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Abstract: 1 

Symbiotic nitrogen fixation by intracellular rhizobia within legume root nodules requires the 2 

exchange of nutrients between host plant cells and their resident bacteria. While exchanged 3 

molecules imply nitrogen compounds, carbohydrate, and also various minerals, the knowledge 4 

on molecular basis of plant transporters that mediate those metabolite exchanges are still limited. 5 

In this study, we have shown that a multidrug and toxic compound extrusion (MATE) protein, 6 

LjMATE1, is specifically induced during nodule formation, which nearly paralleled the nodule 7 

maturation, in a model legume Lotus japonicus. Reporter gene experiments indicated that the 8 

expression of LjMATE1 was restricted to the infection zone of nodules. To characterize the 9 

transport function of LjMATE1, we conducted biochemical analysis using heterologous 10 

expression system with Xenopus oocyte, and found that LjMATE1 is a specific transporter for 11 

citrate. Physiological roles of LjMATE1 was analyzed with RNA interference (RNAi) line, 12 

which revealed limited growth of RNAi line under nitrogen deficiency condition with 13 

inoculation of rhizobia compared to the control. It was noteworthy that, Fe localization was 14 

clearly altered in nodule tissues of RNAi line. These results strongly suggest that LjMATE1 is a 15 

nodule-specific transporter that assists the Fe translocation from the root to nodules by 16 

providing citrate. 17 

 18 
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Introduction 1 

Nitrogen-fixing symbiosis between legume plants and soil bacteria called rhizobia is one of the 2 

most important symbioses on the earth. They are not only a major source of fixed nitrogen in 3 

natural ecosystems, but also the single largest natural source of nitrogen for agriculture (Smil 4 

1999). Symbiotic nitrogen fixation (SNF) in legumes takes place in specialized organs called 5 

nodules that develop from dedifferentiated root cells after infection by rhizobia in the soil in a 6 

species-specific manner. Via infection threads rhizobia colonize in developing nodule tissue 7 

(Brewin 1991) and ultimately they enter cortical cells by endocytosis (Verma and Hong 1996). 8 

This nodule development is accompanied by coordinated differentiation of both plant and 9 

bacterial cells, which results in forming both infected and uninfected plant cells, which are 10 

developed in a mosaic form. During nodulation, global change in gene expression was involved 11 

in both partners (Colebatch et al. 2004, Kouchi et al. 2004, Uchiumi et al. 2004). Many of these 12 

changes strongly affect both plant and bacterial metabolisms and transports, which become 13 

specialized for supporting the exchange of reduced carbon and other nutrients from the plant to 14 

bacteroids, and fixed nitrogen from the bacteroids to the plant (White et al. 2007). It is 15 

postulated that many transporters are involved in the exchange of these nutrients, and thus for 16 

several transporters have been identified, e.g. SST1, a symbiotic sulfate transporter in Lotus 17 

japonicus (Krusell et al. 2005) and an allantoin transporter, PvUPS1 in french bean (Phaseolus 18 

vulgaris) (Pelissier et al. 2004), but overall understandings of membrane transport systems in 19 

nodule are still very limited.  20 

Multidrug and toxic compound extrusion (MATE) proteins widely occur in bacteria, fungi, 21 

mammals, and also in plants (Omote et al. 2006). Apparently plants have a higher diversity of 22 
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MATE-type transporters than bacteria and animals e.g., there are 56 MATE orthologs in 1 

Arabidopsis thaliana, while only two members are found in human genome. AtDTX1was the 2 

first identified plant MATE, which was isolated from the Arabidopsis cDNA library using a 3 

bacterial mutant defective in multidrug resistance (Li et al. 2002). AtDTX1 showed efflux 4 

activity for a variety of xenobiotics, however, further studies on other plant MATEs revealed 5 

that many of them showed rather restricted substrate specificity for their own metabolites such 6 

as flavonoids, alkaloids, and citrate. In particular, MATE-type transporters, which transport 7 

citrate, are reportedly involved in iron (Fe) translocation or aluminum (Al) detoxification in 8 

plants. For instance, FRD3 from Arabidopsis demonstrated as a citrate transporter is localized at 9 

the pericycle and cells internal to the pericycle cells in roots, and is required for Fe translocation 10 

from the roots to the shoots (Green and Rogers 2004, Durrett et al. 2007). Defects in this 11 

transporter resulted in the precipitation of Fe in the root vasculature (Green and Rogers 2004, 12 

Durrett et al. 2007). Also in monocots, a rice MATE transporter OsFRDL1, transports citrate at 13 

the pericycle cells of the roots, and was suggested to be involved in Fe translocation in the 14 

xylem as well (Yokosho et al. 2009). On the other hand, two studies have shown in 2007 that 15 

Al-induced secretion of citrate in barley (Hordeum vulgare) and sorghum (Sorghum bicolor) is 16 

mediated through MATE transporters (Furukawa et al. 2007, Magalhaes et al. 2007). Secretion 17 

of citrate from the roots is a mechanism of Al resistance in many plant species (Ma et al. 2001, 18 

Kochian et al. 2005, Delhaize et al. 2007). In addition, more recent studies have shown that two 19 

soybean MATE-type transporters, GmFRD3a and GmFRD3b, as well as ScFRDL1 from Secale 20 

cereal mediated Fe translocation (Rogers et al. 2009, Yokosho et al. 2010).  21 

In order to comprehend the membrane transporters involved in SNF we have performed 22 
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transcriptome analysis following laser microdissection in a model legume Lotus japonicus. 1 

From this microarray experiments, a MATE-type transporter (LjMATE1) was identified as a 2 

nodule-specific gene in L. japonicus (Takanashi et al. 2012b). In this study, we demonstrate that 3 

LjMATE1 can transport citrate, and assist the translocation of Fe to nodule infection zone, 4 

which is essential to support nodule function. 5 

 6 

Results 7 

Expression analysis of LjMATE1 during nodulation 8 

Based on our microarray analysis in nodules of L. japonicas, a MATE-type transporter gene 9 

(LjMATE1) is suggested to be involved in nitrogen fixation in this plant due to the high 10 

expression in the infection zone. To confirm the in silico data experimentally, expression 11 

analysis was carried out. Using gene-specific primers we found that the expression of LjMATE1 12 

was specifically observed in nodules of L. japonicus (Fig. 1A). Time-course experiment at five 13 

different nodulation stages revealed that the gene expression of LjMATE1 was dramatically 14 

increased at 7 days post inoculation (dpi) of Mesorhizobium loti and kept high level during SNF 15 

(Fig. 1B).  16 

To analyze the tissue specific expression of LjMATE1 in nodules in more detail, we isolated 17 

1.7 kb fragment upstream of the translational initiation codon from L. japonicus genomic DNA, 18 

which contains the putative LjMATE1 promoter region (pLjMATE1), and was fused to β 19 

-glucuronidase (GUS) reporter gene. The binary vector containing pLjMATE1::GUS reporter 20 

system was then introduced into L. japonicus with hairy root transformation method. GUS 21 

expression analysis clearly showed that LjMATE1 was expressed only in nodules and no 22 
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expression was seen in root tissues through nodulation (Fig. 1C-H). To identify the cell type 1 

where LjMATE1 is expressed, nodule sections were prepared after GUS staining. Microscopic 2 

observation revealed that the GUS staining was observed mainly in the infected cells of nodules 3 

at 7 and 21 dpi (Fig. 1D, F). While, GUS staining decreased in central infection zone at 35 dpi 4 

(Fig. 1H). 5 

 6 

LjMATE1 has transport activity for citrate  7 

Plant MATE proteins can be divided into two distinct groups by their amino acid sequences, 8 

which seems to reflect their transport substrate, i.e., citrate and others. LjMATE1 belongs to a 9 

clade, in which all reported citrate-transporting MATE proteins are clustered, with high amino 10 

acid sequence similarity with GmFRD3a (72%) and GmFRD3b (71%), which are involved in 11 

Fe translocation from root to aerial parts (Rogers et al. 2009) (Fig. 2). To evaluate if LjMATE1 12 

has the activity to transport citrate as a substrate, we expressed LjMATE1 in Xenopus oocytes. 13 

Fig. 3 showed the transport assay using radioisotope-labeled citrate. The data indicated that the 14 

efflux activity for citrate was significantly higher in the oocytes pre-injected with LjMATE1 15 

cRNA than in oocytes injected with water as a negative control. This efflux activity of 16 

LjMATE1 was almost the same with HvAACT1, a previously reported citrate-transporting 17 

MATE (Supplementary Fig. S1) (Furukawa et al. 2007). We also examined transport activity of 18 

malate, which is used as energy source in bacteroids (Price et al. 1987), however, oocytes 19 

pre-injected with LjMATE1 cRNA did not show specific transport activity for malate compared 20 

with control (Fig. 3).  21 

 22 
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Growth phenotype of LjMATE1 knockdown line 1 

To determine the physiological role of LjMATE1, we suppressed its expression in transgenic 2 

plants by RNA interference (RNAi). Among 20 stable transformants, appreciable suppression of 3 

LjMATE1 expression was found in an RNAi line (ljmate1) at T2 generation (Fig. 4A). As 4 

control, we used other RNAi line (LjMATE1) in which LjMATE1 gene expression was not 5 

suppressed in addition to wild-type. The T2 RNAi line grew normally with nitrogen nutrient 6 

supplementation, and no apparent phenotype difference was observed compared to the wild-type. 7 

While when plants were inoculated with M. loti under nitrogen deficiency condition, the RNAi 8 

plant showed clear growth defect phenotype (Fig. 4B, C), suggesting that the ability of SNF was 9 

reduced in the knockdown line. Then we observed nodule phenotype of the ljmate1 line. 10 

Accompanied with normal pink nodules that were normally seen in control plants, about one 11 

third of nodules in ljmate1 revealed greenish appearance (Fig. 5A-D). The nodule size of 12 

ljmate1 was significantly smaller than that of control plants (Fig. 5E), and the acetylene 13 

reduction activity (ARA) of nitrogenase was also significantly reduced in ljmate1 as well as the 14 

expression level of leghemoglobin (Fig. 5F, G). 15 

 16 

Fe accumulation in LjMATE1 knockdown nodules 17 

MATE-type transporters, which have transport activity for citrate, are known to be involved in 18 

either Fe translocation or Al resistance. To investigate whether LjMATE1 mediates Fe 19 

translocation or not, Fe localization in nodules of RNAi plants was examined with Perls staining 20 

(Green and Rogers 2004). While visible Fe precipitation was not observed in control nodules 21 

(Fig. 6A, B), strong Perls staining was detected at root-nodule junction area and nodule vascular 22 
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bundle of RNAi nodules (Fig. 6C, D), indicating altered Fe localization in ljmate1 nodules. This 1 

staining pattern was not observed in LjMATE1 nodules (control) (Fig. 6E, F). To observe Fe 2 

localization in more detail with nodule sections, the iron staining was enhanced by second 3 

reaction with diaminobenzidine (DAB) and hydrogen peroxide (Roschzttardtz et al. 2009). Fig. 4 

7A and 7B clearly showed that Fe was accumulated mainly in the infection zone of wild-type 5 

nodule, especially in infected cells, where a large amount of leghemoglobin is accumulated. It is 6 

to be noted that almost no Fe accumulation was observed in root vascular bundle of wild-type 7 

plant (Fig. 7C). In contrast, Fe localization in nodules of ljmate1was seen in infected cells, but 8 

the level was much low in particular in the central zone (Fig. 7D, E). Another clear difference 9 

was observed in the root vascular bundle of ljmate1, where high Fe deposition was detected (Fig. 10 

7F). Fe accumulation pattern in the nodules of another control LjMATE1 was almost the same 11 

with wild-type nodules (Fig. 7G-I).  12 

For quantitative comparison, we determined Fe content in the nodules using inductively 13 

coupled plasma mass spectrometry (ICP-MS). The Fe content in the nodules of stable ljmate1 14 

was significantly lower compared to that in wild-type (decreased by 43.2%) (Fig. 8), and the 15 

contents of other metals, such as Zn and Mg, were not significantly changed between wild-type 16 

and ljmate1 (Fig. 8). These results strongly suggested that LjMATE1 is involved in Fe 17 

translocation in nodules by releasing citrate, which is essential to support the function of SNF. 18 

 19 

Discussion 20 

Fe storage is of a special importance in nodules, especially in infected cells, because of a high 21 

accumulation of leghemoglobin and nitrogenase, both of which requires Fe for their activity. 22 
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Several studies demonstrated a part of mechanisms of Fe accumulation in nodules. For instance, 1 

Fe (II) transport activity across peribacteroid membrane was measured in soybean nodules 2 

(Moreau et al. 1998), and later a transporter that mediates the Fe movement at peribacteroid was 3 

identified as GmDMT1 (Kaiser et al. 2003). Fe (III) is also provided across peribacteroid 4 

membrane when chelated with several organic acids such as citrate, and accumulates in the 5 

peribacteroid space, where Fe (III) reductase activity is present (LeVier et al. 1996). In contrast 6 

with Fe transport across peribacteroid membrane, the mechanisms of Fe translocation from root 7 

tissues to nodules, especially to infected cells, have been unknown. In this study, we 8 

characterized LjMATE1 and found that this MATE-type protein mediates Fe translocation into 9 

infected cells by releasing citrate into apoplast in infection zone.  10 

Expression analysis by qPCR showed that LjMATE1 expression was induced at 7 dpi and 11 

reached a maximum at 12 dpi (Fig. 1B). This induction pattern is similar to the expression of 12 

leghemoglobin and nitrogenase activity. Moreover, promoter analysis revealed that expression 13 

of LjMATE1 was restricted to the infection zone of nodules, suggesting LjMATE1 is directly 14 

involved in SNF.  15 

The physiological role of LjMATE1 was demonstrated by generating transgenic plants, in 16 

which the expression of LjMATE1 was suppressed by RNAi. Previous reports on Fe deficient 17 

mutants in Arabidopsis frd3 and rice osfrdl1 showed chlorosis in cotyledons or leaves especially 18 

under low Fe condition (Durrett et al. 2007, Yokosho et al. 2009). However, the knockdown 19 

line ljmate1 demonstrated in this study did not show such phenotype in nitrogen sufficient 20 

condition, as LjMATE1 functions exclusively in nodules as indicated in the expression analysis 21 

(Fig. 1A). When ljmate1 plants were inoculated with rhizobia under nitrogen deficiency 22 
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condition, the growth was apparently suppressed compared to wild-type, but not with 1 

supplementation of nitrogen nutrient (Fig. 4C). In addition, ljmate1 have many greenish nodules 2 

(Fig. 5B, D), which are known as inactive in SNF. Indeed, ARA of ljmate1 nodules was 3 

significantly reduced (Fig. 5F), indicating that LjMATE1 is requires for SNF and suppression of 4 

LjMATE1 caused fix- nodules. 5 

DAB-enhanced Perls staining was first applied in plant tissue to detect Fe accumulation in 6 

Arabidopsis embryos, in which the staining was too weak by the single Perls staining alone 7 

(Roschzttardtz et al. 2009). In this study we have employed this DAB-enhancement to monitor 8 

the Fe accumulation in nodule sections. In wild-type nodules, Fe accumulation was detected 9 

mainly in the infection zone, which is consistent with the physiological functions of Fe in 10 

nodules (Fig. 7A, B). However, Fe staining was apparently fainted in the infection zone of 11 

ljmate1 nodules particularly in the central region (Fig. 7D, E). Then, we determined Fe contents 12 

in nodules using ICP-MS, and found the reduced Fe concentration in ljmate1 nodules (Fig. 8). 13 

These results strongly suggest the involvement of LjMATE1 in Fe accumulation in nodules by 14 

increasing Fe mobility. 15 

Moreover, unusual Fe deposition was seen in the root vascular bundles in the ljmate1 plant 16 

as well (Fig. 6D, 7F), which may be a secondary phenomenon of stagnant Fe delivery into the 17 

nodules, as the expression of LjMATE1 is restricted to the infection zone of nodules (Fig. 1C-H). 18 

The spacial difference in tissues between the relevant gene expression and the Fe accumulation 19 

was also observed in rice (Kobayashi et al. 2010), i.e., rice OsYSL2 functioning as a transporter 20 

of Fe-nicotianamine complex is expressed mainly in the phloem cells of leaves and leaf sheaths, 21 

whereas the RNAi lines of OsYSL2 showed increased Fe accumulation in roots (Koike et al. 22 
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2004, Ishimaru et al. 2010).  1 

Plants utilize highly sophisticated mechanisms for Fe uptake and translocation among 2 

organs. As naturally abundant Fe3+ is hardly water-soluble, plants secrete various molecules to 3 

increase the Fe solubility, for instance, nicotianamine and citrate to form Fe-chelator complex 4 

(Conte and Walker 2011). The accumulation of nicotianamine in nodules has not been reported, 5 

however, Hakoyama and co-workers showed that a nicotianamine synthase (NAS) that mediated 6 

the reaction from S-adenosylmethionine to nicotianamine, was expressed in a late stage of 7 

nodulation in L. japonicus, and they postulated that LjNAS2 is involved in Fe reuse from 8 

inactive nodule to other organs (Hakoyama et al. 2009). It is reported that citrate, which also 9 

serves as chelator of Fe, accumulates in nodules, while the citrate content decreases to 10 

approximately 60% when plant is inoculated by ineffective Rhizobium (Rosendahl et al. 1990). 11 

In this study, we could not demonstrate the transport direction of citrate by LjMATE1, but we 12 

presume that LjMATE1 effluxes citrate at plasma membrane into apoplast by the following 13 

reasons. 1) Fe accumulation is decreased in the infected cells when LjMATE1 expression was 14 

suppressed (Fig. 7 and 8); 2) Fe movement in peribacteroid space is possible without citrate, 15 

where Fe (III) -chelator complex can be reduced to Fe (II) and/or bound with siderophores 16 

released by the bacteroid (LeVier et al. 1996, Wittenberg et al. 1996). For the uptake of 17 

Fe-citrate complex into infected cells other metal transporters may be involved. In fact, metal 18 

transporter genes, such as Zrt/Irt-like protein (ZIP) and natural resistance-associated 19 

macrophage protein (Nramp), are up-regulated during nodulation in our transcriptomic analysis 20 

besides LjMATE1 (Takanashi et al. 2012b). Detailed characterization of these transporters will 21 

enable us to grasp the overall scheme of Fe exchange between bacteroids and plant cells. 22 
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 1 

Material and Methods 2 

Plant materials and growth conditions 3 

L. japonicus MG-20 Miyakojima was used in this work. Seeds were surface-sterilized with a 4 

1% sodium hypochloride solution for 10 min, rinsed five times with sterile distilled water, then 5 

germinated on water agar plate (0.8%). Five-day-old seedlings were transferred on sterile 6 

vermiculite with liquid 1/2 B&D medium (Broughton and Dilworth 1971) in plant box and 7 

grown in a cultivation chamber under a 16-h day/8-h night cycle at temperatures of 23°C.  8 

 9 

Expression analysis with rhizobia 10 

To obtain RNA samples, 9-day-old seedlings were inoculated with M. loti MAFF303099, which 11 

was cultured overnight in TY medium at 28°C. For organ-specific expression analysis, plants at 12 

19 dpi were sampled. Time course analysis was conducted by collecting aerial parts and 13 

underground parts respectively, at 0, 2, 4, 7, 12, and 19 dpi. Reverse transcription was carried 14 

out using a SuperscriptIII Reverse Transcriptase (Invitrogen), followed by semi-qPCR (95°C for 15 

1 min, 32 cycles at 95°C for 20 s, 55°C for 30 s and 72°C for 20 s) using Go Taq DNA 16 

Polymarase (Promega) with the sets of primers specific to LjMATE1 (forward primer, 17 

5’-GCTACACAACCCATCAATGC-3’ and reverse primer, 18 

5’-TGCAAATGAGACCATCACCA-3’). Ubiquitin (forward primer, 5’- 19 

ATGCAGATCTTCGTCAAGACCTTGAC-3’ and reverse primer, 5’- 20 

ACCTCCCCTCAGACGAAGGA-3’) was used as an internal control. For qPCR (95°C for 15 21 

min, 40 cycles at 94°C for 10 s, 56°C for 20 s and 72°C for 25 s), DyNAMO HS SYBR Green 22 
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qPCR Kit (Finnzymes) was used. Real-time detection of PCR products was performed using 1 

Roter-Gene 3000A (Corbett Research).  2 

 3 

Histochemical analysis of promorter-GUS transformant of L. japonicus 4 

A fragment of 1.7 kb upstream the start codon of LjMATE1 was amplified from genome DNA 5 

of MG-20 using Phusion High-Fidelity DNA Polymerase (Finnzymes) with a set of specific 6 

primers, forward primer, 7 

5’-ACAAGTTTGTACAAAAAAGCAGGCTCTTGGAAGGGGCTGTCTTTT-3’; reverse 8 

primer, 5’-ACCACTTTGTACAAGAAAGCTGGGTGATATCCTAAATCTTATGTAA-3’ (the 9 

underlined positions are non-native sequences of the attB recombination sites). The PCR 10 

product was subcloned into pDONR/Zeo (Invitrogen), and then transferred into a 11 

Gateway-compatible binary vector, pGWB3 (Nakagawa et al. 2007). The construct was then 12 

introduced into L. japonicus using hairy-root transformation mediated by Agrobacterium 13 

rhizogenes LBA1334, as previously reported (Kumagai and Kouchi 2003). The transformed 14 

plants were inoculated with M. loti and grown in a cultivation chamber under the condition 15 

mentioned above. Nodules were sampled at 7, 21, and 35 dpi, respectively, and GUS staining 16 

was performed as described previously (Takanashi et al. 2011) 17 

 18 

Transport assay in Xenopus oocytes 19 

The full-length cDNA of LjMATE was cloned into the oocyte vector pXG-evl. The plasmid 20 

was linearized with SacII, and cRNA was transcribed in vitro with T3 RNA polymerase 21 

(mMESSAGE mMACHINE kit; Ambion). Oocytes were isolated from adult female Xenopus 22 
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laevis frogs as described before (Ma et al. 2006). Selected oocytes were incubated for 1 day in 1 

modified Barth’s saline (MBS) at 18°C until the injection of cRNA. A 50 nl of water solution 2 

containing 50 ng cRNA or not was injected into each oocyte with a nano-jector II (Drummond 3 

Scientific Company), followed by incubating in MBS at 18°C for 2 days. For determining 4 

citrate efflux activity, a 50 nl of 2.4 mM 14C-labeled citrate or malate (2.3 nCi/oocyte) was 5 

injected. The oocytes were then washed four times with MBS buffer (pH 7.6) and then 6 

transferred into a 500 l of fresh buffer at 18°C. After 30 min incubation, the external buffer 7 

was sampled and the oocytes were homogenized with 0.1N HNO3. The radioactivity of the 8 

buffer solution and homogenized oocytes was measured with a liquid scintillation counter 9 

(LIQUID SCINTILLATION SYSTEM; Aloka). 10 

 11 

LjMATE1 RNAi transformants of L. japonicus 12 

For LjMATE1 suppression by RNA interference, a 245 bp fragment (position 226-471) was 13 

amplified from the LjMATE1 cDNA using a set of primers containing attB recombination sites 14 

for Gateway vector, forward primer, 5’- 15 

ACAAGTTTGTACAAAAAAGCAGGCTGGAGTTGCCATTGCTTTGTT -3’; reverse primer, 16 

5’- ACCACTTTGTACAAGAAAGCTGGGTCTCAACACTTGCAGCCAAAA -3’ (the 17 

underlines indicate specific sequences of the attB recombination sites). The PCR product was 18 

subcloned into pDONR/Zeo (Invitrogen), and then transferred into a Gateway-compatible 19 

binary vector, pUB-GWS-Hyg (Maekawa et al. 2008). The construct was used for plant 20 

transformation as described previously (Thykjaer et al. 1997). For phenotypic analysis, 21 

wild-type and T2 generation were grown either with supplementation of nitrogen nutrient 22 
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without rhizobia inoculation, or under nitrogen deficiency condition with rhizobia inoculation. 1 

Plants were sampled and photographed at 28 dpi. The nitrogenase activity was measured by the 2 

acetylene reduction assay (Maruya and Saeki 2010). For expression analysis of leghemoglobin, 3 

the set of primers specific to leghemoglobin was used (forward primer, 4 

5’-TTTGAGCACTGCTTGGGGAGTAGCT-3’ and reverse primer, 5 

5’-AGGCATGCAAAACCAGAAAC-3’). The qPCR condition was described above. For hairy 6 

root transformation the RNAi fragment in pDONR/Zeo was transferred into a binary vector, 7 

pUB-GWS-GFP (Maekawa et al. 2008). The transformed hairy roots, selected with GFP signal, 8 

were inoculated with M. loti and sampled at 28 dpi.  9 

 10 

Perls staining 11 

For Perls staining, pink nodules were vacuum-infiltrated with equal volumes of 4% (v/v) HCl 12 

and 4% (w/v) K-ferrocyanide for 15 min, and incubated for 30 min at room temperature 13 

(Roschzttardtz et al. 2009). For the signal intensification with DAB and H2O2, the Perls stained 14 

nodules were fixed and embedded in Technovit 7100 as previously reported (Takanashi et al. 15 

2012a). The sections (15 m) were placed on glass slides, and then the intensification procedure 16 

was applied as described by Meguro et al. (Meguro et al. 2007).  17 

 18 

Measurement of the Fe content in nodules 19 

Seeds were germinated on a water agar plate. Five-day-old seedlings were transferred to sterile 20 

vermiculite with liquid 1/2 B&D medium in a plant box. After 2 days plants were inoculated by 21 

bacteria. At 28 dpi, the pink nodules were collected and dried in an oven at 70°C for 2 days. 22 
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Samples were then subjected to digestion with 0.5 ml of 61 % HNO3 in a 2 ml plastic tube. The 1 

samples were heated up to 125°C for 5 hours and then diluted with 5% HNO3. The metal 2 

concentration was determined by ICP-MS (7700X; Agilent Technologies).  3 
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Figure legends 1 

Fig. 1 Expression analyses of LjMATE1. (A) Tissue-specific semi-quantitative RT-PCR analysis 2 

of LjMATE1. (B) qPCR of LjMATE1 in underground parts at different development stages of 3 

nodulation. Expression of LjMATE1 was detected only in nodule, which increased at 7 dpi and 4 

kept high level of expression during nodulation. Values represent mean ± SD (n = 3). (C-H) 5 

GUS staining of pLjMATE1::GUS transformant. Whole nodules (C, E, G) and cross sections (D, 6 

F, H) of nodule at 7 (C, D), 21 (E, F), and 35 (G, H) dpi, respectively. Stained infected cells 7 

were found at 7 and 21 dpi (D, F). GUS expression mostly disappeared at 35 dpi (H). Bars = 8 

200 m. 9 

 10 

Fig. 2 An unrooted phylogenetic analysis of plant MATE transporters. Phylogenetic tree was 11 

generated using MEGA 5.0 software (Tamura et al. 2011). LjMATE1 and reported plant MATE 12 

transporter sequences were aligned using the ClustalW program. The neighbor-joining method 13 

was then used to construct a phylogenetic tree with 1,000 bootstrap replicates. MATE proteins 14 

in red were reported to be involved in Fe translocation or Al detoxification. Accession numbers 15 

and AGI codes are: AM1, FJ264202; AM3, FJ264203 (Vitis vinifera); AtALF5, At3g23560; 16 

AtDTX1, At2g04070; AtEDS5, At4g39030; AtFRD3, At3g08040; AtMATE, At1g51340; 17 

AtTT12, At3g59030; AtZRIZI, At1g58340 (Arabidopsis thaliana); GmFRD3a, EU591739; 18 

GmFRD3b, EU591741 (Glycine max); HvAACT1, AB302223 (Hordeum vulgare); LaMATE, 19 

AY631874 (Lupinus albus); MtMATE1, FJ858726; MtMATE2, HM856605 (Medicago 20 

truncatula); MTP77, Q6V7U8 (Solanum lycopersicum); NtJAT1, AM991692; NtMATE1, 21 

AB286961 (Nicotiana tabacum); OsFRDL1, Q10PY7 (Oryza sativa); SbMATE, EF611342 22 
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(Sorghum bicolor); ScFRDL1, AB571881; ScFRDL2, AB571882 (Secale cereale); ZmMATE1, 1 

FJ015155 (Zea mays). 2 

 3 

Fig. 3 Transport activity of LjMATE1 measured in Xenopus oocytes. The LjMATE1-expressing 4 

oocytes were injected with 14C-labeled citrate or 14C-malate and their release from the oocytes 5 

was determined 30 min after injection. LjMATE1 showed an efflux activity for citrate, but not 6 

for malate. Values represent mean ± SD (n = 4). *p<0.01 compared with control (H2O) by 7 

Student’s t-test. 8 

 9 

Fig. 4 Phenotype of 5-week-old LjMATE1 RNAi knock-down lines. Plants were grown in 10 

vermiculite with (+N) or without (-N) nitrogen supplementation. (A) Expression analysis of 11 

LjMATE1 in RNAi lines with qPCR. Values represent mean ± SD (n = 3). (B) Shoot length of 12 

control and RNAi lines under nitrogen deficiency condition. Values represent mean ± SD (n = 13 

16). (C) Growth phenotype of 5-week-old rhizobia-inoculated plant (28 dpi). Growth of ljmate1 14 

was clearly suppressed under nitrogen deficiency condition. Scale bar = 2 cm. (A, B) *p<0.01 15 

compared with controls by Tukey-Kramer test.  16 

 17 

Fig. 5 Phenotype of L. japonicus nodules at 28 dpi. Nodule phenotype (A, WT; B, ljmate1; C, 18 

LjMATE1), number per plant (D, n = 10-18), size (E, n = 19-31), and ARA (F, n = 32-55) of 19 

wild-type and RNAi lines. (G) Expression level of leghemoglobin in nodules (n = 3). In ljmate1 20 

greenish nodules were observed as well as pink nodules, and reduced nitrogen fixation activity 21 

was measured. Scale bars = 1 mm. Values represent mean ± SD. *p<0.05, **p<0.01 compared 22 
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to controls by Tukey-Kramer test. 1 

 2 

Fig. 6 Fe accumulation in nodules was examined with Perls staining. Fe precipitation was not 3 

observed inside wild-type nodules from either top (A) or nodule-root junction (B) side. In 4 

ljmate1 Fe accumulation was not seen from the nodule top side (C), while strong blue staining 5 

was detected at nodule-root junction (D, pointed by arrowhead) and nodule vascular bundle. In 6 

LjMATE1 the blue staining was not observed at both top (E) and nodule-root junction (F) side. 7 

Scale bars = 200 m.  8 

 9 

Fig. 7 Typical Fe localization inside the nodules of wild-type (A-C), ljmate1 (D-F) and 10 

LjMATE1 (G-I). Perls staining was enhanced by DAB and H2O2. (A, B) High Fe accumulation 11 

was observed in infected cells in wild-type nodule. (C) Root vascular bundle was not stained in 12 

wild-type. (D, E) Fe accumulation in infection zone was reduced in ljmate1, especially in the 13 

central region. (F) Abnormality in the Fe accumulation was also detected in root vascular 14 

bundle. (G-I) Same Fe accumulation pattern was observed in LjMATE1 nodule with wild-type. 15 

(A, D, G) Root vascular bundle was pointed by arrowheads. Scale bars = 100 m.  16 

 17 

Fig. 8 Fe and other metal contents in L. japonicus nodules determined by ICP-MS. The nodules 18 

of wild-type and ljmate1 plants were sampled at 28 dpi. The Fe concentration of ljmate1 was 19 

reduced to 56.8% of WT. Values represent mean ± SD (n = 3). *p<0.05 compared with WT by 20 

Student’s t-test. 21 
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Supplementary Fig. S1
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Citrate transport activity of LjMATE1 and HvAACT1 measured in Xenopus oocytes. The 
oocytes were injected with 14C-labeled citrate, and their release from the oocytes was 
determined 30 min and 2 h after injection. LjMATE1 showed same efflux activity for citrate 
with HvAACT1. Values represent mean ± SD (n = 3-4). *p<0.01 compared to control (H2O) 
by Tukey-Kramer test.
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Supplementary Fig. S2

A
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B
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F

Typical Fe localization inside the nodules of control (A-C) and hairy root RNAi (D-F). Perls
staining was enhanced by DAB and H2O2. (A, B) High Fe accumulation was observed in infected 
cells in control nodule. (C) Root vascular bundle was not stained in control. (D, E) Fe 
accumulation in infection zone was reduced in RNAi, especially in the central region. (F) 
Abnormality in the Fe accumulation was also detected in root vascular bundle. Scale bars = 100 
mm. 


