<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>研究論文 小学校第1学年算数科単元「面積」におけるパフォーマンス評価 および「だまし絵」作りの実践分析を通して</td>
</tr>
<tr>
<td>稼部</td>
<td>山本 はるか</td>
</tr>
<tr>
<td>投稿日</td>
<td>教育方法の探究</td>
</tr>
<tr>
<td>決定日</td>
<td>教育方法の探究</td>
</tr>
<tr>
<td>正面</td>
<td>教育方法の探究</td>
</tr>
<tr>
<td>右面</td>
<td>教育方法の探究</td>
</tr>
<tr>
<td>パルクレ</td>
<td>教育方法の探究</td>
</tr>
</tbody>
</table>

URL: https://doi.org/10.14989/190400

The text version is published by Kyoto University.
【研究論文】

小学校第5学年算数科単元「面積」におけるパフォーマンス評価
——「だまし絵」作りの実践分析を通して——

山本 はるか

1. はじめに

本稿では、2012年度に行った、京都市立高倉小学校（以下、高倉小学校）と京都市立大学教育学研究科教育方法学講座教育方法学科分野（以下、教育方法学科研究室）の大学院生の共同研究での実践を取り上げる。

2003年度からはじまったこの共同研究は、今年度で10年目を迎える。各年度のテーマや組織の体制に応じて共同研究のあり方を変化させてきたが、大学院生は日常的かつ継続的に高倉小学校の授業研究に関わり、教材研究、指導案検討、授業参観、授業感想のフィードバックを行ってきた。ここでの大学院生の役割は、日々の授業を記録し分析する「スコアラー」であり、単元の構想や指導技術などに関する研究的・実践的蓄積を教師の要望に応じて提供する「情報ポータル」であった。さらに大学院生は、教師が持っている願いを理解し、教師が感じている課題を共有し解決しようとする、教師の「伴走者」であることを意識してきた。

2010年度には、当時の高倉小学校の校長先生が、パフォーマンス評価を研究に取り入れたいと提案されたことを契機に、新たな共同研究のあり方が模索された。それと同時に大学院生も、教育方法学科研究室の指導教員である田中耕治氏、西岡加名恵氏が取組む教育評価研究に学びながら、教師が教える子ども像の実現に向けて、教師と子どもに寄り添い、パフォーマンス評価研究と学校現場の「橋渡し」を行うという、新たな役割を担うこととなった。2010年度は一部の授業で導入されたパフォーマンス評価であったが、2011年度には、高倉小学校算数科研究部全体でパフォーマンス評価を軸に据えた授業研究に取り組むことが決定され、本年度もこの研究体制を維持・継続することとなった。

本稿では、以上の共同研究体制のもと実施された、第5学年担任の向井文子先生による、単元「面積」におけるパフォーマンス評価実践に注目する。この単元は、2012年11月の高倉小学校の研究発表会で行われた研究授業を含むものである。本稿ではまず、パフォーマンス評価の理論とともに、これまでの第5学年の単元「面積」における実践からの中から、「面積」を学習するにあたって子どもたちがかすまやすいポイントを整理する。その上で、向井先生が作成された指導案とその指導案にもとづく授業実践を見ていく。

2. 「パフォーマンス評価」に関する理論的整理

（1）「真正の評価」論

パフォーマンス評価は、「真正の評価（authentic assessment）」論という評価の考え方に依拠するものである3。「真正の評価」論は、米国において学力向上が強調された1980年代後半に登場した。当時の米国では「危機に立つ国家（A Nation at Risk）」が提出され、各学区や学校で教育成果を評価し、説明責任の要請に応えるために「標準テスト（standardized test）」で教育成果を評価する動きが高まっていた。この動向に対して、標準テストで真に学校の教育成果を評価できるのか、という疑問や批判が提出された。なぜなら標準テストにおいては、日常の授業場面を断絶した作業的な問題を子どもたちに課しており、標準テストで良い成績をおさめたとしても、それは子どもたちにとって生きて働く学力が身についたとは言えないと考えられたためである。そこで生まれたのが「真正の評価」論である4。

「真正の評価」論の特徴を、田中耕治は資料1に示す6点にまとめている。それは、評価がテストのために行われるのではなく、子どもたちの日常生活に即したものであること、子どもたちが無能で受動的な存在としてではなく、有能で自ら知を構成する存在として捉えること、学習の過程に注目すること、評価方法を教師
も学習者も選択でき、そのような評価を通じて
子どもが自らの学習を自己評価すること、そのような
評価は教室内で教師だけに閉じられたものにすること
ではなく、保護者や地域住民も巻き込んで行われるもの
であること、というものである。

資料１「真正な評価」論の特徴

1. 評価の文脈が「真正性」を持っていること
2. 構成主義的な学習観を前提としていること
3. 評価は学習の結果だけでなくプロセスを重視す
 ること
4. 学習した成果を評価する方法を開発し、さらに
 は子どもたちも評価方法の選択ができること
5. 評価は自己評価を促すものであること
6. 評価は教師と子どもとの、さらには保護者や地
 域住民も含む参加と共同の実践であること

（2）パフォーマンス課題

以上の特徴を通じて「真正な評価」論における「学習
した成果を評価する方法」がパフォーマンス評価であ
る。ここでのパフォーマンスとは、「自分の考え方や感
じ方といった内面の精神状態を身振りや動作や絵話や
言語などの媒体を通じて外面に表出すること、または
そのように表出されたもの」とされている。パフォーマンス評価には、レポートの作成や口頭発表など、さ
まざまな評価方法が含まれるが、本稿では特にパフォーマンス課題に注目したい。パフォーマンス課題とは、
「複数の知識やスキルを総合して使いこなす（活用す
ること）を求めるような複雑な課題」である。

パフォーマンス課題の設定方法に関して、米国の
「真正の評価」論者であるグラント・ウィギンズ（Grant
Wiggins）とジェイ・マクタイガー（Jay McTighe）は、次
に示す6つの要素を意識することが、パフォーマンス
課題を設定する手助けとなると説明する。すなわち、
そのパフォーマンス課題は、どのような「ゴール
（Goal）」に向かっているのか、そこでは子どもたちは
どのような役割（Role）を担っていたり、どのような
「相手（Audience）」に対して、どのような「状況
（Situation）」でのパフォーマンスを行うのか、そこ
で求められている「完成作品（Product）」とは何か、
そのパフォーマンスはどのような「スタンダード
（Standards）」を満たしている必要があるのかである。
ただしこれら6つの要素すべてを含み込む必要がある
わけではない。これらはあくまで、教師がパフォーマンス課題を設定する際の手助けの指針として示される
ものである。

加えて、資料2に示す4つの視点でパフォーマンス
課題の質を検討することができるとされる。課題自体
のリアルさに加え、子どもたちにやる気を起こさせる
課題であるか、子どもたちの手の届く課題か、測りた
い学力に対応しているのかという視点である。

資料２ パフォーマンス課題を検討するポイント

1. 実質的な課題になっているか
 （実質性：authenticity）
2. 子どもたちの身に近い、やる気を起こさせるよ
 うな課題か
 （関連性：relevance）
3. 子どもたちの手に届く課題か
 （レディネス：readiness）
4. 測りたい学力に対応しているか
 （妥当性：validity）

4つめの視点に関連して、パフォーマンス評価を実
践するにあたっては以下の点に注意を要する。それは
「活動志向」の授業になることである。パフォーマンス
評価を取り入れることによって、子どもたちにと
って魅力的な経験や楽しんで興味深い活動とは何かに
ついて発想することになるが、その経験や活動を通し
て得られる学力が不明確であったり、経験や活動
を考察することを求めたりしなければ、その経験や活
動における学力や洞察は偶発的にもたらされに過ぎ
ないものとなる。パフォーマンス評価を実践する際に
は、そのパフォーマンス評価を通じて見取りたい学力
像を明確にし、その経験や活動を子どもたち自身が振
り返る機会を設ける必要がある。

このように、標準テストでは十分に捉えられない子
どもたちの学力を見出そうとするものがパフォーマンス
評価であり、子どもたちの学習と実践世界とをつな
ぎ、そこで子どもたちパフォーマンスをまるごと
見出そうとする考え方を背景にもつものである。では
具体的に第5学年の単元「面積」においては、どのよ
うな学力の獲得が求められているのだろうか。学習指
dou案要領にもとづき整理をしておこう。

3．単元「面積」における目標と課題

（1）学習指導要領における目標

第5学年における単元「面積」は、学習指導要領に
おいて「B量と測定」領域の「（1）図形の面積を計
算によって求めることができるようになる」に位置づけられている1)。1998年度改訂の学習指導要領では、ひし形と台形の求積方法は言及されていなかったが、2008年度改訂版においては、この2つの図形の求積が明記された。さらに2008年度改訂版では、「算数的活動」2)、具体的には「三角形、平行四辺形、ひし形及び台形の面積を求め、具体的な用途を考慮、言葉、数式、図を用いて考え、説明する活動」が言及されている。この第5学年の「B量と測定」領域の学習は、第4学年の面積の単元、長方形・正方形の面積が基礎となり、第6学年の概形の面積、円の面積へと発展することが期待されている。

本項において習得が得られているのは、求積公式を覚え、適切に計算して面積を求めることでなく、四角形の面積は三角形に分割することで求められるということを理解することである。このことによって、公式を暗記するのではなく、公式を忘れてしまっても、子どもが自力で面積を求めることができるような理解を促すことが期待されているのである。

（2）単元「面積」に見られる子どもたちのつまずき

では、単元「面積」を進めていくにあたり、どのような点に気をつけばいいだろうか。これまでの第5学年の単元「面積」における実践で、以下の3点の子どもたちのつまずきが報告されている。

1点目は、鈍角三角形の高さを、斜辺の長さと扱えてしまうことである。これは、面積の公式で使われる「高さ」についての意味理解が不十分なため起こるつまずきであり、同様のつまずきは、平行四辺形や台形にも見受けられるという3)。

2点目は、「底辺のある辺だけを底辺と思いつらいがちである」というつまずきである4)。どの辺を底辺とするかは任意で決定できるものであるが、観して子どもたちは、底辺のある辺だけを底辺と捉えるという。

3点目は、求積公式を覚えられないことである。子どもたちは、第4学年の長方形・正方形、第5学年の三角形・平行四辺形・台形・ひし形、第6学年の円の面積の公式を学習するが、それぞれの公式に似た点があるため混乱する場合があるという。特に、「÷2」を書き忘れがちな場合が多いという5)。

単元「面積」を授業する際には、以上のような子どもたちのつまずきを生み出さないための指導の工夫や、もしつまずい場合には、それを克服するための指導が必要であるだろう。では向井先生は、具体的などのような指導案を作成されたのだろうか。

4. 単元計画と授業の実際

（1）単元構想

まず本単元の目標から見てみよう。向井先生が設定された目標は、資料3に示すものである5)。三角形や平行四辺形などの面積を、公式を使って求めることができる、四角形の面積を三角形分割の考えで求めることが求められている。

資料3 単元目標

1. 関心・意欲・態度…三角形や平行四辺形、台形、ひし形などの面積を求め、求積公式のように気付き、様々な面積で進んで活用しようとする態度を育てる。

2. 数学的思考…既習の求積可能な図形の面積の求め方を基にして、三角形や平行四辺形、台形、ひし形の面積の求め方を公式を筋立てして考え、表現できるようにする。

3. 技能…三角形や平行四辺形、台形、ひし形の面積を、公式を適用して求めることができるようにする。

4. 知識・理解…三角形や平行四辺形、台形、ひし形の求積公式の意味や四角形の面積を三角形に分割して求める方法を理解できるようにする。

以上の単元目標にともない、向井先生が構想された単元計画をまとめたものが資料4である。向井先生が特に工夫されたのは、「1・4・12〜14時である。第1時は現象物を用いた「おおきさ比較」、第4時は四角形を2つの三角形に分割する求積方法、第12〜14時はパフォーマンス課題として「だまし絵」作りに充てられている。「だまし絵」とは、「同じ面積の異なる形の図形」である。同じ面積であっても、形が異なると人間は広さが異なるように感じる。本単元で「だまし絵」作りが設定されたのは、向井先生が「異なる広さに見える図形が実は同じ面積であった」という驚きを実感することで、本当にそうなのか、自分も作ってみたい、という面積を学習する意欲につながる」と考えたためである。さらに「だまし絵」作りの学習活動は、「広さが異なる広さに見える図形の広さを比較して、平面図形が回転・移動である、それによって面積が変わらないという面積の保存性を実感として得られることができる」という側面も持つ。つまり「だまし絵」作りは、子どもたちが学習する面積の概念を具体的に体験し、理解できるよう設計されている。
絵」作りというパフォーマンス課題を設定することによって、子どもたちの面積の学習に対する意欲を高めるとともに、子どもたちが単元を通して獲得した公式を用い、同じ面積の図を作るために必要な辺の長さや高さを求めたり、友達の「だまし絵」が同じ面積かどうかを必要な辺の長さなどを割り、計算をして確かめたりすることによって、単元「面積」で獲得すべき学力の定着を図ることと、そのような学力の定着状況を見取ることが意図されているのである。

資料4 単元計画

<table>
<thead>
<tr>
<th>時</th>
<th>主な学習活動</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>長方形・正方形・三角形の面積を計算して、正方形の面積をとらえる必要性を感じ、その方法を考えようとする。</td>
</tr>
<tr>
<td>2</td>
<td>三角形の面積の求め方を考える。</td>
</tr>
<tr>
<td>3</td>
<td>三角形の面積を求める公式を考える。</td>
</tr>
<tr>
<td>4</td>
<td>四角形の面積を工夫して考える。</td>
</tr>
<tr>
<td>5</td>
<td>平行四辺形の面積の求め方について考える。</td>
</tr>
<tr>
<td>6</td>
<td>平行四辺形の面積の公式の導き方について考える。</td>
</tr>
<tr>
<td>7</td>
<td>公式を使って、様々な三角形や平行四辺形の面積を求めることができるか理解する。</td>
</tr>
<tr>
<td>8</td>
<td>平行四辺形の面積の求め方について考え、公式をまとめる。</td>
</tr>
<tr>
<td>9</td>
<td>ひし形の面積の求め方について考え、公式をまとめる。</td>
</tr>
<tr>
<td>10</td>
<td>三角形の高さを辺と面積の関係について理解する。</td>
</tr>
<tr>
<td>11</td>
<td>三角形の面積の求め方から、どのように求めていけるのかを考える。</td>
</tr>
<tr>
<td>12・13</td>
<td>学習をもって来、単元のまとめて取り組む。「だまし絵」を作り。</td>
</tr>
<tr>
<td>14</td>
<td>単元のまとめや「学びをいかそう」に取り組み、学習内容が定義しているかを見つける。</td>
</tr>
</tbody>
</table>

本単元で設定されたパフォーマンス課題は、資料5のとりである。「友達や家族」を「相手」として、「だまし絵」という「完成作品」を「紹介」という「ゴール」が設定されている。「だまし絵」を作成する際には、単元を通して学習する「三角形及び平行四辺形、台形、ひし形の面積の求め方」を用いて求積し、同じ面積になるのかどうかを確かめることができるようになった。課題上には明言されていないが、ここで子どもたちの「役割」は「だまし絵」という問題の「作者」であり「出題者」である。

それでは具体的に向井先生の実践を見ていこう。本実践は、2012年11月9〜30日に実施された。先述通り、向井先生は第1・4・12〜14時の計画を特に工夫された。そこで、これらの時間における向井先生の工夫と子どもたちの学習の様子を見ていくことにしよう。

資料5 本単元におけるパフォーマンス課題

これまでに、正方形や長方形の面積について学習してきました。三角形や台形、ひし形の面積について調べ、面積を求め方が考えましょう。そして、その面積の求め方を使って、同じ面積になるいろいろな形の「だまし絵」を作り、友達や家族に紹介しましょう。

（2）第1時 具体物操作を通じた「広さ比べ」

向井先生は、第1時を、単元の学習活動を見通す時間として位置付け、模造紙で作成された大きな長方形、正方形、直角三角形を提示し、それらの「広さ比べ」を行う学習活動を設定した。この学習活動を設定した背景には、以下3点の意図が込められている。1点目は、「求積公式を知っている子どもとそうでない子どもが、同じスタートラインで学習をはじめられる」ためである。模造紙で作成された図形は大きく、計算に必要な測る作業が容易ではない。そのため、求積方法を知っているからと言ってすぐに面積を求められるとは限らないと考えたのである。

2点目は、「広さの量感を味わうことを促す」ためである。模造紙を使用することにより、教室の床のタイルのマスの数を利用したり、机と比べたり、子どもが模造紙に乗ってみたりするなど、図形のもつ広さを実感することが可能となる。

そしてこのことにとって、次時以降の学習において「常に具体物をイメージしながら学習を進めていくための素地づくり」ができることが3点目である。教科書では多様な形の池の絵が書いており、その絵から生活場面をイメージすることが求められている。しかしながら校内に池が存在しなかったり、直線や直角を伴う池を見たことがなかったりする子どもたちにとっては、その絵の示す大きさを実感したり、その様子をイメージすることは難しい。その点向井先生の第1時の指導では、模造紙を使用することにより、子どもの量感を高め、イメージをもって学習に取り組むための手立てが打たれているのである。

資料6は、子どもたちが模造紙で作成された図形を重ねたり、折ったりしながら、広さを見比べている様
資料6 広さ比べを行う子ども

子である。グループに模造紙を配布して予想を立てさせることにより、どのように図形を操作すれば広さを比べられるのかについて子ども同士で知恵を出しあう姿が見受けられた。

模造紙を用いて予想を立てた後、100分の1サイズの図形が、子ども個人に配布された。「定規を使っても構わない、はさみで切っても構わない、線を引いても構わない、ノートの方眼を使っても構わない」という条件のもと「どれが広いのか、どうしたら比べられるのか」について個人で考える時間が設定された。資料7に示す通り、実際に子どもたちは、切ったり折ったりした図形をノートに貼り付けながら、各自考えを形成していた。まずはグループで予想を共有し、その後個人で作業を行う時間を設けることにより、子どもたちは見通しを持って「広さ比べ」を行うことができた。

また「広さ比べ」を行うという前提のもと図形を切り貼りする指示が出されることにより、第4学年で学習した長方形の求積方法を用いて直角三角形を求積することができ、長方形と直角三角形が同じ面積であることが確認された。さらに第1時の最後には、適応題として、資料8に示す等辺三角形の求積も出題された。

実はこの図形も長方形・直角三角形と同じ面積である。求積結果が判明すると、子どもたちから感嘆の声があがった。以上の学習を通じて、一見異なる広さに見える図形が、実は同じ面積であること、これらが「だまし絵」であることが確かめられた。

このように向井先生は、具体物操作を取り入れることで、子どもたちが具体物をイメージしながら学習を進められるよう工夫された。そして「だまし絵」作成を学習課題として設定することによって、子どもたちの意欲を高めながら、単元「面積」を展開していく学習活動を実践されたのである。

資料8 第1時板書

（3）第4時 底辺の取り方を学ぶ

第4時は、直角を伴わない四角形を2つの三角形に分割して求積する学習が行われた。授業開始時に、資料9に示す、四角形が印刷されたワークシートが配布された。ワークシートとして配布されることにより、子どもたちはシート自体を回転させることができる。そしてどの辺を底辺として設定できるのかを考えることができる。先述の通り、単元「面積」では、子どもたちが底辺の取り方でつまずきやすいことが指摘されている。その点向井先生の授業では、子どもたちは自由にワークシートを操作できることで、底辺の取り方を体感しながら学習できるよう工夫されているのである。

さらに「四角形と四角形のまわりの面積はどちらが広いか」という問いにもとづいて、まわりの面積との広さを比較する学習が取り入れられた。実は資料10に示す2つの図形は、同じ面積になるように作成されており、これら1種の「だまし絵」となっている。このように第4時では底辺の取り方を学習するとともに、「だまし絵」のレパートリーを増やす授業が行われた。

資料9 第4時で使用したワークシート

資料7 子どものノート

資料10 第4時に提示した「だまし絵」
（4）第12〜14時　「だまし絵」作り

第12〜14時はすべての時間においては、授業開始時に既習事項の確認が行われた。ここでは、正方形・長方形・直角三角形・平行四辺形・台形・ひし形の公式と、「高さ」は底辺直線との交点であることを、先に底辺直線を下ろすことに小旅行として繰り返し確認された。先述の通り、第5学年の単元「面積」では、高さと底辺の取り方に、公式を覚えられないことが確認される。向井先生はこれらのつまずきを防ぎつつ、既習事項ともとづく「だまし絵」が作成されるよう、授業開始時に復習の機会を設けたのである。

「だまし絵」作りにおいては、これまで学習した図形を用いて「面積が100〜200cm²になる、だまし絵を作りましょう」という課題が設定された。子どもたちの「だまし絵」を廊下に掲示し、他のクラスの子どもたちにも問題を解いてもらうことが決定され、そのためにはある程度の「だまし絵」が必要と考えられたためである。ただしほとんど大きな図形を書こう」「ノートいっぱいになる図形を書こう」という指示では、面積単元の図形を求めるのが不明瞭になる危険性がある。その点、具体的な数値が示されることで、「面積」の単元の「だまし絵」作成であることが周知された。加えて向井先生から、「長方形と長方形だったら4年生でもできる。せっかく5年生になって勉強してきたのだから、3年生で学習した図形もうろう」と声がかけられることによって、第5学年の学習内容に子どもたちが前向きに考えられた。さらに「だまし絵」を2組作成し、それを1枚の画用紙の表裏に1組ずつ貼るように指示が与えられた。1面は問い書き、もう1面には答えを書き、答えの反面の反

資料11　方眼紙で確認する様子

資料12に示すのは、実際の子どもの作品である。この子どもは、長方形と台形を選択し、正確な式と答えの伴う「だまし絵」を作成している。このように、与えられた図形を求解するだけでなく、子どもが自ら求めた数値の面積を持つ図形を作図するという学習活動を取り入れることで、子どもたちの学習意欲を高めながら、求解方法の獲得を促しつつ、子どもたちの既習事項の獲得状況を見る評価が行われた。
このパフォーマンス課題を評価するために設定された予備的ルーブリックは、資料13に示すものです。このルーブリックは、3つの観点から構成されている。
「数学的な考え方」では、「だまし絵」として適切な図形が選ばれているかどうか、「数量や図形についての知識・理解」では、適切な公式を用いているかどうかが判断の標準である。資料12に示した作品の場合、見た目では判断できない図形が選ばれており、また公式を適応させながら正確な求積が行われていた。そのためにこの作品はルーブリックの3に位置づけられることになる。

資料13 本単元の予備的ルーブリック

<table>
<thead>
<tr>
<th>数学的な考え方</th>
<th>数量や図形についての技能</th>
<th>数量や図形についての知識・理解</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>見た目で判断できないような図形を選び出している。</td>
<td>公式を適応し、図形の面積の確認に適応している。</td>
</tr>
<tr>
<td>2</td>
<td>「だまし絵」を作ることを念頭に置き、いろいろな種類の図形を選び出している。</td>
<td>公式を適用して同じ面積になる図形の高さや底辺、対角線などの長さを考えることができる。</td>
</tr>
<tr>
<td>1</td>
<td>【支援】ノートを振り返り、三角形、平行四辺形、台形、ひし形から選ぶようにする。</td>
<td>【支援】三角形や平行四辺形、台形、ひし形の求積公式を振り返るように声をかける。</td>
</tr>
</tbody>
</table>

このように向井先生の授業では、具体物操作を通じた学習内容の習得が進められていた。また既習事項を確認する機会が数多く設けられていた。そしてそのことにより、「だまし絵」作成時に友達同士での交流時に、正確に面積を求めようとする姿勢が見受けられた。さらに「だまし絵」を自らに示すことによって、他のクラスの子どもたちにも開かれる評価実践となっていった。この時間、向井先生の実践では、子どもたちにとって魅力的な経験や楽しくて興味深い活動が設定されながら、そこで習得すべき学習内容が明確に設定され、子どもたちが自分のパフォーマンスを振り返りながら、学習内容の習得状況を確認することができるパフォーマンス課題が設定されていたと言える。

5. おわりに
本稿では、高倉小学校の向井先生による算数科単元「面積」におけるパフォーマンス評価を取り入れた実践について検討を行ってきた。向井先生は、パフォーマンス評価を導入する以前から、子どもたちが「具体物を作成し、さきやひのりを用いて図形操作する時間」を大切にしてきた。なぜなら、子どもたちが実感を伴い、意欲を持ちながら、学習に取り組むことを重視していたためである。パフォーマンス評価を実践するにあたっても、子どもたちの具体的な操作を多く含んだ単元を設計し、第5学年で習得すべき内容を繰り返し指導した。そのため、鰭角三角形の高さの取り方や、三角形の底辺の取り方を間違える子どもは見当たらなかった。教科内容の確かな習得の上で、子どもたちのパフォーマンスが発揮されていたと言えよう。

資料2に示したパフォーマンス課題のシナリオのポイントで見てみると、まず「だまし絵」は、目の錯覚を活かした子どもたちの日常生活の中にある図形である（真正性）。そして、単元導入時に子どもたちに「だまし絵」を示し、「だまし絵」の持つことしろさに気付かせることによって、子どもたちの発案を引き出していた。第1期以降、各時の学習がどのように「だまし絵」となっているのかを気付かせることで、最終的に自分たちで「だまし絵」を作成することに意欲を高めていた（関連性）。その際「だまし絵」のバリエーションを子どもたちに示することで、子どもたちの手に届きやすくなる工夫されていた（レディネス）。

——55——
さらに、面積を意識した「だまし絵」を作成させることが必要である。「図形」単元ではなく、「面積」単元であることの確認を繰り返し、実際の作品においても正確な数式を合わせて書くことが求められている（妥当性）。
以上のことから、向井先生が設定されたパフォーマンス課題は、確かな学力の定着を図ることとともに、子どもたちの意欲と多様なパフォーマンスを引き出す、質の高い評価課題であったと言える。

さらに向井先生は授業中、以下の言葉を子どもたちに繰り返し語りかけてもらった。それは、「わからないかったら、班で交流したらいい。こうだったらいよってアドバイスしてあげてください。」友達のマイナスアイデアをいただいてください」というものである。これらの言葉かけにより、子どもたちが安心して学習できる環境作りが行われていた。またこのような環境づくりによって、授業での学習内容や、他の子どもたちの考えを取り入れながら、子ども自らによる知の構成が促されていた。このことから、今回のパフォーマンス評価実践が豊かな展開理由であるだろう。

パフォーマンス評価を実践していく上で重要なこととは、どのような学力の獲得を見取ろうとしているものなのかについて吟味し、子どもたちのパフォーマンスをさまざまな角度から見っていくことである。向井先生の実践は、そのようなパフォーマンス評価のあり方を示してくれており、学ぶべき点は多いだろう。

八田幸恵『高倉小学校と京都大学大学院との連携による授業研究—『プロジェクト TK』の歩みに即して』千葉16-18年度科学研究補助金基盤研究 (C) リテラシーの向上をめざす評価基準と評価方法の開発 (研究代表者 田中耕治) 研究成果最終報告書2010年、pp.63-72。

細尾萌子「教師と大学院生の共同によるパフォーマンス評価の実践—算数の単元「広さを比べよう「面積」を事例として」京都大学大学院教育学研究科教育方法学講座『教育方法の探究』第14号、2011年、pp.17-24。

田中耕治『新しい「評価のあり方」を拓く—「目標に準拠した評価」のこれからとこれから』日本教育、2010年、pp.23-32。

田中耕治『教育評価』岩波書店、2008年、p.71。

同上、pp.76-78。

同上、p.154。

西岡加名恵『教科教育におけるスタンダード開発の課題と展望—逆向き設計』論からの提案—』『教育目標・評価学会紀要』第22号、2012年、p.36。

Gウィンズ・J・マクタイ（西岡加名恵訳）『理解をもたらすカリキュラム設計—逆向き設計』の理論と方法』日本標準、2012年、p.190。

Gウィンズ・J・マクタイ（西岡加名恵訳）『理解をもたらすカリキュラム設計—逆向き設計』の理論と方法』日本標準、2012年、p.19。

文部科学省『小学校学習指導要領』2008年。

算数の活動・数学的活動は、基礎的な基本的な知識・技能を確実に身に付けるとともに、数学的な思考力・表現力を高めたり、数感・数学を学ぶことの楽しさや意味を実感したりするために、重要な役割を果たすものであるとされている（同上）。

吉田修「面積の公式をわくわく学習」数学教育協議会・小林道正・野崎昭弘編『数算・数学つまづき事典』日本評論社、2012年、pp.129-131。このことは京都市で使用されている算数教科書『わくわく算数』の指導書にも明記されている（わくわく算数 5下指導書 第2部 詳説）啓林館、2011年、p.6）。

同上。

吉田修、同上書。

16 以下、向井先生の指導案と筆者による授業記録をもとに記述する。

「支援」が記述されているのは、高倉小学校の先生方が、ループリングの「1」に位置づける子どもたちを「2」の状態にまで育むことを目指したループリングを作成したいと考えられたためである。また先述の通り、今回の「だまし絵」作りでは、同じ面積の図形、もしくは少し面積の異なる図形を「だまし絵」とした。そのため「面積や図形についての技能」の「同じ面積」という表現には再考の余地があるだろう。さらに、本ループリングは3つの観点で構成されているが、「数や図形についての技能」や「数や図形についての知識・理解」については、向井先生が繰り返し指導され、また子どもたちの学習の様子を踏まえて日常的に確認されていた点である。そのためこれらの点は、「だまし絵」だけでなく、日々の子どもたちのやり取りやノートの記述、テストなどで見ることも可能であるだろう。パフォーマンス課題と他の評価方法とはどのように組み合わせて子どもたちの学習を見取っていくのかについて、今後検討していきたい。