1	Mitochondrial DNA sequence divergence between "Kunimasu" Oncorhynchus kawamurae
2	and "Himemasu" O. nerka in Lake Saiko, Yamanashi Prefecture, Japan, and their
3	identification using multiplex haplotype-specific PCR
4	
5	Kouji Nakayama • Nozomu Muto • Tetsuji Nakabo
6	
7	K. Nakayama (⊠)·N. Muto
8	Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto
9	606-8502, Japan
10	e-mail: nakayama@kais.kyoto-u.ac.jp
11	
12	
13	T. Nakabo
14	The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan
15	
16	Short running head: MHS-PCR identification of Oncorhynchus kawamurae
17	Short report
18	12 text pages
19	2 figures

21	Abstract In order to develop a simplified method for discriminating between <i>Oncorhynchus</i>
22	kawamurae (Kunimasu) and sympatric Oncorhynchus nerka (Himemasu), sequence variations of
23	mitochondrial DNA control region were examined on 71 specimens of Kunimasu and 103 of
24	Himemasu. Sequence analyses for 530 bp revealed 3 variable sites, which defined three haplotypes
25	in Kunimasu and one in Himemasu. Based on determined nucleotide sequences, species-specific
26	primers were designed for the multiplex haplotype-specific polymerase chain reaction, which
27	amplified ca. 900 and 1,040 bp fragments in Kunimasu and Himemasu, respectively. This simple
28	rapid approach can be used to distinguish between the two species without the need to sacrifice
29	specimens.
30	
31	Key words: Oncorhynchus kawamurae · Lake Saiko · Molecular identification

33 Introduction

34

35Oncorhynchus kawamurae Jordan and McGregor in Jordan and Hubbs 1925 (common name 36 "Kunimasu"), formerly restricted to Lake Tazawa, Akita Prefecture, the only known habitat of 37the species, had long been believed to have become extinct since the late 1930's. Recently, 38however, Nakabo et al. (2011) discovered Kunimasu in Lake Saiko, Yamanashi Prefecture, one 39 of the lakes to which eyed eggs of Kunimasu had been introduced from Lake Tazawa in 1935. 40 Stock assessment and intensive conservation efforts for Kunimasu are urgently needed, due to its present restricted distribution, i.e., Lake Saiko only. Although Kunimasu is known to 41 42have distinct morphological and ecological characteristics, having few pyloric caeca, and 43occurring and spawning on the deep bottom (Akitaken Suisanshikenjo 1915; Tanaka 1911; 44 Okuyama 1939; Oshima 1941; Sugiyama 2000), both being unique within Oncorhynchus, comprehensive biological studies had at no time been conducted on Kunimasu in Lake Tazawa 45before its extinction. However, the discovery of Kunimasu in Lake Saiko has provided an 46 47unexpected opportunity to learn more of the morphological characteristics and life history of the 48species, especially with regard to spawning ecology and adaptations to its deeper, cooler water 49environment. Kunimasu has been considered to have a close relationship with Kokanee, the 50

51 land-locked sockeye salmon Oncorhynchus nerka (Japanese common name "Himemasu")

52 (Hosoya 2002; Eschmeyer 2012), sometimes having been treated as a subspecies or variation of

53 the latter. Because Himemasu has been vigorously introduced to Lake Saiko over many years,

54 both Kunimasu and Himemasu now occur sympatrically in the lake. However, the two species

are clearly reproductively isolated (Nakabo et al. 2012; Muto et al. 2012), and are

56 distinguishable by the numbers of pyloric caeca and gill rakers, in addition to spawning season

and body coloration at such times (Jordan and Hubbs 1925; Akitaken Suisanshikenjo 1931;

58 Oshima 1941; Hikita 1962; Sugiyama 2000). Notwithstanding, however, younger (immature)

and non-spawning adult fish show few differences in external morphology or coloration (Muto
et al. 2012), resulting in difficulties in identification of the two species. Furthermore, it has
been suggested that there is little difference in microhabitat or swimming depth between
Kunimasu and Himemasu in Lake Saiko (Muto et al. 2012), unlike the situation in Lake Tazawa
(Sugiyama 2000).

64 Detailed biological or ecological studies on Kunimasu in Lake Saiko would clearly be 65 enhanced by a practical and reliable means of distinguishing between the former and Himemasu 66 throughout all life history stages, from eggs to post-spawning carcasses. Morphological 67 identification techniques, such as counting the numbers of pyloric caeca and gill rakers, are both 68 time-consuming and labor intensive, apart from being inapplicable to eggs or juveniles. In 69 addition, an identification method that does not sacrifice specimens is highly desirable, due to 70 the apparently limited number of living individuals. Although microsatellite DNA analysis can 71discriminate precisely between Kunimasu and Himemasu without harming specimens, it is 72time-consuming and expensive, due to the need for genotyping at several loci (> 5), owing to 73 the apparent absence of a diagnostic allele for Kunimasu (Muto et al. 2012). In addition, 74microsatellite DNA analysis usually requires an expensive automated fluorescent DNA 75sequencer, which makes general application of the method difficult. 76 This study aimed to develop a simple, rapid, cost-saving molecular method for

77 discriminating between Kunimasu and Himemasu in Lake Saiko. We applied multiplex

haplotype-specific (MHS) PCR to mitochondrial (mt) DNA for these species, such being a

rg single step method based on haplotype-specific variations in DNA sequences (e.g.,

80 Rocha-Olivares 1998; Durand et al. 2010; Yamanoue et al. 2010). On the premise that

81 species-specific DNA sequence variations exist, this method was expected to be labor, cost and

82 time-saving, and applicable even to small juveniles, yet yielding reliable, sensitive and highly

reproducible identifications (reviewed in Teletchea 2009), all the while without the need to harm

specimens.

- 86
- 87 Materials and methods

89	Specimens. A total of 144 specimens, including 71 Kunimasu and 73 Himemasu, collected							
90	from Lake Saiko in 2010 and 2011 by gill net and angling, or the collection of carcasses							
91	("Uki-yo") washed ashore after spawning, plus 30 specimens of indigenous Himemasu from							
92	Lake Akan (but see Kaeriyama 1993), in which Himemasu is not sympatric with Kunimasu,							
93	were utilized in the study. The same specimens were previously used for microsatellite DNA							
94	analyses by Muto et al. (2012). The specimens were unambiguously assigned to either							
95	Kunimasu or Himemasu, using Bayesian clustering, and deposited in the Kyoto University							
96	Museum (FAKU) or the Yamanashi Prefectural Fisheries Technology Center (YFTC).							
97	DNA extraction, PCR amplification and sequencing. Total genomic DNA was							
98	extracted from white muscle preserved in 99 % ethanol using the DNeasy Tissue Kit (Qiagen,							
99	Germany) or the Wizard Genomic DNA Purification Kit (Promega, USA), both following the							
100	manufacturers' protocols. The control region of mtDNA was amplified by PCR, using the							
101	forward primer tRNAthr-2 5'-TCT TGT AAT CCG GAA GTC GGA-3' and reverse primer							
102	tRNAphe-2 5'-AAC AGC TTC AGT GTT ATG CT-3' (Sato et al. 2001). PCR was conducted							
103	using the Takara EX Taq polymerase kit (Takara Bio Inc., Shiga, Japan) under the following							
104	temperature profile: initial denaturation at 94 °C for 5 min, followed by 30 cycles of							
105	denaturation at 94 °C for 15 s, annealing at 55 °C for 15 s and extension at 72 °C for 1 min, with							
106	a final extension at 72 °C for 7 min. The PCR products were purified with ExoSAP-IT (USB.							
107	Co., OH, USA) and directly sequenced using the BigDye 1.1 Terminator sequencing kit							
108	(Applied Biosytems Inc., CA, USA) following the manufacturer's protocol, with the primer							
109	tRNAthr-3 5'-GGT TAA AAC CCT CCC TAG TG-3' (Sato et al. 2001). Alignments were							
110	checked by eye with the help of DNASIS software (Hitachi Software Engineering Co.,							

111 Kanagawa, Japan).

112*Primer design for MHS-PCR.* On the basis of sequence variations among Kunimasu 113and Himemasu, species-specific forward primers were designed to anneal to sequences with a 114 diagnostic nucleotide for each species on the 3'-end, taking intra-specific sequence variations 115into account, and to amplify different-sized PCR products. To enhance the specificity of 116 primer annealing, the third nucleotide from the 3'-end of each primer was designed to be 117mismatched, as noted in Sommer et al. (1992) and Watanabe and Umetsu (2007). The 118 sequences of the designed primers were as follows: Ok-spL (Kunimasu specific primer) 5'-ATT 119 ATC AAC ATA CRG TGG TGTC-3'), On-spL (Himemasu specific primer) 5'-TAA ACT ACC 120 CTC TGA CGG CTAC-3'). Via MHS-PCR using these species-specific forward primers and 121the common reverse primer tRNAphe-2 (see above), a species-specific fragment of ca. 900 base 122pairs (bp) in Kunimasu and ca. 1040 bp in Himemasu were predicted to be amplified. For 123internal positive control of the PCR conditions, a pair of primers expected to commonly anneal 124to either of the two species, L-M-12S; 5'-ACA AAC TGG GAT TAG ATA CCC CAC TAT 125GCC-3' and H-A-16S; 5'-GTT TTT GGT AAA CAC GCG AGG CTT ATG TTT GCC GAG-3' 126(Matsui et al. 2012), which are complements of the primers of Kawaguchi et al. (2001), 127producing a ca. 1,500 bp amplicon, were also included in MHS-PCR. Thus, for either of the 128two species, two different-sized fragments (a species-specific amplicon and internal positive 129control) could be expected to be amplified. 130 MHS-PCR amplification. MHS-PCR was performed on some representative 131specimens selected so as to involve all haplotypes of the two species found in this study, using

132 five primers [two species-specific forward primers (Ok-spL and On-spL), a reverse primer

- 133 common to the two species (tRNAphe-2), and a pair of primers for internal positive control
- 134 (L-M-12S and H-A-16S)]. The PCR reaction was conducted using the Takara Taq Hot Start
- 135 Version polymerase kit (Takara Bio Inc., Shiga, Japan), with a reaction mixture containing 1.0
- 136 µl of 10X provided buffer, 1.0 µl of provided dNTPs mixture, 1.0 µl each of five primers, 0.06

137	μ l of Takara Taq Hot Start Version polymerase and 0.40 μ l of extracted total genomic DNA as								
138	template, with the total volume brought up to 10 μ l with sterilized water. The PCR								
139	temperature profile was as follows: initial denaturation at 94 °C for 5 min, followed by 35								
140	cycles of denaturation at 94 °C for 15 s, annealing at 53 °C for 15 s and extension at 72 °C for 1								
141	min, with a final extension at 72 °C for 7 min. PCR products, together with a DNA size								
142	standard, were electrophoresed on a 1.5 % agarose gel in TAE buffer and visualized with								
143	ethidium bromide stain.								
144									
145									
146	Results								
147									
148	Nucleotide sequences were obtained for 530 bp containing the part of the mitochondrial proline								
149	transfer RNA gene and the 5' end of the control region for both Kunimasu and Himemasu.								
150	Three variable sites were found among 174 specimens, with two transitions, one transversion								
151	and no indels, thereby yielding three and one haplotypes from Kunimasu and Himemasu,								
152	respectively. No haplotypes were shared between the two species. The names of haplotypes								
153	and their frequency in Kunimasu were as follows: K-01 (85.9 %), K-10 (11.3 %) and K-29								
154	(2.8 %). A representative haplotype of Kunimasu (K-01) was deposited in the DNA Data								
155	Bank of Japan (DDBJ), with the accession number AB774473. The uncorrected pairwise								
156	sequence divergence between species was 0.4–0.6 %. Two diagnostic nucleotide sites were								
157	found, making it possible to design species-specific primers for each species and employ the								
158	MHS-PCR method for discriminating between the two species. Inter- and intraspecific								
159	variations of aligned sequences at the annealing sites of the designed species-specific primers								
160	are shown in Fig. 1, and the MHS-PCR results for each of three specimens each of Kunimasu								
161	and Himemasu in Fig. 2. As predicted, each Kunimasu (lanes 1–3 in Fig. 2) and Himemasu								
162	individual (lanes 4-6 in Fig. 2) showed a species-specific fragment of ca. 900 and ca. 1,040 bp,								

- 163 respectively, plus a common fragment of ca. 1,500 bp.
- 164
- 165
- 166 **Discussion**
- 167

168 Kunimasu has been considered to have a close affinity with Himemasu (Oncorhynchus nerka, 169 otherwise referred to as kokanee or anadromous sockeye salmon) (Sugiyama 2000), although 170their exact evolutionary relationship remained unclear, because only 17 formalin-fixed 171specimens of Kunimasu from the species' original habitat, Lake Tazawa (including the holotype, 172paratype and nontype specimens), were known prior to its rediscovery in Lake Saiko. In 173addition, an attempt to extract DNA from formalin-fixed Kunimasu specimens had resulted in 174failure (Sugiyama 2000). Recently, Muto et al. (2012) suggested that Kunimasu represented one 175of a number of populations of kokanee, based on comparisons of genetic distances obtained 176 from microsatellite DNA data from Kunimasu, Himemasu and populatons of kokanee or 177sockeye salmon from the Pacific rim. Mitochondrial DNA sequence information in the present 178study indicated that the relationship of Kunimasu with Himemasu was the closest amongst 179species of *Oncorhynchus*, the uncorrected pairwise sequence divergence between the former 180 being only 0.4-0.6 %, whereas those between Kunimasu and other Oncorhynchus species were 181 > 5 % (calculated from DDBJ/EMBL/GenBank sequence data: Accession nos. AB039892; 182Oncorhynchus keta, NC010959; O. gorbuscha, NC009263; O. kisutch, NC002980; O. 183tshawytscha, DQ864465; O. masou, NC001717; O. mykiss). 184 The result of MHS-PCR indicated that Kunimasu from Lake Saiko could be clearly 185distinguished from sympatric Himemasu, by differences in the sizes of PCR products. In this 186 method, Oncorhynchus masou, another Oncorhynchus species inhabiting in Lake Saiko, yielded 187 neither of the two species-specific fragments but only the internal positive control fragment (the 188 result not shown). This method is advantageous in time or cost than other molecular

189 identification methods such as PCR restriction fragment length polymorphism (PCR-RFLP) 190 (e.g., Larmuseau et al. 2008) or microsatellite DNA analysis (e.g., Madsen et al. 2009). The 191 method is clearly applicable to field research, including ecological, stock management and 192enhancement, and conservation studies, without any need for further appraisal. It is important 193to note, however, that the method is based upon interspecific differences in mitochondrial 194 (mt)DNA, which is a maternally inherited non-recombinant. Accordingly, identifications 195using mtDNA may not always be appropriate if introgressive hybridization between species is 196 likely. In Lake Saiko, no common haplotype was found between Kunimasu and Himemasu, 197 genetically identified from biparentally-inherited microsatellite DNA analyses, in this study. 198 This suggests that any effects of introgression would be very minor, if present at all, in Lake 199Saiko. Notwithstanding, Muto et al. (2012), reported two specimens, identified as hybrids of 200 Kunimasu and Himemasu, the Himemasu genome being dominant, as preliminary results from 201Lake Motosu, Yamanashi Prefecture, to which eyed eggs of Kunimasu had also been introduced 202in 1935 (Sugiyama 2000). We observed that one of these specimens had a haplotype of 203Kunimasu and the other had a haplotype of Himemasu (data not shown). Furthermore, 204 Yamamoto et al. (2011) and Kogura et al. (2011) reported some mtDNA sequence variation in 205Himemasu, although we found no polymorphism within Himemasu specimens from Lake Saiko 206and Lake Akan. Caution must therefore be exercised when applying MHS-PCR identification 207 techniques for Kunimasu to specimens from lakes other than Lake Saiko.

208

209 Acknowledgments We thank Yasuaki Miura, Y. Watanabe, Hisashi Miura, Hiroshi Miura,

210 Manabu Miura, K. Mitsui, T. Aoyagi, N. Kaji, M. Ohashi, S. Sasaki, M. Nozu and N. Sakai for

- 211 their help in collecting specimens, and A. Tokairin and K. Kimura for their assistance in the
- 212 laboratory. We also thank G. S. Hardy for his critical reading of the manuscript. This study
- 213 was partly supported by the Core Stage Backup Research Fund of Kyoto University and a
- 214 Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science

215 (24370036).
\	

217	References
218	Akitaken Suisanshikenjo (1915) Akitaken Senpoku-gun Tazawako chosahokoku. Akitaken
219	Suisanshikenjo Jigyohokoku 1915:1–136
220	Akitaken Suisanshikenjo (1931) Kunimasu chigyo taikoshiiku shiken. Shikenjohokoku,
221	Akitaken Suisanshikenjo 1929:110–116
222	Durand JD, Diatta MA, Diop K, Trape S (2010) Multiplex 16S rRNA haplotype-specific PCR, a
223	rapid and convenient method for fish species identification: an application to West
224	African clupeiform larvae. Mol Ecol Resour 10:568-572
225	Eschmeyer WN (2012) Catalog of fishes, online version. California Academy of Sciences, San
226	Francisco.
227	http://researcharchive.calacademy.org/research/ichthyology/catalog/index.asp.
228	Accessed 20 June 2012
229	Hikita T (1962) Ecological and morphological studies of the genus Oncorhynchus (Salmonidae)
230	with particular consideration on phylogeny. Sci Rep Hokkaido Salmon Hatchery
231	17:1–97
232	Hosoya K (2002) Salmonidae. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the
233	species English edn. Tokai University Press, Tokyo, pp 299–304, 1473–1474
234	Jordan DS, Hubbs CL (1925) Record of fishes obtained by David Starr Jordan in Japan, 1922.
235	Mem Carnegie Mus 10:93–346, pls 5–12
236	Kaeriyama M (1993) Life history of sockeye salmon released from hatchery. Tech Rep
237	Hokkaido Salmon Hatchery 162: 57–61
238	Kawaguchi A, Miya M, Nishida M (2001) Complete mitochondrial DNA sequence of Aulopus
239	japonicus (Teleostei: Aulopiformes), a basal Eurypterygii: longer DNA sequences
240	and higher-level relationships. Ichthyol Res 48:213-223

241	Kogura Y, Seeb JE, Azuma N, Kudo H, Abe S, Kaeriyama M (2011) The genetic population
242	structure of lacustrine sockeye salmon, Oncorhynchus nerka, in Japan as the
243	endangered species. Environ Biol Fish 92:539–550
244	Larmuseau MHD, Guelinckx J, Hellemans B, Van Houdt JKJ, Volckaert FAM (2008) Fast
245	PCR-RFLP method facilitates identification of Pomatoschistus species from the
246	North Atlantic. J Appl Ichthyol 24:342–344
247	Madsen ML, Fevolden SE, Christiansen JS (2009) A simple molecular approach to distinguish
248	between two Arctic gadoid fishes Arctogadus glacialis (Peters, 1874) and
249	Boreogadus saida (Lepechin, 1774). Polar Biol 32:937-939
250	Matsui S, Nakayama K, Kai Y, Yamashita Y (2012) Genetic divergence among three morphs
251	of Acentrogobius pflaumii (Gobiidae) around Japan and their identification using
252	multiplex haplotype-specific PCR of mitochondrial DNA. Ichthyol Res 59: 216–222
253	Muto T, Nakayama K, Nakabo T (2012) Distinct genetic isolation between "Kunimasu"
254	(Oncorhynchus kawamurae) and "Himemasu" (O. nerka) in Lake Saiko, Yamanashi
255	Prefecture, Japan, inferred from microsatellite analysis. Ichthyol Res DOI
256	10.1007/s10228-012-0323-x
257	Nakabo T, Nakayama K, Muto N, Miyazawa M (2011) Oncorhynchus kawamurae
258	"Kunimasu," a deepwater trout, discovered in Lake Saiko, 70 years after extinction in
259	the original habitat, Lake Tazawa, Japan. Ichthyol Res 58:180–183
260	Nakabo T (2011) "Kunimasu" Oncorhynchus kawamurae (Pisces: Salmonidae), 70 years after
261	extinction in Lake Tazawa, Akita Prefecture, Japan. Taxa Proc Jpn Soc Syst Zool
262	30:31–54
263	Okuyama J (1939) Tazawako no seisei, hensen oyobi rikufu sareta seibutsu ni tsuite. Hokko
264	47:35–49
265	Oshima M (1941) Sake-masu zoku no kishu Tazawako no Kunimasu ni tsuite. Nippon Gakujutu
266	Kyokai Hokoku 16:254–259

267	Rocha-Olivares A (1998) Multiplex haplotype-specific PCR: a new approach for species
268	identification of the early life stages of rockfishes of the species-rich genus Sebastes
269	Cuvier. J Exp Mar Biol Ecol 231:279–290
270	Sato S, Ando J, Ando H, Urawa S, Urano A, Abe S (2001) Genetic variation among Japanese
271	populations of chum salmon inferred from the nucleotide sequences of the
272	mitochondrial DNA control region. Zool Sci 18:99-106
273	Sommer SS, Groszbath AR, Bottema CDK (1992) PCR amplification of specific alleles (PASA)
274	is a general method for rapidly detecting known single-base changes. BioTechniques
275	12:82–87
276	Sugiyama H (2000) Tazawako maboroshi no sakana: Kunimasu hyakka. Akita Sakigake
277	Shimpo, Akita
278	Tanaka A (1911) Kosho no kenkyu. Shincho-sha, Tokyo
279	Teletchea F (2009) Molecular identification methods of fish species: reassessment and possible
280	applications. Rev Fish Biol Fisher 19:265–293
281	Watanabe G, Umetsu K (2007) Examination of the primers for allele-specific PCR
282	amplification. Jpn J Forensic Sci Tech 12: 121–125
283	Yamamoto S, Kitamura S, Sakano H, Morita K (2011) Genetic structure and diversity of
284	Japanese kokanee Oncorhynchus nerka stocks as revealed by microsatellite and
285	mitochondrial DNA markers. J Fish Biol 79: 1340–1349
286	Yamanoue Y, Mabuchi K, Sawai E, Sakai Y, Hashimoto H, Nishida M (2010) Multiplex
287	PCR-based genotyping of mitochondrial DNA from two species of ocean sunfish
288	from the genus Mola (Tetraodontiformes: Molidae) found in Japanese waters. Jpn J
289	Ichthyol 57:27–34
290	
291	
292	

293	Figure	legends
100	I Igui C	icgenus

295	Fig. 1 Partial	sequences of mitochondrial	DNA control region and	proline transfer RNA gene of
-----	----------------	----------------------------	------------------------	------------------------------

- 296 Kunimasu Oncorhynchus kawamurae and Himemasu O. nerka. Annealing locations of
- 297 species-specific primers designed in this study indicated by arrows. *Dots* indicate nucleotides
- 298 identical to those of haplotype K-01. Nucleotide positions numbered from the 5'-end of
- 299 determined sequences. Shaded areas represent target sequences of the species-specific primers.
- 300 All haplotypes found in this study are presented
- 301
- 302 Fig. 2 An ethidium bromide-stained 1.5 % agarose gel with TAE buffer after electrophoresis of
- 303 the MHS-PCR products. Lanes 1–3: Kunimasu Oncorhynchus kawamurae (lane1–3
- 304 correspond to K-01, K-10 and K-29 haplotypes, respectively), lanes 4–6: Himemasu O. nerka,
- lane 7: 100-bp DNA ladder size marker (Takara Bio Inc., Shiga, Japan). K, H and IC represent
- 306 species-specific fragments for Kunimasu (ca. 900 bp), Himemasu (ca. 1,040 bp) and internal
- 307 positive control, respectively
- 308

	50	60	70	80	90	100
On-s	SPL TAAACTAC	CCTCTGACGG	CTAC			
Г К-01	ΑΤΤΑΑΑСΤΑΟ	CCTCTGACGG	CGATAACACG	C A C A T T T G T A	AATGTTATAA	CTTGTAAACC
Kunimasu K-10						
L K-29			G			
Himemasu H-01	•••••	• • • • • • • • • • •	C			
L H-21			C			
	110	120	120	1.40	1.50	1.60
	110	120	130	140	150	160
Г К-01	CAATGTTATA	CTACATCTAT	GTATAATATT	ACATATTATG	TATTTACCCA	ΤΑΤΑΤΑΤΑΟ
Kunimasu K-10						
∟ к-29						
Himemasu H-01						
H-21						
	170	180	190	200	210	220
			Ok-spL ATTAT	CAACATACRG	тббтбтс>	
Г К-01	T G C A C	ТАСТАСАТТА	TATGTATTAT	CAACATACGG	TGGTTTCAAC	СССТСАТАТА
Kunimasu K-10				A .		
└ к-29						
Himemasu H-01					Т	
H-21					T	

Fig. 2