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Abstract 

 During the healing process after bone fracture, soft callus forms adjacent to 

the fracture site, is replaced by hard callus, and is finally remodeled to the original bone 

configuration. Although the cambium layer of the periosteum is reported to play an 

essential role in callus formation, we still lack direct in vivo evidence of this. To 

investigate the cell lineage of the soft callus, we analyzed the process of fracture healing 

in Prx1-Cre;ROSA26 reporter (R26R), Col1a1(3.6 kb)-Cre;R26R, Col1a1(2.3 kb)-

Cre;R26R, Sox9-CreERT2;R26R, and Sox9-LacZ mice with X-gal staining. In the Prx1-

Cre;R26R, in which the cells of the periosteum stained for X-gal before fracture, all 

cells in the soft callus were X-gal positive, whereas in the Col1a1(3.6 kb)-Cre;R26R 

mice, the cells in the periosteum before fracture stained for X-gal and the soft callus 

was partly composed of X-gal-positive cells. In contrast, in the Col1a1(2.3 kb)-

Cre;R26R mice, in which the mature osteoblasts in the cambium layer of the periosteum 

were marked before fracture, no cells in the soft callus at the fracture site were X-gal 

positive. These results suggest that most of the cells in the soft callus are derived from 

the mesenchymal progenitors in the periosteum, and not from mature osteoblastic cells. 

Interestingly, in the Sox9-LacZ mice, Sox9-expressing X-gal-positive cells emerged in 

the periosteum adjacent to the fracture site three days after fracture. We demonstrated 

this by injecting tamoxifen into the Sox9-CreERT2;R26R mice for three days after 

fracture, so that these Sox9-expressing periosteal cells gave rise to cells in the soft and 

hard calli. Our findings show that the periosteal cells in which Sox9 expression is 

induced just after fracture are the major source of the chondrocytes and osteoblasts in 

the fracture callus. 
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Introduction 

 Bone is a highly organized and specialized connective tissue and is composed 

of two structural types, cortical and cancellous bone. The external and internal surfaces 

of the cortical bone are covered by the periosteum and endosteum, respectively. 

Microscopically, the periosteum is composed of an outer fibrous layer containing cells 

that synthesize collagen fibers and an inner cambium layer consisting of osteoblasts, 

fibroblasts, and mesenchymal progenitor cells with the capacity to differentiate into 

osteoblasts and chondrocytes [1]. The spaces in cancellous bone are filled with various 

types of marrow cells, including pluripotent marrow stromal cells.  

 Broken bones undergo processes of endochondral ossification and 

intramembranous ossification that recapitulate certain aspects of skeletal development. 

The fracture healing process is partitioned into four stages based on histological 

observations [2]. The inflammatory stage begins immediately after the bone is fractured, 

in association with the disruption of the surrounding soft tissues, bleeding within the 

fracture area, and distortion of the marrow architecture, which lead to local 

inflammation and the formation of a hematoma. At this stage, stem cells originating 

from multiple sources are likely to be committed to and initiate the cell lineages 

involved in bone repair and vascularization. At the stage of soft callus formation, the 

adjacent periosteum becomes thickened and cartilage tissues appear outside the bone. 

Discrete cartilaginous regions grow progressively and bridge the fractured bone 

fragments. This cartilaginous template of the soft callus is then replaced by bone, 

resulting in the formation of a hard callus (the hard callus formation stage). The hard 

callus is remodeled by osteoclasts and osteoblasts and returns to the original cortical and 
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trabecular bone configuration (the bone remodeling stage).   

 Several possible sources of the cells that produce bone and cartilage at the 

fracture site have been identified. Although previous studies have reported potential 

sources of stem cells or progenitor cells in the bone marrow, endosteum, vessel walls, 

surrounding soft tissues (including muscle and adipose tissues), and the circulation, the 

periosteum plays a crucial role in fracture healing [3-5]. Periosteal damage or removal 

results in delayed healing of the fracture [6]. Colnot showed that the periosteum is a 

major source of osteoblasts and chondrocytes during fracture healing [7]. In particular, 

the cambium layer is the component of the periosteum essential for bone formation. Ito 

et al. cultured rabbit periosteal explants and showed that the chondrocyte precursors 

were located in the cambium layer of the periosteum and that chondrogenesis took place 

in the juxtaosseous area in the cambium layer [8]. However, we still lack direct in vivo 

evidence of the progenitor cells in the periosteum and their contribution to fracture 

healing.  

 The transcription factor Sox9 is expressed in all chondroprogenitor cells and 

plays an essential role in chondrogenesis [9]. Cell fate mapping in Sox9-Cre;ROSA26 

reporter (R26R) mice revealed that Sox9-expressing limb bud mesenchymal cells give 

rise to both chondrocytes and osteoblasts, indicating that Sox9 defines 

osteochondroprogenitor cells during skeletogenesis [10]. We also generated a mouse 

strain that inducibly expresses Cre recombinase in Sox9-expressing cells [11]. An IRES-

CreERT2-pA cassette was inserted into the 3’ untranslated region of the Sox9 gene, 

resulting in Cre recombinase expression directly under Sox9 cis-regulatory control via 

the production of a bicistronic Sox9-Cre recombinase mRNA. The administration of 

tamoxifen to offspring of crosses between Sox9-CreERT2 and R26R mice efficiently 
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induced the expression of the Cre reporter in Sox9-expressing cells. The advantage of 

this genetic system in examining gene expression patterns is that the R26R strain 

provides a permanent lineage record through its constitutive X-gal expression in cells 

that express Cre recombinase, even transiently, in the precursor cells of different cell 

lineages. Therefore, this mouse line has been useful for tracing Sox9-expressing 

osteochondroprogenitor cells in vivo. In this study, using several Cre drivers, we found 

that osteochondroprogenitor cells are initiated in the periosteum adjacent to the fracture 

site and are the major source of the soft callus.  

 

Materials and methods 

Animals 

 Prx1-Cre mice, Col1a1(2.3 kb)-Cre mice, Sox9-LacZ knock-in mice, Sox9-

CreERT2 mice, and R26R mice have been reported previously [11-15]. Col1a1(3.6 kb)-

Cre mice were purchased from the Jackson Laboratory.  

 

Tibia fracture model 

 Eight-week-old Prx1-Cre;R26R, Col1a1(3.6 kb)-Cre;R26R, Col1a1(2.3 kb)-

Cre;R26R, Sox9-LacZ, and Sox9-CreERT2;R26R mice were used to prepare the tibia 

fractures. Each mouse was anesthetized with 50–100 mg/kg pentobarbital administered 

intraperitoneally. The skin, subcutaneous tissues, and fascia were incised along the 

anterior part of the left leg and retracted medially, and the tibia was exposed. The mid-

diaphysis of the tibia was fractured using scissors, without stripping off the periosteum. 

Three to five animals were analyzed for each mouse line. 
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Histological analysis 

 The fractured tibiae were collected 3, 5, 7, 14, 21, or 28 days after surgery as 

indicated in each mouse line. The fresh tibia samples were quickly embedded in OCT 

compound medium (Sakura Finetek) for cryosectioning and sectioned at a thickness of 

8 µm. After the sectioned samples were fixed in 0.2% glutaraldehyde/2% formaldehyde, 

they were stained by 0.15% (w/v) Alcian blue (pH 2.5) and hematoxylin/eosin or with 

X-gal solution overnight at 37 °C and counterstained with Nuclear Fast Red as 

described previously [16].   

 

Results 

Process of fracture healing in mouse tibia 

 We first clarified the process of callus formation during the healing of mouse 

tibia fractures using histology with Alcian blue and hematoxylin/eosin staining (Fig. 1a 

and b). On day 3 after surgery, the periosteum adjacent to the fracture site started to 

thicken. On day 7, soft callus formation was distinguished by Alcian blue staining, and 

the soft callus was replaced by bone to form the hard callus. On day 14, the soft callus 

had diminished, and a large part of the callus was occupied by hard callus. On days 21 

and 28, the hard callus was remodeled, and newly formed periosteum and bone marrow 

were detected.    

 

Cells derived from Prx1-promoter-active pluripotent mesenchymal cells and Col1a1(3.6 

kb)-promoter-active premature mesenchymal cells predominantly contribute to soft 

callus formation in fracture healing 
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 We clarified the cell lineage of the soft callus using Prx1-Cre;R26R mice. 

Because Prx1 is expressed in the pluripotent mesenchymal cells of mouse limb buds as 

early as E9.0, before either an osteoblastic or a chondrogenic lineage has been separated 

[12], all mesenchymal tissues are derived from Prx1-expressing pluripotent cells. On 

day 0 before fracture, X-gal-positive cells were found in the periosteum, cortical bone, 

and endosteum. A small number of X-gal-positive cells were also detected in the bone 

marrow of the diaphysis (Fig. 2a and b). The cells in the growth plate and metaphyseal 

bones were X-gal positive. On day 7 after surgery, all cells in the soft callus were X-gal 

positive (Fig. 2c and d), and on day 14, all the cells in both the soft callus and hard 

callus were stained for X-gal (Fig. 2e and f). On days 21 and 28, X-gal-positive cells 

were localized in the remodeled bones and the newly formed periosteum (Fig. 2g-j). 

Thus, all the cells in the callus may have derived from cells that originated from Prx1-

expressing mesenchymal cells and that localized in the periosteum, endosteum, and/or 

bone marrow.  

 Next, we induced fractures in the tibiae of Col1a1(3.6 kb)-Cre;R26R mice, in 

which the Col1a1(3.6 kb) promoter is active in premature mesenchymal cells and 

osteoblastic cells. On day 0 before fracture, X-gal-positive cells were found in the 

periosteum, cortical bone, and endosteum. A small number of X-gal-positive cells were 

also detected in the bone marrow of the diaphysis (Fig. 3a and b). The cells in the 

metaphyseal bones were X-gal positive. On day 7 after surgery, a large number of X-

gal-positive cells dramatically emerged in the thickened periosteum adjacent to the 

fracture site, and a proportion of the cells in the soft callus stained for X-gal (Fig. 3c-e). 

On days 14 and 21, most cells in the soft and hard calli and in the newly formed 

periosteum were X-gal positive (Fig.3f-i). On day 28 after surgery, X-gal-positive cells 
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were localized in the remodeled bones (Fig. 3j). These findings suggest that although 

Col1a1(3.6 kb)-expressing cells located in the periosteum, endosteum, and/or bone 

marrow may contribute to the formation of the soft callus, a proportion of the cells in 

the soft callus are probably derived from Col1a1(3.6 kb)-promoter-active mesenchymal 

progenitors in the periosteum adjacent to the fracture site.   

 

Mature osteoblasts in the periosteum and endosteum do not give rise to chondrocytes in 

the soft callus 

 To identify the cells in the periosteum that contribute to the formation of the 

soft callus, we marked mature osteoblasts using Col1a1(2.3 kb)-Cre;R26R mice. On day 

0 before fracture, X-gal-positive cells were detected in the cambium layer of the 

periosteum and endosteum, indicating that they were mature osteoblasts (Fig. 4a and b). 

The cells in the cortex and a small number of cells in the metaphyseal bones were X-gal 

positive. However, in contrast, there were no X-gal-positive cells in the bone marrow of 

the diaphysis. On days 7 and 14 after surgery, a large number of X-gal-positive cells 

were detected in the hard callus but not in the soft callus (Fig. 4c-f). On days 21 and 28, 

X-gal-positive cells were detected in the remodeled bones (Fig. 4g-j). These results 

indicate that the Col1a1 (2.3 kb)-expressing mature osteoblasts in the periosteum and 

endosteum did not give rise to the cells in the soft callus. 

 

Sox9-expressing cells emerge transiently in the periosteum adjacent to the fracture site 

 Our previous approaches based on mouse genetics have demonstrated that 

Sox9 defines osteochondroprogenitor cells and that Sox9 is essential for chondrogenesis 

[9, 10]. Therefore, Sox9 expression should be induced in the cells that differentiate into 
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chondrocytes in the soft callus. To investigate Sox9 expression closely during an early 

stage of fracture healing, we induced fractures in Sox9-LacZ knock-in mice [14]. On 

day 0 before surgery, there were no X-gal-positive cells in the bones, including in the 

periosteum, endosteum, and bone marrow (Fig. 5a and b). In contrast, the growth plate 

chondrocytes were X-gal positive. On day 3 after surgery, a small number of X-gal-

positive cells emerged in the cambium layer of the periosteum adjacent to the fracture 

site (Fig. 5c-e). On day 5, X-gal-positive cells were located only in the soft callus and 

the thickened periosteum adjacent to the fracture site (Fig. 5f and g). These findings 

indicate that Sox9-expressing chondroprogenitor cells are induced in the periosteum 

adjacent to the fracture site. 

 

Sox9-expressing cells in the periosteum predominantly contribute to the formation of 

the soft callus during fracture healing 

 To trace the fate of Sox9-expressing chondroprogenitor cells in the periosteum 

adjacent to the fracture site, we injected tamoxifen peritoneally into Sox9-

CreERT2;R26R mice for three days after surgery [11]. On day 3 after surgery and 

tamoxifen injection, no X-gal-positive cells were detected in the bones, including the 

periosteum, endosteum, and bone marrow (Fig. 6a and b). In contrast, the growth plate 

chondrocytes were X-gal positive. On day 5, X-gal-positive cells were detected in the 

thickened periosteum and the soft callus (Fig. 6c and d). On days 7 and 14, the cells in 

the soft and hard calli were X-gal positive (Fig. 6e-h). On day 28, X-gal-positive cells 

were detected in the newly formed periosteum and the remodeled bone tissues (Fig. 6i 

and j). These results indicate that the periosteal cells in which Sox9 expression was 
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induced just after fracture gave rise to the chondrocytes and osteoblasts in the fracture 

callus and the cells in the newly formed periosteum during fracture healing. 

 

Discussion 

 During the process of fracture healing, pluripotent mesenchymal progenitor 

cells must be recruited to the fracture site. These cells differentiate into chondrocytes  

and osteoblasts and contribute to the formation of the soft and hard calli. Several 

sources of these cells have been detected. Tavassoli and Crosby and Friedenstein et al. 

demonstrated the existence of mesenchymal stem cells in the bone marrow [17, 18]. 

Farrington-Rock et al. and Brighton and Hunt reported that pericytes can potentially 

differentiate into chondrocytes [3, 19]. Lee et al. and Usas et al. showed evidence that  

muscle-derived cells adjacent to the bone tissues play a role in fracture healing because 

of their osteogenic potential [5, 20]. Circulating progenitor cells in the bloodstream are 

also recruited to the fracture site through the stromal cell-derived factor-1/CXCR4 axis 

and develop a favorable environment for fracture healing by enhancing angiogenesis 

and osteogenesis [21]. However, when Colnot performed cell lineage analyses by 

transplanting bone grafts, she demonstrated that the bone itself is the main local source 

of cells for bone repair [7]. Osteoblasts and osteocytes originate from the periosteum, 

bone marrow, and endosteum, indicating that these three tissues contribute 

simultaneously to the formation of new bone. Chondrocytes within the fracture callus 

are primarily derived from the periosteum. This finding is supported by previous studies 

[22]. Periosteal damage or removal delays fracture healing because the local sources of 

pluripotent mesenchymal progenitor cells are thereby removed.  
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  The current mouse genetics approach based on the Cre/loxP recombination 

system allows us to define cell lineages at the cellular level. In this study, we first 

demonstrated that the osteochondroprogenitor cells in the periosteum make a distinct 

cellular contribution to the soft callus. Prx1 is a homeobox-containing gene that starts to 

be expressed in all limb bud mesenchymal cells at E9.0, before Sox9 is expressed [12]. 

We have previously reported that conditional Sox9-null mutants harboring a Prx1-Cre 

transgene showed a complete lack of both cartilage and bone in their limbs [9]. 

Moreover, in Prx1-Cre;R26R embryos, all the cells in the skeletal elements, the 

fibroblasts in the connective tissues, and the tendon cells and the synovial cells were X-

gal positive. Hence, Prx1-expressing undifferentiated limb bud mesenchymal cells, 

including Sox9-expressing osteochondroprogenitor cells, differentiate into all the 

mesenchymal cell populations. In Prx1-Cre;R26R mice, the periosteum, endosteum, and 

a small number of the cells in the bone marrow were X-gal positive, and almost all of 

the soft callus was also X-gal positive. This finding corresponds, in part, to that of 

Kawanami et al. in Prx1-CreER transgenic mice [23]. They found that Prx1-expressing 

periosteal cells differentiated into chondrocytes and osteoblasts in the fracture callus, 

further supporting the notion that Prx1-expressing cells in the periosteum are 

osteochondroprogenitor cells. We also analyzed fracture healing in Col1a1(3.6 kb)-

Cre;R26R mice. The 3.6-kb Col1a1 promoter is active in mesenchymal progenitor cells,  

immature preosteoblasts, and mature osteoblasts [24]. In the Col1a1(3.6 kb)-Cre;R26R 

mice, the cells in the periosteum, endosteum, and a small number of the cells in the 

bone marrow were X-gal positive, and a proportion of the cells in the soft callus were 

X-gal positive. In contrast, in Col1a1(2.3 kb)-Cre;R26R mice, a few cells in the 

periosteum and endosteum were X-gal positive because the 2.3-kb Col1a1 promoter is 
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active in mature osteoblasts and osteocytes [25, 26], but no chondrocytes in the soft 

callus were X-gal positive. The contribution to callus formation during fracture healing 

of cells that are Prx1- and Col1a1(3.6 kb)-promoter silent before fracture has not yet 

been clarified. However, our results indicate that a large proportion of chondrocytes in 

the soft callus at the fracture site are probably derived from cells originating from Prx1-

promoter-active mesenchymal progenitor cells in the bone tissue. Col1a1(3.6 kb)-

expressing cells in the periosteum also partly contribute to the formation of the soft 

callus. 

 We have previously shown that Sox9 defines osteochondroprogenitor cells [9]. 

In Sox9-LacZ mice, no cells in the periosteum express Sox9, suggesting that the 

pluripotent mesenchymal cells in the periosteum are not committed 

osteochondroprogenitor cells in the healthy condition. However, three days after a 

fracture occurs, the periosteal cells in the cambium layer adjacent to the fracture site 

transiently express Sox9. Therefore, we injected tamoxifen into Sox9-CreERT2;R26R 

mice for three days after fracture to label the Sox9-expressing periosteal cells and traced 

the fate of those cells. Interestingly, many X-gal-positive cells were detected in and 

around the soft and hard calli, indicating that the Sox9-expressing periosteal cells 

adjacent to the fracture site give rise to chondrocytes and osteoblasts in the fracture 

callus and in the newly formed periosteal tissues overlying the callus. Kawanami et al. 

showed that Prx1-expressing periosteal cells differentiate into undifferentiated cells, 

some of the chondrocytes in the soft callus, osteoblasts, and cells in the newly formed 

periosteum [23]. Taking all these findings together, pluripotent mesenchymal progenitor 

cells in the periosteum that originate from Prx1-expressing mesenchymal cells give rise 

to Sox9-expressing osteochondroprogenitor cells during fracture healing, a process that 
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recapitulates endochondral ossification in limb bud development. Sox9-expressing 

osteochondroprogenitor cells, possibly derived from Col1a1(3.6 kb)-expressing cells, 

emerged in the thickened periosteum adjacent to the fracture site and make a major 

contribution to the formation of the soft callus.    

 In conclusion, this cell lineage analysis using a mouse genetics approach has 

demonstrated that the periosteum plays a central role in soft callus formation during 

fracture healing. The pluripotent mesenchymal progenitor cells in the periosteum are 

committed to becoming Sox9-expressing osteochondroprogenitor cells shortly after a 

fracture occurs and differentiate into chondrocytes, osteoblasts, and periosteal cells. 

Further research is required to confirm how much Sox9-expressing 

osteochondroprogenitor cells contribute to fracture repair, and to isolate a pure 

population of Sox9-expressing cells from the periosteum, to determine the cellular and 

molecular characteristics of the periosteal osteochondroprogenitor cells.  
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Figure legends 

Fig. 1 

 A process of tibial fracture healing. Longitudinal sections through a mouse tibia 

stained with Alcian blue and hematoxylin/eosin. (a) Low magnification. (b) High 

magnification of the dotted box in (a). PO: periosteum; BM: bone marrow; SC: soft 

callus; HC: hard callus; RB: remodeled bone. Scale bar = 1 mm for (a) and 500 µm for 

(b).      

 

Fig. 2 

 Tibia fracture in Prx1-Cre;R26R mice. (a) X-gal-positive cells are found in the 

periosteum, cortical bone, and endosteum on day 0. Scale bar = 1 mm. (b) High 

magnification of (a). Arrowheads indicate X-gal-positive cells in the bone marrow. 

Scale bar = 100 µm. (c and e) Soft and hard calli are X-gal positive on days 7 and 14. (d 

and f) High magnification of (c) and (e). (g and i) Remodeled bone and the newly 

formed periosteum are X-gal positive on days 21 and 28. (h and j) High magnification 

of (g and i). MB: metaphyseal bone; GP: growth plate; PO: periosteum; EO: endosteum; 

BM: bone marrow; SC: soft callus; HC: hard callus; RB: remodeled bone. Scale bar = 

1mm for (c, e, g, and i) and 500 µm for (d, f, h, and j).      

 

Fig. 3  

 Tibia fracture in Col1a1(3.6 kb)-Cre;R26R mice. (a) X-gal positive-cells are found in 

the periosteum, cortical bone, and endosteum on day 0. Scale bar = 1 mm. (b) High 

magnification of (a). Arrows indicate X-gal-positive cells in the periosteum and 
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endosteum. Arrowheads indicate X-gal-positive cells in the bone marrow. Scale bar = 

100 µm. (c) Cells in the soft callus and the thickened periosteum adjacent to the fracture 

site are X-gal positive on day 7. (d and e) High magnification of the dotted bone and the 

solid box in (c). (f) Cells in the hard callus are X-gal positive on day 14. (g) High 

magnification of the dotted box in (f). (h and j) X-gal-positive cells are detected in the 

remodeled bone and the newly formed periosteum on days 21 and 28. (i) High 

magnification of the dotted box in (h). MB: metaphyseal bone; GP: growth plate; PO: 

periosteum; EO: endosteum; BM: bone marrow; SC: soft callus; HC: hard callus. Scale 

bar = 1mm for (c, f, h, and j) and 500 µm for (d, e, g, and i).      

 

Fig. 4  

 Tibia fracture in Col1a1(2.3 kb)-Cre;R26R mice. (a) X-gal-positive cells are found in 

the periosteum, cortical bone, and endosteum on day 0. Scale bar = 1 mm. (b) High 

magnification of (a). Scale bar = 100 µm. (c and e) Cells in the hard callus are X-gal 

positive on days 7 and 14. (d and f) High magnification of (c) and (e). (g and i) Cells in 

the remodeled bone are X-gal positive on days 21 and 28. (h and j) High magnification 

of (g) and (i). MB: metaphyseal bone; GP: growth plate; PO: periosteum; EO: 

endosteum; BM: bone marrow; SC: soft callus; HC: hard callus; RB: remodeled bone. 

Scale bar = 1mm for (c, e, g, and i) and 500 µm for (d, f, h, and j).      

 

Fig. 5 

 Tibia fracture in Sox9-LacZ mice. (a) No X-gal-positive cells are found in the bones on 

day 0. Scale bar = 1 mm. (b) High magnification of (a). Growth plate chondrocytes are 

X-gal positive. Scale bar = 100 µm. (c) Low magnification of fractured tibia on day 3. 
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(d) High magnification of the dotted box in (c). No X-gal-positive cells are apparent 

around the fracture site. (e) High magnification of the dotted boxes in (d). A small 

number of X-gal-positive cells are found in the periosteum adjacent to the fracture site 

(arrowheads). (f) Low magnification of the fractured tibia on day 5. (g) High 

magnification of the dotted boxed in (f). All chondrocytic cells in the soft callus are X-

gal positive. A large number of X-gal-positive cells are apparent in the thickened 

periosteum adjacent to the fracture site. MB: metaphyseal bone; GP: growth plate; PO: 

periosteum; EO: endosteum; BM: bone marrow; SC: soft callus. Scale bar = 1mm for (c, 

d, and f) and 100 µm for (e and g).      

 

Fig. 6  

 Tibia fracture in Sox9-CreERT2;R26R mice. The mice were injected with tamoxifen 

for three days after surgery. (a) No X-gal-positive cells are found in the bones on day 0. 

Scale bar = 1 mm. (b) High magnification of (a). Growth plate chondrocytes are X-gal 

positive. Scale bar = 100 µm. (c) Cells in the soft callus are X-gal positive on day 5. (d) 

High magnification of (c). (e and g) X-gal-positive cells are found in the soft and hard 

calli on days 7 and 14. (f and h) High magnification of the dotted boxes in (e) and (g). 

(i) The cells in the remodeled bone and the newly formed periosteum are positive for X-

gal on day 28. (j) High magnification of the dotted box in (i). Arrowheads indicate X-

gal-positive cells in the periosteum. MB: metaphyseal bone; GP: growth plate; PO: 

periosteum; EO: endosteum; BM: bone marrow; SC: soft callus; HC: hard callus; RB: 

remodeled bone. Scale bar = 1mm for (c, e, g, and i) and 500 µm for (d, f, h, and j). 














