expressed, and are present in all cellular membranes except for the nuclear envelope and 

mitochondria. Most TRP channels are localized in the plasma membrane, where they have diverse physiological 

functions [17, 18, 20]. The TRP channels are proposed to comprise of four subunits, each with six putative 

transmembrane segments, which assemble as tetramers to form a cation-permeable pore [21, 22]. The intracellular amino 

(N-) and carboxyl (C-) termini are variable in length and consist of various domains and motifs [17]. The intracellular 

N-terminal domain of TRPC, TRPV and TRPA contains multiple ankyrin repeats, 33-residue motifs consisting of pairs of 

antiparallel α-helices connected by β-hairpin motifs. Ankyrin repeat motifs in TRPs seem to be functionally involved in 

channel tetramerization and interaction with other proteins [23]. The C-terminal domain of the TRPM family also harbors 

enzymatic motifs, such as the Nudix hydrolase (NudT9-H) domain in TRPM2, which has a low level of ADP-ribose 

(ADPR) pyrophosphatase activity, despite significant homology with NudT9 ADPR pyrophosphatase [24]. Intracellular 

ADPR can activate TRPM2 by binding to this C-terminal NudT9-H domain [25, 26]. TRPM6 and TRPM7 contain an 

atypical serine/threonine protein kinase within the C-terminal domain and this domain bears high similarity to members 

of the α-kinase family. Recently, a functional role of this kinase activity has been demonstrated, with evidence that the 

kinase domain is cleaved from the ion-conducting pore of TRPM7 by caspase-8 at D1510 in the C-terminus, which 

appears to disinhibit the TRPM7 channel such that it exhibits substantially higher activity and potentiates Fas receptor 

signaling [27]. TRPML1 has a serine lipase domain in the intracellular loop between transmembrane domains 1 and 2, a 

nuclear localization signal and a putative late endosomal-lysosomal targeting signal. TRPML1 also contains a di-leucine 

motif (L-L-X-X) at the C-terminus, which may target the protein to the lysosome [28]. Nevertheless, despite these 

divergent features, the TRP channel family shares many common structural features. 

Functional characterization of TRPs has revealed that TRP channels are activated by a wide range of stimuli 



including intra- and extracellular messengers, chemical, mechanical, and osmotic stress [17, 18, 29]. For example, many 

TRP channels are potentiated by phospholipase C (PLC) activation. TRP channels are activated by tyrosine kinase 

receptors and G-protein-coupled receptors that signal via PLC. Several TRPs are stimulated by changes in redox status, 

temperature, and pH. This diversity in the activation mechanism of TRPs might underlie the ability of cells to adapt to a 

multiplicity of environmental changes. 

Several channelopathies arising from defective TRP genes have been directly implicated in the pathogenesis of 

neurodegenerative disorders [30]. Mutations in MCOLN1, which encodes TRPML1, cause mucolipidosis type IV 

(MLIV), an autosomal-recessive neurodegenerative lysosomal storage disorder [31]. Variants of the TRPM2 and TRPM7 

genes have been identified in a subset of Guamanian ALS and Guamanian PD [32, 33]. Recently, mutations in the TRPV4 

gene have been shown to cause scapuloperoneal spinal muscular atrophy and Charcot-Marie-Tooth disease type 2C, 

inherited peripheral neurodegenerative disorders characterized by distal and proximal muscle weakness [34-36]. In 

addition, Ca2+ signaling via TRPs contributes to the risk of neurodegenerative disorders (as discussed below). 

 

 

3. PATHOGENESIS OF NEURODEGENERATIVE DISORDERS 

As mentioned above, neuronal death in neurodegenerative disorders is associated with oxidative stress, 

neuroinflammation, and excitotoxicity or non-excitotoxicity leading to dysregulation of Ca2+ homeostasis. In this chapter, 

we explore the involvement of TRP channels in each of these pathogeneses. 

 

3.1. Oxidative stress 

Under normal conditions, the cellular antioxidant defense systems are sufficient to keep the level of reactive 

oxygen species (ROS) below a toxic threshold [37]. However, when these defense systems are dysregulated under 

pathological conditions, oxidative stress occurs due either to an overproduction of ROS or to a failure of the cellular 

buffering mechanisms [38]. Oxidative stress damages nucleic acids, lipids and proteins, and results in impaired cellular 

function and the formation of toxic molecules. Oxidative stress also impairs mitochondrial function, which itself 

generates ROS and further nullifies the antioxidant systems. Excessive generation of ROS leads to the opening of the 



mitochondrial permeability transition pore, release of cytochrome c into the cytoplasm, and induction of an apoptotic 

cascade [39]. The brain is believed to be vulnerable to oxidative damage because it contains a relatively low level of 

antioxidants and free-radical-scavenging enzymes [5, 40]. Thus, oxidative stress plays a clear role in neuronal cell death. 

ROS are generated by several different pathways, including direct interaction between redox-active metals and 

oxygen species by reactions such as the Fenton/Haber-Weiss reactions, or by indirect pathways involving the activation 

of phospholipases, nitric oxide synthase (NOS) and xanthine oxidase [41]. The reduction of molecular oxygen produces 

superoxide anion radicals (O2
•–), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•). OH• is a highly toxic form that 

can also be generated from O2
•– via Fenton and Haber-Weiss reactions. The pathways for OH• generation are elevated in 

the substantia nigra of PD patients [42]. Moreover, O2
•– reacts with nitric oxide (NO•) to produce highly reactive 

peroxynitrite (ONOO–), which also regulates excitotoxicity and induces oxidative DNA damage and lipid oxidation [43]. 

NO• is a gaseous free radical and an important biological messenger in neurons, and is generated by NOS. NO• and 

ONOO– are known as reactive nitrogen species (RNS) and can promote DNA fragmentation by oxidative damage and 

prevent protein phosphorylation by tyrosine nitration, thereby disturbing signal transduction mediated by tyrosine kinases 

in AD [44]. 

ROS and RNS are normal products of cellular metabolism, but excessive generation leads to dysregulation of 

intracellular Ca2+ signaling. This dysregulation has been widely observed in neurodegenerative disorders, where aberrant 

Ca2+ levels stimulate multiple pathways that ultimately induce neuronal cell death [5]. It has been suggested that Ca2+ 

influx via TRP channels is an important mechanism through which oxidative stress mediates cell death [45]. To date, 

several TRP channels directly activated by oxidative stress, including TRPC3, TRPC4, TRPC5, TRPM2, TRPM7 and 

TRPA1 have been identified [45-51]. 

 

3.2. Excitotoxicity and non-excitotoxicity 

Ischemia-induced neuronal hyperexcitation leads to the activation of excitotoxic or non-excitotoxic pathways, 

which is mediated via ionotropic glutamate receptors or non-glutamate receptors, respectively. Oxidative stress-induced 

Ca2+ influx can underlie an excitotoxic response, which is originally considered as a pathological situation arising from 

excessive stimulation of glutamate receptors leading to cell death [52]. The ionotropic family of receptors can be divided 



into pharmacologically distinct subfamilies based on their affinity for NMDA, 

α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) or kainate [53]. NMDA receptors are slow-gating 

channels that are highly permeable to Ca2+ and Na+, whereas AMPA receptors conduct K+ and Na+ but are normally 

impermeable to Ca2+. However, specific neurological insults can drive the formation of Ca2+-permeable AMPA receptors, 

enhancing the toxicity of endogenous glutamate [54]. When these receptors are excessively stimulated, a huge volume of 

Ca2+ floods the cytosol through these receptors, exceeding the capacity of the Ca2+-regulatory mechanisms and leading to 

mitochondrial dysfunction, excessive ROS generation and inappropriate activation of several enzymes (e.g. proteases and 

endonucleases) that induce apoptotic cascades [55]. Excitotoxicity has been implicated not only in neurological 

conditions such as stroke, traumatic brain injury and epilepsy, but in neurodegenerative disorders including AD, PD, HD 

and ALS [52]. Although some glutamate receptor antagonists that control excitotoxic responses have been approved by 

the US Food and Drug Administration for the treatment of neurodegenerative disorders, their low efficacy, disruption of 

normal brain function and adverse side effects limit their clinical usefulness. 

Accumulated evidence suggests that glutamate receptor-independent non-excitotoxic pathways may exist that also 

increase cellular Ca2+ levels, one of which is TRP-mediated Ca2+ influx. Thus, agents that modulate TRP channel activity 

might have potential in treating ischemic brain injuries such as stroke [56, 57]. 

 

3.3 Neuroinflammation 

Neuroinflammatory mechanisms probably contribute to the cascade of events leading to neuronal degeneration. 

Indeed, prominent activation of inflammatory processes and innate immune responses are observed in the brains of AD 

patients [58]. Neuroinflammation is mediated by microglial activation, astrogliosis, and lymphocytic infiltration [59]. 

The involvement of microglia in many acute and chronic neurological diseases has been clearly demonstrated within the 

last two decades [60]. When neurons in the brain are damaged, microglia are rapidly activated and secrete various 

inflammatory molecules such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and NO. Activated microglia affect 

neurons, astrocytes and oligodendrocytes by releasing cytotoxic molecules, including ROS, glutamate, proteases, and 

neurotoxic cytokines [60]. However, this neuroinflammatory process is implicated not only in the initiation and 

progression of neuronal degeneration (through the production of deleterious proinflammatory molecules), but also in its 



sequelae. Therefore, there is still intense debate with regard to whether neuroinflammation is a critical causative factor in 

the pathogenesis of neurodegenerative disorders including AD, PD, and ALS [59, 61, 62]. 

Some evidence has shown that TRP channels are involved in the neuroinflammatory process. Microglia in brain 

tissues express TRPV1, a non-selective cation channel. Since TRPV1 activity promotes the generation of ROS by 

activated microglia, its inhibition would diminish the detrimental effects of microglia in the neurodegenerating brain [63]. 

Microglia also express TRPV4, activation of which suppresses lipopolysaccharide-induced abnormal activation of 

microglia [64]. In addition, it has been demonstrated that TRPC3 mediates the astrogliosis induced by brain injury-related 

factor [65]. However, despite the evidence implicating TRP channels in neuroinflammation, their precise roles and 

mechanisms in vivo remain unclear. 

 

 

4. INVOLVEMENT OF TRPS IN SPECIFIC NEURODEGENERATIVE DISORDERS 

TRP channels have been implicated in the pathophysiology of various neurodegenerative disorders. These 

disorders, and the channels involved, are summarized in Fig. (1), and discussed in detail in the following sections. 

 

4.1 Alzheimer’s, Parkinson’s and Huntington’s diseases 

Because of its high metabolic rate and relatively low capacity for cellular regeneration, the brain is believed to be 

uniquely susceptible to the damaging effects of ROS. Also, the inability of neurons to properly regulate the intracellular 

Ca2+ concentration ([Ca2+]i) is linked to the neurodegenerative process [66]. In cases of PD, AD and ALS, various indices 

of ROS damage have been reported within specific brain regions that undergo selective neurodegeneration [42]. Although 

variation at the TRPM2 gene has not been conclusively linked with any neurological disease, there is evidence that 

TRPM2 forms a Ca2+-permeable nonselective cation channel that is present in many neurodegenerative conditions and is 

activated by ROS. AD is a form of dementia in which patients suffer neurodegeneration and a complete or partial loss of 

cognitive ability, and can often lead to premature death. In AD, correlations between the pathological hallmarks of AD 

(amyloid plaques and neurofibrillary tangles) and perturbed cellular Ca2+ homeostasis have been established in clinical 

studies of patients, as well as in animal and cell culture models of AD [67]. Specifically, increased levels of Aβ induce 



neurotoxic factors including ROS and cytokines, which impair cellular Ca2+ homeostasis and render neurons vulnerable 

to apoptosis and excitotoxicity [68, 69]. The accumulation of Aβ in the striatum is considered to be a key causative factor 

in AD [70] because it disrupts cellular Ca2+ homeostasis and induces membrane-associated oxidative stress [71]. Recently, 

it was reported that TRPM2 is expressed in striatal neurons and is activated by H2O2 [72-74]. In fact, transfection with a 

splice variant (TRPM2-S) that acts as a dominant negative inhibitor of TRPM2 function was shown to block both H2O2- 

and Aβ-induced increases in intracellular free-Ca2+ and cell death. Furthermore, TRPM2-specific small interfering RNA 

reduced TRPM2 mRNA levels and, importantly, limited the toxicity induced by H2O2 and Aβ [74]. Interestingly, Aβ has 

been suggested to incorporate directly into neuronal membranes where it forms Ca2+-permeable ion channels (amyloid 

channels) that cause abnormal elevations of intracellular Ca2+ [75]. Since TRPM2 is susceptible to Ca2+-induced 

activation [76, 77], this supplemental Ca2+ entry would be expected to facilitate further TRPM2 channel activation and 

cause an exponential elevation of [Ca2+]i. Thus, abnormal Ca2+ elevation may be implicated in Aβ-induced neuronal cell 

death. 

Mutations in TRPML1 cause mucolipidosis type IV, another neurodegenerative disease. Recent evidence shows 

that in many lysosomal storage disorders such as multiple sulfatase deficiency and mucopolysaccharidosis type IIIA, 

accumulation of undegraded products in lysosomes impairs autophagosome maturation, resulting in accumulation of 

ubiquitinated protein aggregates and defective mitochondria. These lysosomal storage disorders resemble more common 

neurodegenerative diseases such as AD, PD and HD [78]. In addition, factors which reduce lysosomal activity (e.g. aging 

or oxidative stress) could reduce the ability of the autophagy apparatus to eliminate toxic or aggregated proteins, thus 

exacerbating these age-related neurodegenerative disorders [79]. 

TRPC channels have been associated with neuronal development, proliferation and differentiation. TRPC 

channels may also have a role in regulating neurosecretion, long-term potentiation, and synaptic plasticity [80]. 

Spinocerebellar ataxia type 14 (SCA14) is an autosomal-dominant neurodegenerative disease caused by mutations in 

protein kinase Cγ (PKCγ). These mutations are concentrated in the C1 domain, which binds diacylglycerol and is 

necessary for translocation of PKCγ and regulation of its kinase activity. The mutants thus fail to phosphorylate TRPC 

channels, resulting in sustained Ca2+ entry. This altered Ca2+ homeostasis and Ca2+-mediated signaling in Purkinje cells 

may contribute to the neurodegeneration features characteristic of SCA14. TRPC3 is also involved in the development of 



PD. Parkinsonian movement disorders are often associated with abnormalities in the intensity and pattern of GABA 

neuron firing in the substantia nigra (SNr); the firing of these neurons is controlled by TRPC3 channels selectively 

expressed in SNr GABA projection neurons and is crucial to movement control [81]. Although not directly implicated in 

familial AD, the prospect that TRPC channels could have a role in the onset or progression of AD is intriguing [80]. 

Collectively, it seems that TRPCs have a ‘protean’ or bilateral nature that enables them not only to promote neuronal 

survival, but also to induce neuronal degeneration. 

 

4.2. Psychiatric and bipolar disorders 

Structural imaging studies have recently demonstrated a putative neuroanatomical basis of bipolar disorder (BD) 

[82]. Reduction in regional CNS volume and cell numbers (neurons and glia) is observed in many patients [82], and 

altered intracellular Ca2+ signaling dynamics have been reported [83]. The TRPM2 channel has been implicated in this 

altered signaling, based on 1) its expression in the striatum (caudate nucleus and putamen); 2) its involvement in 

processes regulating intracellular Ca2+ homeostasis; 3) its regulation by oxidative stress [84, 85]; and 4) its location on a 

chromosomal region (21q22.3) known to harbor a BD susceptibility gene(s) [86-88]. Furthermore, its mRNA levels were 

significantly lower in B lymphoblast cell lines (BLCLs) from BD type I (BD-I) patients with high BLCL basal 

intracellular Ca2+ concentrations ([Ca2+]B) compared with those showing normal [Ca2+]B. [Ca2+]B also correlated inversely 

with TRPM2 mRNA levels in BLCLs from the BD-I group as a whole [89]. Significant association was found between 

BD-I and a single nucleotide polymorphism (SNP), rs1556314, in exon 11 of the TRPM2 gene in a case-control study 

[87] and a fine-mapping study [88]. 

Neuromodulators have functions in a variety of brain diseases. Recent reports have illustrated the important role 

that neurotrophins play in the regulation of apoptotic neuronal cell death and in the relationship between this machinery 

and activation of cell survival pathways. BDNF (brain-derived neurotrophic factor) is an important factor in 

Ca2+-dependent signaling via TRPC3 in hippocampal neurons; the activation of TRPC3 by BDNF affects 

neurotrophin-initiated dendritic remodeling of pyramidal neurons. siRNA-mediated TRPC3 knockdown and TRPC 

inhibitors prevented the BDNF-induced increase in spine density and are required for the activation of the sustained 

membrane depolarization associated with intracellular Ca2+ elevation. Thus, dysfunction of the TRPC3-BDNF signaling 



axis is implicated in mental retardation, in particular Rett Syndrome (RTT), where dendritic spine abnormalities may 

underlie cognitive impairments [90, 91]. Respiratory irregularities are associated with a deficiency in numerous 

neuromodulators, such as substance P (SubP). Synaptically-released SubP activates TRPC3⁄7 to control the regularity of 

the respiratory rhythm, and dysfunction of the SubP-TRPC3⁄7 pathway can result in irregular breathing activity [92]. 

Many of the brain regions associated with RTT are those that exhibit the most dramatic decreases in SubP 

immunoreactivity, and are mostly involved in the control of the autonomic nervous system, which may explain these 

irregular breathing activities. 

TRPV1 cooperates with the endocannabinoid system and gamma-aminobutyric acid (GABA) and glutamate 

neurons [93]; cannabinoids may interact with the dopaminergic transmission system in the central nervous system (CNS) 

and this has an important influence on various dopamine-related neurobiological processes (e.g., control of movement, 

motivation or reward) and, particularly, on different pathologies affecting these processes, including basal ganglia 

disorders, schizophrenia and drug addiction. The quest for the discovery of active compounds present in psychoactive 

plants is driven by the hope of uncovering either novel biochemical pathways in the CNS or molecular leads for drugs to 

treat mental disorders. Burning Boswellia resin as incense has been part of religious and cultural ceremonies for 

millennia and is believed to contribute to the spiritual exaltation associated with such events. Incensole acetate (IA), a 

Boswellia resin constituent, activates TRPV3 and causes anxiolytic- and antidepressant-like behavioral effects with 

concomitant changes in c-Fos activation in the brain [94]. The standardized extract of the St. John’s wort plant 

(Hypericum perforatum) is commonly used to treat mild-to-moderate depression. Hyperforin, a phloroglucinol derivative 

of Hypericum perforatum, was identified as an activator of TRPC6 [95] and is known to enhance cognition and facilitate 

memory. Importantly, it has also been shown to have neuroprotective effects against AD neuropathology, including the 

ability to disassemble Aβ aggregates in vitro, decrease astrogliosis and microglial activation, and to improve spatial 

memory in vivo [96]. 

 

4.3. Western Pacific ALS and muscle atrophy 

Genetic variants of the TRPM2 gene confer a risk of developing Western Pacific amyotrophic lateral sclerosis 

(ALS) and Parkinsonism-dementia (PD) complex, related neurodegenerative disorders that are found at a relatively high 



incidence on the island of Guam [97]. These foci share a unique mineral environment characterized by the presence of 

severely low levels of Ca2+ and Mg2+, coupled with high levels of bioavailable transition metals in the soil and drinking 

water. Epidemiological studies revealed that the presence of heterozygous TRPM2 P1018L also contributes to the 

etiology of these disorders [33]. Although P1018L forms functional channels that activate in response to ADPR, these 

channels inactivate quickly and are thus unable to allow sustained ion influx in the presence of physiological 

concentrations of extracellular Ca2+. This is manifested as an attenuated Ca2+ rise in response to H2O2. Taking into 

consideration that intracellular Ca2+ variations affect signaling cascades that control cellular processes including cell 

death [98-101], decreased TRPM2 activity may dysregulate patterns of Ca2+ signaling to disrupt the coordination of 

multiple signaling events that maintain cells in homeostasis. This is consistent with the defective Ca2+ handling 

implicated in many diseases, including neurodegeneration. 

Guamanian ALS (ALS-G) and PD (PD-G) are distinct but related neurodegenerative disorders found in high 

incidence on the Western Pacific Islands of Guam and Rota [97]. Intensive research conducted over many years led to the 

delineation of a complex interplay between certain environmental and genetic factors [32]. Epidemiological and animal 

studies have identified two candidate environmental triggers: cycad (traditionally used as a food source in Guam and for 

medicinal applications in Kii Peninsula and West New Guinea) and its toxin, β-methylamino-L-alanine (L-BMAA). 

Cycad was proposed to be involved in the pathogenesis of ALS/PD, and all three high-incidence foci in the Western 

Pacific (Guam, Kii peninsula, and West New Guinea) were reported to have severely low levels of Ca2+ and Mg2+, 

coupled with high levels of bioavailable transition metals such as manganese (Mn2+), aluminum (Al3+), and iron (Fe3+) in 

the soil and drinking water [102]. Epidemiological studies have also implicated genetic factors in the development of 

ALS/PD because cases cluster in families such that siblings and parents of afflicted patients were found to be at increased 

risk of developing these diseases. However, segregation studies have yet to yield confirmatory data. The environmental 

risk factors found in all three hyperendemic Western Pacific foci were used as a screening tool to identify functional 

candidate susceptibility genes for ALS/PD, i.e. the gene products whose function is most likely to be affected by low 

Mg2+, low Ca2+ and high transition metal levels [32]. Since most functional candidates were ion channel genes, the study 

focused mainly on ion channels, primarily those expressed in the CNS and affected by oxidative stress, and found a 

single candidate gene: TRPM7. TRPM7 resides in chromosome 15q21, within a locus that has been linked to a form of 



autosomal-recessive familial ALS [102]. Indeed, two diseases in humans have been linked to mutations in TRPM7: 

ALS-G and PD-G. A TRPM7 variant, T1482I, in which the mutated site is located between the channel and the kinase 

domain, has been found in a subgroup of both ALS-G and PD-G patients but not in matched control subjects [32]. 

Although the T1482I variant has no detectable alteration in α-kinase activity, it displays a somewhat higher sensitivity to 

inhibition by intracellular Mg2+ within the physiologically relevant range. The incidence of both ALS-G and PD-G is 

increased in environments that are deficient in Ca2+ and Mg2+, such as the west Pacific. Thus increased sensitivity of 

TRPM7 to inhibition by Mg2+ could aggravate Mg2+ homeostasis in an Mg2+-deficient environment, leading to a reduced 

intracellular Mg2+ concentration and contributing to the etiology of the neurodegenerative diseases [32]. 

Mutations in the TRPV4 gene have been linked to three distinct axonal neuropathies. Scapuloperoneal spinal 

muscle atrophy (SPSMA), congenital distal spinal muscle atrophy (CDSMA), and Charcot-Marie-Tooth disease type 2C 

(CMT2C, also known as hereditary motor and sensory neuropathy type 2, HMSN IIC) are phenotypically heterogeneous 

and dominantly-inherited disorders involving topographically distinct muscles and nerves [103]. To date, both gain- and 

loss-of-function mutants of the TRPV4 Ca2+ channel have been proposed. Spinal muscular atrophies (SMA, also known 

as hereditary motor neuropathies) and HMSN IIC are clinically and genetically heterogeneous disorders of the peripheral 

nervous system. Mutations in the TRPV4 gene cause congenital distal SMA, scapuloperoneal SMA, and HMSN IIC. 

TRPV4 mutations (R269H, R315W and R316C in the N-terminal ankyrin domain) affect channel maturation and lead to 

reduced surface expression of functional TRPV4 channels [34]. SPSMA and HMSN IIC are phenotypically 

heterogeneous disorders involving topographically distinct nerves and muscles. Mutations in TRPV4 (R269H and 

R316C) increase channel activity and alter calcium homeostasis and peripheral neuropathies, implying both a pathogenic 

mechanism and a putative treatment option for these disorders [35]. HMSN IIC/CMT2C is an autosomal-dominant 

neuropathy characterized by limb, diaphragm and laryngeal muscle weakness. TRPV4 mutations (R269C and R269H) 

caused marked cellular toxicity and increased constitutive and activated channel current, which can initiate degeneration 

of the peripheral nerves. The CMT2C-associated mutations lie in a distinct region of the TRPV4 ankyrin repeats, 

suggesting that this phenotypic variability may be due to differential effects on regulatory protein-protein interactions 

[36]. Recently, it was reported that TRPV4 mutants (R269H, R315W and R346C) have a physiological localization and 

display increased Ca2+ channel activity [103]. Therefore, gain-of-function mutations of TRPV4, which may lead to 



increased intracellular Ca2+ influx, appears to underlie the pathogenesis of TRPV4-linked axonal neuropathies. 

 

4.4. Ischemia, stroke and traumatic brain injury 

Ischemic or traumatic injury causes a partial disruption of brain integrity or activity [104]. In ischemia or 

reoxygenation injury and traumatic damage, the brain is susceptible to liberation of catalytic metal ions and their 

increases in the formation of reactive radicals. Traumatic injury consists of cells dying from necrosis as the primary, 

irreversible damage associated with the moment of impact. This precipitates a chronic central nervous system 

inflammation with increased formation of proinflammatory cytokines, enzymes and ROS. ROS are responsible for 

oxidative stress, which leads to neurodegeneration and linked to programmed cell death [105]. TRPM2 is implicated in 

inflammatory pathways, specifically as a key participant in monocyte chemokine production induced by H2O2 [106]. 

Recently, it was reported that TRPM2 transcript and protein levels were increased in the cerebral cortex and hippocampus 

of adult male Sprague-Dawley rats following experimental traumatic brain injury, suggesting an involvement of TRPM2 

in the sequelae of traumatic brain injuries [107]. 

TRPC channels form Ca2+ entry pathways, which are essential in maintaining Ca2+ levels in the cytosol, 

endoplasmic reticulum and mitochondria. Silencing of TRPC1 and TRPC3 inhibits neuronal proliferation, and loss of 

TRPC1 is implicated in neurodegeneration [108]. Massive neuronal activation by glutamate can result in an excessive 

rise in cytoplasmic calcium, a process ultimately leading to neuronal death. RNAi mediated knock-down of TRPC1 and 

application of 2-APB to hippocampal slice cultures both prevented glutamate-induced cell death. Considering that 

negation of Ca2+ neurotoxicity considerably reduces the neuronal damage stemming from stroke, head trauma and 

epilepsy, direct and specific inhibition of the TRPC1 channel may be useful in preventing the degeneration of the 

hippocampal circuitry [109]. 

TRPM7 is a strong candidate for mediator in anoxic neuronal death and represents an attractive target for 

neuroprotective treatment of acute CNS injury. There is mounting evidence that TRPM7 channels influence influx of 

Ca2+ or other cations under excitotoxic conditions. In cultured pyramidal neurons from adult rat hippocampus, the current 

induced by oxygen/glucose deprivation (OGD), which serves as a model for excitotoxicity, was found to be insensitive to 

NMDA antagonists [56]. This whole-cell current had the electrophysiological characteristics of TRPM7, and 



siRNA-mediated knockdown of TRPM7 expression reduced ROS production, Ca2+ overload and cell death during OGD 

[56]. Activation of TRPM7 channels by lowering the extracellular concentration of divalent cations significantly 

contributes to cell death. These results demonstrate that TRPM7 contributes to the mechanism by which hippocampal 

neurons detect reductions in extracellular divalent cations, which could explain how TRPM7 induces neuronal death 

during transient brain ischemia [57]. In addition, activation of TRPM7 by ischemia, OGD, ROS or H2O2 induces Ca2+ 

and Zn2+ overload, leading to neuronal dysfunction or death [110-112]. Moreover, excitotoxic conditions may cause 

upregulation of TRPM7 expression, resulting in a positive feedback loop that has fatal consequences for the cells. Further 

temporary middle cerebral artery occlusion (MCAO) and OGD causes transient ischemia followed by reperfusion and 

induces increased expression of TRPM7 in hippocampal neurons [113], which is potentially related to cerebral injury. 

Interestingly, since NGF suppresses TRPM7 activity [114], intracerebroventricular injection of NGF prior to MCAO 

prevents the upregulation of TRPM7, implying that reduced levels of TRPM7 levels may be part of the neuroprotective 

mechanism of NGF [113]. Recently, suppression of TRPM7 channels in vivo was shown to reduce neuronal cell death 

and preserve function after global cerebral ischemia. In the study, intrahippocampal injections of viral vectors bearing 

TRPM7-specific short hairpin RNA (shRNA) was used to knock down TRPM7 in hippocampal CA1 pyramidal neurons 

from adult rat brains. TRPM7 suppression made neurons resistant to ischemic death after brain ischemia following global 

cerebral ischemia induced by occluding both the common carotid and vertebral arteries and preserved neuronal 

morphology and function. Also, the shRNA treatment prevented ischemia-induced deficits in LTP and preserved 

performance in fear-associated and spatial-navigational memory tasks. Thus, regional suppression of TRPM7 is feasible 

and well-tolerated, and inhibits delayed neuronal death in vivo [115]. Together these results point to a critical, although 

still poorly understood, role for TRPM7 in the mechanism of neuronal death, which occurs in stroke or brain ischemia 

and in many neurodegenerative diseases. 

Microvascular failure largely underlies the damaging secondary events that accompany traumatic brain injury. 

Changes in capillary permeability result in the extravasation of extracellular fluid, inflammatory cells, and blood, 

producing cerebral edema, inflammation, and progressive secondary hemorrhage. The Ca2+-activated TRP channel, 

TRPM4, is involved in the damaging secondary events that accompany traumatic brain injury [116]. After spinal cord 

injury, in vivo gene suppression in rats treated with Trpm4 antisense or in Trpm4-/- mice preserved capillary structural 



integrity, eliminated secondary hemorrhage, yielded a three-to-five-fold reduction in lesion volume and produced a 

substantial improvement in neurological function [117]. 

Stroke is one of the leading causes of disability and death. Activation of TRPV3 by incensole acetate (IA) 

provides a partial protective effect in ischemia. IA acts by inducing ischemic postconditioning, protecting the brain from 

injury, and is used for treatment and further research of brain injury and neurodegenerative processes [118]. 

The TRPV4 channel is a Ca2+-permeable cationic channel that is gated by various stimuli such as cell swelling and 

temperature. After induction of cerebral hypoxia/ischemia by bilateral occlusion of the carotids combined with hypoxic 

conditions and followed by reperfusion, TRPV4 expression and activity are up-regulated in rat hippocampal astrocytes 

following ischemia, suggesting that this channel could be involved in [Ca2+]i elevation occurring in the astroglial 

syncytium as a result of an ischemic insult [119]. 

Thus, TRP channels have significant therapeutic potential as targets for pharmacological therapy of ischemia 

reperfusion, stroke and traumatic brain injury. 

 

4.5. Epilepsy and ataxia 

A generalized seizure in the whole animal involves a prolonged depolarization, termed the tonic component of the 

ictal seizure. The muscarinic-induced long-term depolarization (the plateau potential or tail current) can be a major 

intrinsic conductance underlying the prolonged depolarization observed during the ictal phase of seizures. It is 

conceivable that activation of TRPC channels is required for epileptogenesis, for which the trafficking of TRPC channels 

during activation as a form of desensitization plays a role [120]. The prolonged afterdepolarization following muscarinic 

stimulation appears to involve increased insertion of TRPC5 channels into the plasma membrane of pyramidal neurons, 

which play an important role in the generation of prolonged neuronal depolarization and bursting during epileptiform 

seizure discharges [121]. On the other hand, heteromeric TRPC1/4 channels play a critical role in epileptiform burst 

firing and seizure-induced neurodegeneration. The large depolarizing plateau potential that underlies the epileptiform 

burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in 

TRPC1/4 double-knockout mice. These data imply that, TRPC channels could be an unsuspected but critical molecular 

target for clinical intervention for excitotoxicity [122]. In addition, TRPC3 was identified as a new type of postsynaptic 



cation channel that mediates mGluR-dependent synaptic transmission in cerebellar Purkinje cells and is crucial for motor 

coordination in TRPC3 knockout mice [123]. 

 TRPCs play a role in hereditary ataxias, a complex group of neurological disorders characterized by the 

degeneration of the cerebellum and its associated connections. In moonwalker (Mwk) mice, a gain-of-function mutation 

(T635A) in TRPC3 causes abnormal channel opening, Purkinje cell development and cerebellar ataxia. Growth and 

differentiation of Purkinje cell dendritic arbors are profoundly impaired in Mwk mice. Therefore, TRPC3 is involved in 

both dendritic development and survival of Purkinje cells mediating cerebellar ataxia [124]. Counter-intuitively, the 

phenotype of motor coordination defects in TRPC3 knockout mice and moonwalker mice are very similar, despite the 

nature of the TRPC3 channel activation (loss- vs. gain-of-function) being diametrically opposite [125]. Clearly, additional 

work is needed to understand the various components of the signaling cascade initiated by TRPC3 in the CNS and the 

differential connection of this cascade to specific functional outputs in different cell types. Thus, TRPC channels have 

two distinct functionalities, physiologically regulating neuronal development, but also mediating neuronal degeneration 

when Ca2+ influx is excessive [108]. 

TRPV1 seems to be critically involved in the pathogenesis of epilepsy. TRPV1 is now identified as an 

antiepileptogenic target. Nerve growth factor (NGF) upregulates TRPV1 expression and triggers epileptogenesis. In 

addition, anandamide (AEA), an endocannabinoid whose levels are increased in epilepsy, activates TRPV1, which can 

trigger apoptotic neuronal death in chronic epilepsy [126]. In the hippocampus, TRPV1 receptor activation selectively 

modifies synapses onto interneurons. Therefore, like other forms of hippocampal synaptic plasticity, TRPV1-mediated 

LTD may have a role in long-term changes in physiological and pathological circuit behavior during learning and 

epileptic activity [127]. 

TRPM channels have also been suggested to be responsible for epilepsy. TRPM1 is recognized as a component of 

the retinal ON bipolar cell transduction channel for congenital stationary night blindness [128]. The microdeletion of 

TRPM1 in chromosome 15q13.3 causes severe visual impairment demonstrated by optic nerve atrophy, abnormal visual 

evoked potentials, and an electroretinogram profile consistent with congenital stationary night blindness [129]. Therefore, 

it could be linked to a complex neurodevelopmental disorder characterized by severe visual impairment as well as 

hypotonia, profound intellectual disability, and refractory epilepsy. Juvenile myoclonic epilepsy (JME) is the most 



common form of idiopathic generalized epilepsy, accounting for 10–30% of all epileptics. The gene encoding the 

EF-hand motif-containing protein, EFHC1, associated with JME interacts with TRPM2, whose activation leads to cell 

death. In fact, EFHC1 mutation causes JME via mechanisms including neuronal apoptosis [130]. TRPM7 is also involved 

in the pathogenesis of epilepsy. Lowering extracellular Ca2+ and Mg2+ enhances TRPM7 activity, which can result in the 

paradoxical Ca2+ influx associated with epilepsy [131]. 

 

4.6. Complications 

Defects in the TRPM6 gene have been associated with the disease the hypomagnesemia with secondary 

hypocalcemia (HSH) [132, 133], an autosomal recessive disorder that results in electrolyte abnormalities shortly after 

birth. Affected individuals show severe hypomagnesemia and hypocalcemia, which lead to a multitude of neurological 

symptoms, including seizures and muscle spasms during infancy, and result in death if untreated. Life-long Mg2+ 

supplementation is required to overcome the Mg2+ handling defect [132, 133]. Genotype analysis revealed a variety of 

mutations in the TRPM6 gene in all tested HSH patients [132, 134], including stop, frame-shift, splice-site, and exon 

deletion mutations [134]. 

TRPM6 may also contribute to the neurological symptoms of Gitelman syndrome (GS), a condition characterized 

by deficiencies in the Na-Cl co-transporter (NCC), which is NCC is co-expressed with TRPM6 in the distal tubule of the 

kidney [135, 136]. Hypomagnesemia develops during chronic hydrochlorothiazide administration and in NCC-knockout 

mice, accompanied by downregulation of the epithelial Mg2+ channel, TRPM6 [137]. Thus, TRPM6 downregulation may 

represent a general mechanism involved in the pathogenesis of hypomagnesemia accompanying NCC inhibition or 

inactivation. 

Mutations in the gene MCOLN1 cause mucolipidosis type IV (MLIV, MIM-252650), a recessive, 

neurodegenerative, lysosomal storage disorder. The disease was classified as a mucolipidosis based on electron 

microscopy observations that demonstrated the lysosomal storage of laminated, membranous materials (indicating the 

accumulation of amphiphilic lipids) together with granulated, amorphic vacuoles (indicating water-soluble substances). 

However, there is considerable variability in the composition of the stored materials between different organs and tissues 

[138]. MLIV is clinically characterized by severe psychomotor retardation, corneal opacity, retinal degeneration, 



strabismus, agenesis of the corpus callosum, blood iron deficiency, and achlorhydria [138]. Most MLIV patients are first 

diagnosed at 2-3 years of age and the condition progresses slowly. Despite these early infantile manifestations, most 

patients thereafter show little or no deterioration clinically for at least the first 2–3 decades of life. Over 80% of MLIV 

patients are Ashkenazi Jews; the estimated heterozygote frequency in this population is 1/100 [139]. TRPML1 mutations 

associated with MLIV have been characterized, and those in the transmembrane regions (the most conserved regions of 

this family) result in the abolition of mucolipin 1 function. Indeed, all patients possessing these mutations present with a 

severe clinical phenotype [138, 140]. 

 

 

5. CONCLUDING REMARKS 

The recent evidence regarding the involvement of TRP channels in several diseases has lead to identification of 

TRP channels as potential drug targets. Capsaicin, a powerful activator of TRPV1, has been approved and used clinically 

to control abnormal pain in postherpetic neuralgia, diabetic neuropathy and other neuropathic pain conditions. Moreover, 

TRPV1 and TRPV3 antagonists have advanced to clinical trials [141]. However, in human neurodegenerative disorders, 

there are currently no drugs that target TRPs. Hyperforin, an activator of TRPC6, has anti-depressant and pro-spatial 

memory effects in an in vivo model [96], but the translation of these effects to humans has been controversial with 

clinical trials showing it to have both positive and negative effects [142, 143]. Ca2+ influx via TRPM7 activation is 

involved in delayed neuronal cell death during transient brain ischemia. Recently, it has been demonstrated that a serine 

protease inhibitor, nafamostat mesylate, blocks TRPM7 activity in cultured hippocampal neurons [131], suggesting that it 

may have similar effects to other TRPM7 antagonists such as NDGA, AA861, and MK886, which also have 

5-lipoxygenase inhibitory effects and attenuate the cell death associated with TRPM7 activation [144]. Although the 

efficacy of TRPM7 modulators in vivo has yet to be validated, we are confident that modulators of TRPM7 activity hold 

great promise as therapeutics for ischemia, stroke and traumatic brain injury. In the future, we believe that many TRP 

channel agonists and/or antagonists will be developed for the treatment of neurodegenerative disorders. 
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FIGURE LEGEND 

Involvement of TRPs in specific neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD), Huntington’s disease (HD), mental disorder, bipolar disorder (BD), amyotrophic lateral sclerosis (ALS), muscle 

atrophy, ischemia, stroke, epilepsy, ataxia, mucolipidosis type IV (MLIV), and hypomagnesemia with secondary 

hypocalcemia (HSH). 
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