Protistan grazing and viral lysis losses of bacterial carbon production in a large mesotrophic lake (Lake Biwa)

Hiroyuki Takasu¹,², Tadao Kunihiro³,⁴ and Shin-ichi Nakano¹∗

¹ Center for Ecological Research (CER), Kyoto University, Hirano-cho 2 chome, 509-3, Otsu, Shiga 520-2113, Japan
² Present address: Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
³ Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime, Japan
⁴ Present address: Department of Ecosystems Studies / Department of Marine Microbiology, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, 4400 AC Yerseke, The Netherlands

*Correspondence to: Shin-ichi Nakano: Mailing address: Center for Ecological Research (CER), Kyoto University, Hirano-cho 2 chome, 509-3, Otsu, Shiga 520-2113, Japan.
Phone and Fax: +81-77-549-8239, +81-77-549-8201
E-mail: nakano@ecology.kyoto-u.ac.jp

Running title: Losses of bacterial carbon production in Lake Biwa

Key words: Bacterial growth, Grazing mortality, Viral-mediated mortality
Abstract

The grazing and lysis mortality of planktonic bacteria were estimated using the modified dilution method and respiratory quinone (RQ) analysis in mesotrophic Lake Biwa, Japan. The planktonic bacterial assemblages in the lake consisted of various RQs subgroups with different growth and mortality rates. The sum of total bacterial mortalities due to protistan grazing and viral lysis accounted for 96.6% (range; 89.0 - 107.2%) of daily total bacterial production. This is the first report which successfully demonstrates a balanced relationship between bacterial production and losses using the modified dilution method in a lake. The growth rates of ubiquinone (UQ)-containing bacteria were faster than those of menaquinone-containing bacteria. Especially, the dominant and fastest-growing bacterial groups in the present study were the bacterial groups containing UQ-8 or UQ-10. The sum of their production and loss accounted for 60% of carbon fluxes within the microbial loop. Thus, a large portion of the carbon cycling through the bacterial community in Lake Biwa can be explained by the carbon fluxes through dominant bacterial groups.
Introduction

In the pelagic environments of freshwater and marine systems, a significant fraction of primary production is consumed by heterotrophic bacteria via dissolved organic matter (DOM) released from phytoplankton (Cole et al. 1988; Ducklow 2000). Protistan grazing and viral lysis are two important determinants of the fate of bacterial biomass (Azam et al. 1983; Proctor and Fuhrman 1991), with different ecological and biogeochemical implications. Protistan grazing transfers bacterial biomass to higher trophic-level organisms via the microbial loop (Azam et al. 1983), whereas viral lysis leads to the recycling of carbon and nutrients, both of which are derived from lysed bacterial biomass and are re-supplied to bacteria (Bratbak et al. 1990; Gobler et al. 1997; Proctor and Fuhrman 1991).

Natural bacterial assemblages consist of various subgroups in terms of ecological and biogeochemical features. The relationship between dynamics of bacterial community structure and variations in carbon cycling within the microbial loop are not well understood in natural aquatic systems, though the results of some ecological models suggest that changes in bacterial community structure can affect the carbon fluxes through bacterial communities (Miki et al. 2008). Only limited attempts have so far been conducted to make simultaneous estimation of grazer-induced and virus-induced bacterial mortality for distinct bacterial groups (Šimek et al. 2001; 2007). Obviously, different mortalities among distinct bacterial groups can influence bacterial community composition. The ‘size-selective mortality’ for flagellates changes the size distribution of bacterial community (Pernthaler 2005), whereas the ‘host-specificity mortality’ for viruses changes the bacterial community structure (Thingstad 2000). It is, therefore, important to simultaneously estimate grazing-induced mortality and virus-induced mortality for better understanding on carbon fluxes through bacterial community.

Specific growth and mortality rates of microbial populations can be simultaneously estimated from observed differences in their rates of population growth in a series of
incubated diluted and undiluted natural water samples (Landry and Hassett 1982; Landry et al. 1984). The dilution technique, originally developed for the estimation of grazing pressure by micro-zooplankton on phytoplankton (Landry and Hassett 1982), is valid to estimate protistan bacterivory (Landry et al. 1984; Trremaine and Mills 1987). Evans et al. (2003) proposed a modified dilution technique to estimate the impacts of protistan grazing and viral lysis on the picoeukaryote Micromonas spp. Their technique was successfully applied to estimate the impact of viral lysis on planktonic bacteria in freshwater lake (Tijidens et al. 2008) and ocean (Taira et al. 2009).

Fluorescence in situ hybridization (FISH) technique as one of the most powerful quantitative molecular approaches has been used for quantifying and visualizing bacterial cells in freshwater and seawater (Pernthaler et al. 1998; Glöckner et al. 1999). The FISH technique is suitable for targeting at specific phylogenetic group levels but less suitable for analysis of the full bacterial community, because quantitative application for analysis of all bacterial groups requires the use of many target-specific probes and also need to optimize its protocol for each target groups (Bouvier and del Giorgio 2003). Despite the superiority of FISH technique-based approaches in terms of phylogenetic identification, respiratory quinone (RQ) analysis has been successfully used to quantify bacterial biomass and to overview bacterial community composition in freshwater (Takasu et al. 2013). Respiratory quinone (RQ), including ubiquinone (UQ) and menaquinone (MK), are electron-transporting compounds in bacterial plasma membranes. Different types of RQ differ in their preference of electron accepters for energy metabolism (Hedrick and White 1986). A bacterial phylum has generally only one dominant molecular species of respiratory quinone (Collins and Jones 1981; Hedrick and White 1986). The RQ analysis provides a less laborious and accurate method for simultaneously determining bacterial carbon biomass and community composition because of the chemical analytical-based method with a standardized quantitative extraction protocol (Hu et al. 1999; Takasu et al., 2013). The modified dilution technique combined with
RQ analysis provides us quantitative information about carbon fluxes through distinct bacterial groups in complex microbial food web.

Lake Biwa is a large (surface area, 674 km²; water volume, 27.3 km³; watershed area, 3848 km²), deep (maximum depth, 104 m), mesotrophic and monomictic lake in Japan. Large lakes in the world are generally important freshwater resources (Herdendorf 1990). In addition, large lakes are a precious food production site (Constanza et al. 1997). Net bacterial production in Lake Biwa was estimated as 30% of primary production (Nagata et al. 1990), and their total consumption (net bacterial production plus respiration) was accounted for 50 to 100% of the primary production (Nagata et al. 2012). It has been regarded that carbon fluxes through bacterial community are highly active, and that bacteria are a potentially important basis of the pelagic food web in Lake Biwa (Nagata 1990). Thus, elucidating the carbon fluxes through bacterial subgroups is important for our better understanding about carbon cycling in ecosystem of Lake Biwa.

In the present study, we quantified the carbon fluxes through the bacterial community by estimating carbon production and losses calculated from growth and mortality rates of planktonic bacteria in Lake Biwa. We hypothesized that each bacterial group would have different ecological roles within microbial loop. To test this hypothesis, we determined the grazing and lysis mortalities of each bacterial group using the modified dilution technique and RQ analysis. Our data demonstrated that a large portion of the carbon cycling through the bacterial community in Lake Biwa can be explained by the carbon fluxes through dominant bacterial groups.

Materials and Methods

Dilution experiments

The dilution experiments were conducted in June and October 2011 and May, June, and July 2012, using lake water collected from St. Ie-1 (35°12′58″N, 135°59′55″E; maximum water
depth 73 m) in the pelagic area of the north basin of Lake Biwa, Japan. Approximately 100 L of lake water was collected from 5 m depth using a 10-L acryl water sampler. Enumeration of microbes was performed by placing 200 mL of the water sample in a polypropylene bottle and fixing immediately with glutaraldehyde at a final concentration of 1%. Water samples for the dilution experiments were poured into acid-washed 10-L polyethylene bags or 20-L polyethylene tanks. The lake water was gently filtered through 20 µm mesh to remove mesozooplankton, and 50 L of the filtrate was gravity filtered through 0.2 µm filter cartridges (PALL Acropak Supor membrane capsules) and collected into tanks. After the filtration, half of the 0.2 µm filtrate was passed through a 30 kDa tangential flow filtration system (Millipore PES membrane) to prepare a virus-free diluent. The 20 µm filtrate was diluted in 0.2 µm or 30 kDa diluents to dilution levels of 1.0, 0.8, 0.4, and 0.2, in 5-L polycarbonate bottles washed with 1.2M HCl before use. The bottles were then incubated for 36 to 48 hours at in situ temperatures, in dark conditions. Subsamples for the measurement of RQs were collected into clean polyethylene bags at the beginning (0 hours) and end of the incubations.

Enumeration of microbes

For the enumeration of bacteria, 1 or 2 mL of the fixed water sample was used. Bacterial cells were counted using an epifluorescence microscope (BX60, Olympus) under ultraviolet excitation by the DAPI (4,6-diamidino-2-phenylindole) method (Porter and Feig 1980) using 0.2 µm pore-size black polycarbonate filters (Advantec). At least 300 bacterial cells were counted, and a minimum of 20 fields were randomly selected. Fifteen milliliters of the fixed water sample were used for the enumeration of nanoflagellates, and 0.1 mL (1 mL from the 10x diluted samples with 0.02 µm filtered distilled water) was used for the enumeration of viral-like particles (VLP). Heterotrophic nanoflagellates (HNF) and pigmented nanoflagellates (PNF) were counted using epifluorescence microscopy under ultraviolet and green excitation respectively, using the primulin method (Caron 1983), using 0.8 µm pore-size black polycarbonate filters (Corning). Cells of PNF were enumerated by
autofluorescence using an epifluorescence microscope under green excitation. For HNF and
PNF counting, a minimum of 100 fields were randomly inspected. VLP were counted using
epipfluorescence microscopy under blue excitation by the SYBR Green I method (Noble and
Fuhrman 1998; Patel et al. 2008), using 0.02 µm pore-size Anodisc filters (Whatman). More
than 300 VLP were counted and then a minimum of 20 fields were randomly examined.

Chemical variables

Samples for dissolved organic carbon (DOC) measurements were filtered through 0.2 µm
polycarbonate filters (Whatman) washed with 1.2M HCl before use. DOC concentrations
were determined using a total organic carbon analyzer (TOC-5000A; Shimadzu).

To determine chlorophyll a (chl. a) concentrations, 100 mL water samples were filtered
through 0.2-µm polycarbonate filters (Whatman) and analyzed using the N′
N-dimethylformamide method (Moran and Porath 1980) with a fluorescence spectrometer
(RF-5300PC; Shimadzu).

Quinone analysis

For RQ analysis, bacteria-sized particles in 5-L of the water samples were collected using 0.2
µm pore-size Teflon filters (Advantec) after passing through 2.0 µm nominal pore-sized
GMF-2UM glass fiber filters (Whatman) to remove large particles such as phytoplankton and
zooplankton. About 97.2–99.9% of bacterial cells passed through the GMF2UM filter
(Takasu et al. 2013). In the experiment in June 2011, the GMF-2UM glass fiber filter was not
used.

The RQ concentrations were determined using a modified method previously described
by Hu et al. (1999). Briefly, quinones were extracted from the filters with a
chloroform-methanol mixture (2:1, v/v) and re-extracted into hexane. UQs and MKs
contained in the crude extract were separated and purified using Sep-Pak® Plus Silica
(Waters). The molecular species and concentrations of quinones were determined using a high
performance liquid chromatography (HPLC) system equipped with an ODS column (pore size,
3.5 μm; Eclipse Plus C18, 3.0 × 150 mm; Agilent) and a photodiode array detector (SPD-M20A; Shimadzu). Details on the analytical conditions have been described by Takasu et al. (2013). The type of quinones was identified according to the UV spectrum of each peak observed in the photodiode array detector. The quinone species were identified by the linear relationship between the logarithm of the retention times of quinones and the number of their isoprene units, using the identification-supporting sheet (made by T. Kunihiro) based on the equivalent number of isoprene units (ENIU) of quinone components as described by Tamaoka et al. (1983).

In the present study, we express each RQ type as follows: ubiquinone, UQ-<i>n</i>; menaquinone, MK-<i>n</i>. The number (<i>n</i>) indicates the number of isoprene units in the side chain of the quinone. For example, UQ-10 represents a ubiquinone with 10 isoprenoid units, and MK-9(<i>H</i>₈) represents a menaquinone with 9 isoprenoid units where one of the nine units is hydrogenated with eight hydrogen atoms.

Calculations

The synthesis and destruction rates of each RQ are proxies of the growth and mortality of bacterial groups with different types of RQ. Thus, the apparent growth rates (μ_{app}, d⁻¹) of bacterial subgroups with different types of RQ were calculated from the concentrations of each RQ at the beginning and end of the incubation experiment, with the assumption that bacterial growth would follow an exponential model (Landry and Hassett 1982)

\[
\mu_{\text{app}} = \frac{1}{t} \ln \left(\frac{N_t}{N_0} \right)
\]

where <i>t</i> is the duration of the incubation (days), and <i>N_0</i> and <i>N_t</i> are RQ concentrations (pmol L⁻¹) at the beginning and end of the incubation, respectively. Two dilution series were prepared: a 30 kDa dilution series to estimate the combined effects of protistan grazing and viral lysis rate (M_{gr+v}, d⁻¹) and a 0.2 μm dilution series to determine the protistan grazing rate (M_g, d⁻¹) on bacteria. The slope of the regression lines from the 0.2 μm dilution series represents the grazing rate. The difference between the slopes of the regression lines...
represents the bacterial mortality rate due to viral lysis \((M_v, \text{d}^{-1})\), and this difference was tested using analysis of covariance (ANCOVA). The intercept of the 30 kDa dilution series gives the instantaneous growth rate \((\mu, \text{d}^{-1})\) of bacteria when neither grazing nor viral lysis occurs (Evans et al. 2003).

Carbon fluxes through bacterial subgroups with different RQ types were determined by combining the carbon conversion factor from RQ (Takasu et al. 2013) and data from the dilution experiments. For each specific bacterial subgroup, the carbon production \((CP, \mu\text{g C L}^{-1} \text{d}^{-1})\), losses to grazing \((GL, \mu\text{g C L}^{-1} \text{d}^{-1})\), and losses to viruses \((VL, \mu\text{g C L}^{-1} \text{d}^{-1})\) were calculated using the formulas of Baudoux et al. (2008):

\[
CP = \mu \times P_m
\]
\[
GL = M_g \times P_m
\]
\[
VL = M_v \times P_m
\]
\[
P_m = P_0 \times \left[e^{(\mu-M_g-v)t-1} / (\mu - M_g-v) \right] t
\]

where \(\mu (\text{d}^{-1})\) is the dilution-based specific growth (y-intercept of the 30 kDa regression), \(M_g\) and \(M_v\) are the dilution-based grazing and viral lysis rates (in \text{d}^{-1}), respectively, \(P_0\) (in \mu\text{g C L}^{-1}) is the initial carbon biomass of bacteria, \(P_m\) (in \mu\text{g C L}^{-1}) is the geometric mean carbon biomass of bacteria during the incubation, and \(t\) (in d) is the time of incubation.

Statistical analysis
Analyses with Student’s t-test and ANCOVA were conducted using the free statistical environment R (R Development Core Team 2011).

Results
Physicochemical and biological conditions of the sampling site
Water samples used for the modified dilution technique, covered wide ranges of physicochemical properties: water temperatures ranged from 16.0 to 27.1°C; DOC concentrations from 1.21 to 1.56 mg C L^{-1}; and chl. \(a\) concentrations from 3.09 to 31.4 \mu\text{g L}^{-1}
(Table 1). The HNF number \((0.5 \times 10^6 \text{ to } 2.7 \times 10^6 \text{ cells L}^{-1})\) was in most cases higher than
the PNF number \((0.3 \times 10^6 \text{ to } 0.6 \times 10^6 \text{ cells L}^{-1})\). The bacteria:Total nanoflagellates (TNF)
abundance ratios in Lake Biwa ranged between 725 and 2,417 (Table 1). The VLP number
varied from \(2.4 \times 10^{10} \text{ to } 4.1 \times 10^{10} \text{ VLP L}^{-1}\) (Table 1). The range of viruses to bacteria
abundance ratios (range: 12.3 to 36.2) falls within the average reported for freshwater systems
(Maranger and Bird 1995).

Estimation of growth and mortality rates

The RQ concentrations at a dilution level of 1.0 varied in the range of 32.4 to 90.9 pmol L\(^{-1}\) at
the beginning of the dilution experiments (Fig. 1A). A total of 12 types of RQ were detected,
and UQ-8, UQ-10, MK-8, MK-9, and MK-9(H\(_8\)) were detected as major RQs (Fig. 1B). In
general, negative relationships between the dilution factor and apparent growth rate (RQ
synthesis rate) were found in the <0.2 \(\mu\)m diluent (Table 2, Fig. S1). We regarded
relationships with \(r^2>0.8\) and significance levels of \(p<0.1\) as statistically significant. We
discussed growth and mortality rates using only the statistically significant data based on the
criteria, though previous studies have used not only significant but insignificant growth and
mortality values (e.g. Tijdens et al. 2008). Out of the 39 cases, 23 and 14 met these criteria for
significance using the <0.2 \(\mu\)m diluents and the <30 kDa diluents, respectively (Table 2). In 5
out of the 39 experiments, both the <0.2 \(\mu\)m and <30 kDa dilution series were statistically
significant, and the differences in the slopes of the two dilution series were also statistically
significant (Table 2). Estimates of the growth and mortality due to grazing and lysis of
UQ-8-containing bacteria in June 2011; total bacterial community (expressed as RQ in Table
2), UQ-, and UQ-8-containing bacteria in October 2011; and UQ-containing bacteria in May
2012 were statistically significant. However, most of the linear relationships between growth
and the dilution factor were statistically insignificant (Table 2, Fig. S1). Rates could not be
determined for UQ-10- and MK-containing bacteria in some experiments using the <30 kDa
diluents because of the positive relationship (against theory) between the dilution factor and
apparent growth rate (Table 2, Fig. S1).

The growth rate of the total bacterial community (expressed as RQ in Table 3) varied from 1.05 to 2.42 d\(^{-1}\) (Table 3), and the grazing and lysis rates of total bacteria varied from 0.46 to 0.74 d\(^{-1}\) and 0.69 d\(^{-1}\), respectively (Table 3). Growth and grazing rates varied among individual bacterial groups, and those of UQ-containing bacteria tended to be higher than those of MK-containing bacteria (Table 3). The sums of the grazing and lysis rates of individual groups had values close to their growth rates.

The changing patterns in the mortality due to grazing and lysis (\(M_{g+v}\)) of total bacteria and UQ-8- and UQ-10-containing bacteria were similar to the growth rates of those bacteria, even though grazing rates (\(M_g\)) on those bacteria were constant (Fig. 2).

Bacterial carbon production and losses

Daily carbon production (\(CP\)) in the present study ranged between 16.3 and 52.5 µg C L\(^{-1}\) d\(^{-1}\) (average: 37.4 µg C L\(^{-1}\) d\(^{-1}\)) (Table 4), close to the estimates from previous studies in Lake Biwa using tritiated thymidine uptake (5 to 59 µg C L\(^{-1}\) d\(^{-1}\)) (Nagata 1987) and the frequency of dividing cells (4.1 to 33 µg C L\(^{-1}\) d\(^{-1}\)) (Nagata 1987). Grazing loss (\(GL\)) was two times higher (average: 18.5 µg C L\(^{-1}\) d\(^{-1}\)) than lysis loss (\(VL\)) (average: 9.2 µg C L\(^{-1}\) d\(^{-1}\)) (Table 4). \(GL\) showed a pattern of change similar to that of initial carbon biomass (Fig. 3). Contributions of grazing loss and lysis loss to bacterial production in Lake Biwa fell into the ranges of previous estimates in other lakes (Table 5). Total losses (\(TL\)) of bacteria were almost the same (average: 36.2 µg C L\(^{-1}\) d\(^{-1}\)) as \(CP\), and this tendency was found in individual bacterial groups (Table 4). The net carbon production of bacteria (\(CP_{\text{net}}\): \(CP-\text{TL}\)) was calculated to estimate the remaining bacterial carbon biomass (Table 4). Estimates of total bacterial \(CP_{\text{net}}\) were positive on average (average: 1.2 ± 4.4 µg C L\(^{-1}\) d\(^{-1}\)), varying from negative (~3.1 µg C L\(^{-1}\) d\(^{-1}\)) to positive (5.8 µg C L\(^{-1}\) d\(^{-1}\)) values. Positive estimates of \(CP_{\text{net}}\) were mostly found in UQ-8-containing bacteria (average: 0.8 µg C L\(^{-1}\) d\(^{-1}\), range: 0.21 to 1.78 µg C L\(^{-1}\) d\(^{-1}\)) (Table 4). Overall, the \(CP_{\text{net}}\) values of total bacteria and individual bacterial groups were less than
10% of each CP value.

Discussion

Grazing and lysis mortality of bacteria

The dilution technique is based on a critical assumption, which assumes that the plankton mortality rates resulting from predation are proportional to the dilution effect on predator (grazer and/or virus) densities (Landry & Hassett 1982). This assumption may not always meet because non-linear relationships between the dilution factor and apparent growth rate have been frequently reported in previous studies (e.g. Tijdens et al. 2008, Personnic et al. 2009). In the present study, the positive relationship between the dilution factor and apparent growth rate was found from some experiments using the <30 kDa diluent (Table 2, Fig. S1). It is known that viral lysis of bacterial cells leads to the recycling of carbon and nutrients, both of which are derived from lysed bacterial biomass and are re-supplied to bacteria (Bratbak et al. 1990; Gobler et al. 1997; Proctor and Fuhrman 1991). Thus, the possible interpretation could be that growth of bacteria was stimulated by the lysed bacterial cells in some of the <30 kDa diluent series.

In limnetic and oceanic systems, concentrations of organic substrates and inorganic nutrients are generally low, causing death of planktonic bacteria to starvation (Amy and Morita 1983). So, planktonic bacteria are required to have some physiological adaptation for efficient uptake and utilization of substrates as well as for long-term survival under carbon and energy limitation (del Giorgio and Gasol 2008). In Lake Biwa, however, the sum of total bacterial mortalities due to protistan grazing and viral lysis accounted for 96.6% (range; 89.0 - 107.2%) of daily total bacterial production in the present study. Thus, almost all bacterial production is efficiently consumed by protists and viruses before bacterial death due to other environmental factors in Lake Biwa within a day. In other words, fate of bacterial production in the epilimnion of Lake Biwa may be mainly determined through microbial interactions.
This is the first study which demonstrates a balanced relationship between bacterial production and losses in a freshwater lake using the direct estimation method. The modified dilution method was rarely applied to the estimation of protistan grazing and virus lysis of freshwater bacteria, and only two previous studies are so far available in freshwater systems (Personnic et al. 2009, Tijdens et al. 2008) (Table 5). In those studies, however, estimates of grazing losses frequently exceeded the sum of grazing plus lysis loss estimates. Personnic et al. (2009) suggested that some complex interactions among microbes such as synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial production occurred in their incubation experiments. By contrast, the sum of the grazing and lysis losses of bacteria (TL) was almost equal to CP in the present study (Table 4). Thus, complex interactions among microbes might be negligible in our experiments, and almost all bacterial production is efficiently consumed by protists and viruses in Lake Biwa.

Bacterial abundances in the epilimnion of Lake Biwa were relatively constant and changed within the order of 10^9 cells L\(^{-1}\) (Nagata 1987; Nakano 1992; Nishimura et al. 2005; Takasu et al. 2013), whereas other microbes such as picophytoplankton, nanoflagellates, and viruses respectively showed large variations from 10^5 to 10^8 cells L\(^{-1}\) (Nagata 1988), from 10^2 to 10^5 cells L\(^{-1}\) (Nagata 1988), and from 10^9 to 10^{11} VLP L\(^{-1}\) (Nishimura and Nagata 2007; Pradeep Ram et al. 2010). In addition, bacterial abundance is generally less variable than bacterial production (Nagata 1987; Nakano 1992). In the present study, the percentages of remaining bacterial carbon production (%CP\(_{net}\) = (CP\(_{net}\) / CP) × 100) ranged from −7.2 to 11.0% (average ± SD, 3.4 ± 9.4). These estimates suggest that the less than 11% of daily bacterial production remains or excessively loses, and those small increase or decrease in net bacterial production does not change the whole bacterial abundance so much. This may be the major reason why the bacterial abundance in the epilimnion of Lake Biwa is relatively constant.

Owing to food limitation, nanoflagellates in lakes show clearance rates independent of
bacterial density (Bird and Kalff 1993). The bacteria:TNF ratios in Lake Biwa were low (average: 1346, Table 1) and similar to those of oligotrophic lakes and oceans (Sanders et al. 1992). Thus, nanoflagellates in Lake Biwa are also under food limitation. When we calculated the specific grazing loss (SGL = GL / initial TNF density), SGL estimates were relatively constant (1.24 ± 0.29 ×10^{-5} \text{µg C TNF cell}^{-1}\text{d}^{-1}) despite variations in the bacteria:TNF ratio (Table 1). The previous study suggested that nanoflagellates are clearing as much water as is physically possible independent of bacterial density when they are under food limitation (Bird and Kalff 1993). The results of the present study also indicate that individual TNF in Lake Biwa ingest as much bacteria as possible due to the chronically food limitation. The elimination mechanisms of bacteria should be different between protistan grazing and viral lysis, though bacterial production and the sum of grazing and lysis losses were almost equal in Lake Biwa (Table 4). In the present study, most of the viral lysis rates (M_v) were not statistically significant (Table 2), similar to those in previous studies (e.g. Tijdens et al. 2008; Personic et al. 2009). The sum of grazing and lysis mortality rates (M_{g+v}) seasonally changed, though grazing rates (M_g) were relatively constant during the study period (Fig. 2). Thus, the changing pattern of M_{g+v} is due to that of M_v. So, the changing pattern of M_{g+v} was similar to that of growth rate, suggesting that viral mortality is coupled with bacterial growth rate (Fig. 2). Similar results have been reported in previous studies (e.g., Weinbauer 2003). In Lake Biwa, the loss processes of bacterial production can be explained by a combination of protistan grazing pressure, which is independent of bacterial abundance, and viral lysis, which is dependent on bacterial growth (Fig. 2, RQ).

Carbon fluxes through major bacterial groups and differentiating the ecological traits of bacterial groups

The present study elucidated that planktonic bacterial assemblages in Lake Biwa consisted of various RQs subgroups with different growth and mortality rates (Table 3). The growth rates of UQ-containing bacteria were higher than those of MK-containing bacteria in Lake Biwa.
(Table 3). Because of the large midpoint potential of UQs, UQs are thermodynamically favorable compounds to use oxygen as an electron acceptor compared to MKs, and this makes energy gains by UQs higher than those of MKs (Søballe and Pool 1999). The coupling between bacterial production and oxygen consumption (respiration) has been reported in aquatic systems (reviewed by del Girogio and Cole 1998; Robinson 2008). Thus, UQ-containing bacteria may have an advantage over other bacteria in the epilimnion of Lake Biwa because of the lake’s oxygenated condition. UQ-containing bacteria showed higher GL than MK-containing bacteria (Table 3), probably due to higher abundance which would have higher encounter with nanoflagellates. In addition, there may be another reason why UQ-containing bacteria had higher GL. In freshwater planktonic bacterial community, UQ-8- and UQ-10-containing bacteria are generally gram-negative Proteobacteria, whereas MK-8, MK-9, and MK-9(H8)-containing bacteria are gram-positive Actinobacteria (e.g. Hiraishi and Kato 1999). The consumption of gram-positive freshwater planktonic bacteria (mainly Actinobacteria) is selectively avoided by nanoflagellates due to various protection mechanisms of gram-positive bacteria such as cell surface charge and cell size reduction (reviewed by Pernthaler 2005). Thus, it is possible that UQ-containing bacteria are preferentially grazed by nanoflagellates.

UQ-8- and UQ-10-containing bacteria were the most dominant and fastest-growing bacterial groups during the study period (Fig. 1, Table 3). The average CPs of UQ-8- and UQ-10-containing bacteria were respectively estimated at 12.2 and 13.8 µg C L⁻¹ d⁻¹, accounting for 31.7% (range: 28.4 to 35.2%) and 28.5% (range: 25.0 to 32.1%) of total bacterial CP (Table 4). The sum of the average TL of UQ-8- and UQ-10-containing bacteria (26.0 µg C L⁻¹ d⁻¹) also accounted for 60% of total bacterial TL (Table 4). Hence, the fate of those two bacterial groups explained a large portion of the carbon fluxes within the microbial loop of Lake Biwa. Our estimation thus implies that the magnitude of carbon fluxes within the microbial loop can be regulated by the production of major bacterial groups.
R-BT065 cluster bacteria (a subcluster of Beta-proteobacteria) have been reported to be the most abundant (up to 50% of total bacteria) (Zwart et al. 2002; 2003) and have UQ-8 as their major RQ (e.g., Hahn et al. 2010a; 2010b; Kasalický et al. 2010). R-BT065 cluster bacteria have been reported to be the fastest-growing segment of bacterial communities in European freshwater lakes (Šimek et al. 2006; Salcher et al. 2008). These bacteria preferentially inhabit the oxygenated layer of oligo-mesotrophic lakes (Piburger See, Austria; Lake Zurich, Switzerland) (Salcher et al. 2008; 2011). The environmental conditions of the epilimnetic water in the north basin of Lake Biwa may be similar to those of the aforementioned European lakes (Nishimura et al. 2005; Kim et al. 2006; Takasu et al. 2013). UQ-10-containing bacteria have been classified as Alpha-proteobacteria (Hiraishi 1999). In the freshwater Alpha-proteobacteria, members of the LD12 clade are one of the most abundant ubiquitous lineages (Salcher et al. 2011). Previous study suggested that LD12 bacteria generally prefer the upper epilimnetic water layers during nutrient limited summer season (Salcher et al. 2011). This feature is well consistent with UQ-10-containing bacteria in Lake Biwa (Takasu et al. 2013).

The CP\textsubscript{net} of UQ-8-containing bacteria showed positive estimates, whereas the CP\textsubscript{net} of UQ-10 containing bacteria showed negative estimates in the present study (Table 4). In our previous study, UQ-8-containing bacteria dominated in Lake Biwa throughout a year, whereas biomass of UQ-10-containing bacteria was relatively low (Takasu et al. 2013). In addition, biomass of those bacterial groups showed different seasonal changing patterns (Takasu et al. 2013). Thus, it is likely that relatively low biomass of UQ-10-containing bacteria was due to higher loss of the bacteria by protistan grazing and/or viral lysis than that of UQ-8-containing bacteria in Lake Biwa.

Conclusion

Our study is the first to demonstrate a balanced relationship between bacterial production and losses in a freshwater lake using the modified dilution method. UQ-8- and UQ-10-containing
bacteria were the two dominant groups, and the sum of their production and losses explained 60% of the carbon fluxes within the microbial loop. Thus, a large portion of carbon fluxes through the bacterial community may be explained by the carbon fluxes of dominant bacterial groups.

Acknowledgments

We are grateful to Dr. Masayuki Ushio for his invaluable comments as well as his encouragement throughout this study. We also thank Mr. Tadatoshi Koitabashi and Dr. Yukiko Goda for their assistance during field sampling, and thank other colleagues at the Center for Ecological Research, Kyoto University, for their valuable comments on this study. This study was partly supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 23370010 and Japan Science and Technology Strategic International Research Cooperative Program (Japan-China) on Science and Technology for Environmental Conservation and Construction of a Society with Less Environmental Burden "Fate of dissolved organic matter in lakes with special reference to loading and pollution" to S.N. and 21710081, 23710010 to T.K. H.T. was supported by JSPS KAKENHI Grant Number 11J00658.
References

R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria

Salcher MM, Pernthaler J, Posch T (2011) Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). The ISME J 5:1242–1252

Salcher MM, Pernthaler J, Frater N, Posch T (2011) Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped,
deep prealpine lake. Limnol Oceanogr 56:2027–2039

<table>
<thead>
<tr>
<th>Date</th>
<th>WT (°C)</th>
<th>DOC (mg C L⁻¹)</th>
<th>Chl. a (µg L⁻¹)</th>
<th>Bacteria (10⁶ cells L⁻¹)</th>
<th>TNF (10⁶ cells L⁻¹)</th>
<th>HNF (10⁶ cells L⁻¹)</th>
<th>PNF (10⁶ cells L⁻¹)</th>
<th>VLP (10¹⁰ VLP L⁻¹)</th>
<th>Bacteria:TNF</th>
<th>VBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 June 2011</td>
<td>22.0</td>
<td>ND</td>
<td>9.07</td>
<td>2.0</td>
<td>3.0</td>
<td>2.7</td>
<td>0.3</td>
<td>2.4</td>
<td>725</td>
<td>12.3</td>
</tr>
<tr>
<td>19 October 2011</td>
<td>20.0</td>
<td>ND</td>
<td>3.09*</td>
<td>1.2</td>
<td>1.1</td>
<td>0.5</td>
<td>0.6</td>
<td>3.1</td>
<td>2417</td>
<td>25.3</td>
</tr>
<tr>
<td>16 May 2012</td>
<td>16.0</td>
<td>ND</td>
<td>31.1*</td>
<td>0.9</td>
<td>1.4</td>
<td>1.1</td>
<td>0.3</td>
<td>3.1</td>
<td>759</td>
<td>36.2</td>
</tr>
<tr>
<td>25 June 2012</td>
<td>21.5</td>
<td>1.21</td>
<td>31.4</td>
<td>2.5</td>
<td>2.4</td>
<td>1.8</td>
<td>0.6</td>
<td>3.4</td>
<td>1389</td>
<td>13.3</td>
</tr>
<tr>
<td>24 July 2012</td>
<td>27.1</td>
<td>1.56</td>
<td>6.16</td>
<td>2.6</td>
<td>2.3</td>
<td>1.8</td>
<td>0.5</td>
<td>4.1</td>
<td>1441</td>
<td>15.7</td>
</tr>
</tbody>
</table>

WT, Water Temperature
ND, Not Determined
VBR, Viruses to bacterium ratio

*Water samples were filtered using different type of filter (GF/F glass fiber filter, Whatman)
(I. Mukherjee and S.D. Thottathil, personal communication).
Table 2. Summary of growth (μ), grazing mortality (M_g), lysis mortality (M_L), and total mortality (M_{g+L}) from results of the dilution experiments.

<table>
<thead>
<tr>
<th>Date</th>
<th>Bacterial RQ type</th>
<th>Diluent</th>
<th>Dilution level</th>
<th>Linear fit r^2</th>
<th>Linear fit p limit</th>
<th>Regression slopes p limit</th>
<th>μ</th>
<th>M_g</th>
<th>M_L</th>
<th>M_{g+L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 June 2011</td>
<td>RQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.993</td>
<td><0.01</td>
<td>NS</td>
<td>1.128</td>
<td>0.697</td>
<td>0.123</td>
<td>0.820</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.659</td>
<td>NS</td>
<td>NS</td>
<td>-</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.996</td>
<td><0.01</td>
<td>NS</td>
<td>1.206</td>
<td>0.777</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.727</td>
<td>NS</td>
<td>NS</td>
<td>0.714</td>
<td>0.42</td>
<td>-0.082</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.688</td>
<td>NS</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UQ-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.957</td>
<td><0.05</td>
<td><0.05</td>
<td>1.943</td>
<td>0.578</td>
<td>1.095</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.965</td>
<td><0.05</td>
<td>0.812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.004</td>
<td>NS</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.127</td>
<td>NS</td>
<td>0.360</td>
<td>0.070</td>
<td>0.178</td>
<td>0.248</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.304</td>
<td>NS</td>
<td>NS</td>
<td>0</td>
<td></td>
<td>-0.248</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-9(H4)</td>
<td>0.2 µm</td>
<td>4*</td>
<td>0.865</td>
<td><0.1</td>
<td>NS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.464</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 October 2011</td>
<td>RQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.980</td>
<td><0.01</td>
<td><0.01</td>
<td>1.225</td>
<td>0.459</td>
<td>0.689</td>
<td>1.148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.996</td>
<td><0.01</td>
<td><0.01</td>
<td>1.767</td>
<td>0.268</td>
<td>1.471</td>
<td>1.733</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.944</td>
<td><0.05</td>
<td>0</td>
<td>0.602</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.978</td>
<td><0.05</td>
<td>NS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.436</td>
<td>NS</td>
<td>NS</td>
<td>0.192</td>
<td></td>
<td>0.161</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-7</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.986</td>
<td><0.1</td>
<td><0.1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.069</td>
<td>NS</td>
<td>NS</td>
<td>0.968</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.819</td>
<td><0.1</td>
<td><0.05</td>
<td>0</td>
<td></td>
<td>0.533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-9</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.768</td>
<td><0.1</td>
<td>0.589</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.873</td>
<td><0.1</td>
<td>NS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-9(H4)</td>
<td>0.2 µm</td>
<td>4*</td>
<td>0.651</td>
<td><0.1</td>
<td>0.351</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.601</td>
<td>NS</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 May 2012</td>
<td>RQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.612</td>
<td>NS</td>
<td><0.05</td>
<td>2.424</td>
<td>0.646</td>
<td>1.511</td>
<td>2.157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.948</td>
<td><0.05</td>
<td><0.05</td>
<td>2.066</td>
<td>-0.936</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.829</td>
<td><0.05</td>
<td>1.382</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.999</td>
<td><0.001</td>
<td>0.995</td>
<td>1.136</td>
<td>-0.859</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.591</td>
<td>NS</td>
<td>NS</td>
<td>0.481</td>
<td>1.027</td>
<td>-0.718</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UQ-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.648</td>
<td>NS</td>
<td>0.559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.952</td>
<td><0.05</td>
<td>0.710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 kDa</td>
<td>4</td>
<td>0.710</td>
<td><0.05</td>
<td>2.524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.944</td>
<td><0.05</td>
<td>1.202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK-9(H4)</td>
<td>0.2 µm</td>
<td>4*</td>
<td>0.098</td>
<td>NS</td>
<td>NS</td>
<td>0.253</td>
<td>0.290</td>
<td>-0.188</td>
</tr>
<tr>
<td>Date</td>
<td>Bacterial RQ type</td>
<td>Diluent</td>
<td>Dilution level</td>
<td>Linear fit r^2</td>
<td>Linear fit p limit</td>
<td>Regression slopes</td>
<td>μ</td>
<td>M_s</td>
<td>M_v</td>
<td>M_{s-v}</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>25 June 2012</td>
<td>RQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.968</td>
<td><0.05</td>
<td>30 kDa</td>
<td>1.448</td>
<td>0.644</td>
<td>0.720</td>
<td>1.364</td>
</tr>
<tr>
<td></td>
<td>UQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.976</td>
<td><0.05</td>
<td>30 kDa</td>
<td>1.567</td>
<td>1.368</td>
<td>0.080</td>
<td>1.448</td>
</tr>
<tr>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.831</td>
<td><0.1</td>
<td>30 kDa</td>
<td>1.349</td>
<td>0.113</td>
<td>1.183</td>
<td>1.296</td>
</tr>
<tr>
<td></td>
<td>UQ-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.985</td>
<td><0.01</td>
<td>30 kDa</td>
<td>1.245</td>
<td>1.589</td>
<td>-0.381</td>
<td>1.208</td>
</tr>
<tr>
<td></td>
<td>UQ-10</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.958</td>
<td><0.05</td>
<td>30 kDa</td>
<td>1.816</td>
<td>1.077</td>
<td>0.522</td>
<td>1.599</td>
</tr>
<tr>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.019</td>
<td>NS</td>
<td>30 kDa</td>
<td>0</td>
<td>0.088</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MK-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.937</td>
<td>NS</td>
<td>30 kDa</td>
<td>0</td>
<td>0.220</td>
<td>0.388</td>
<td>0.262</td>
</tr>
<tr>
<td></td>
<td>MK-9</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.595</td>
<td>NS</td>
<td>30 kDa</td>
<td>0.242</td>
<td>0.046</td>
<td>0.277</td>
<td>0.323</td>
</tr>
<tr>
<td></td>
<td>MK-9(H8)</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.003</td>
<td>NS</td>
<td>30 kDa</td>
<td>0</td>
<td>0.123</td>
<td>-0.269</td>
<td>1.302</td>
</tr>
<tr>
<td>24 July 2012</td>
<td>RQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.862</td>
<td><0.1</td>
<td>30 kDa</td>
<td>1.048</td>
<td>0.744</td>
<td>0.379</td>
<td>1.123</td>
</tr>
<tr>
<td></td>
<td>UQ</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.870</td>
<td><0.1</td>
<td>30 kDa</td>
<td>1.446</td>
<td>1.007</td>
<td>0.492</td>
<td>1.499</td>
</tr>
<tr>
<td></td>
<td>MK</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.655</td>
<td>NS</td>
<td>30 kDa</td>
<td>0.416</td>
<td>0.644</td>
<td>-0.24</td>
<td>0.404</td>
</tr>
<tr>
<td></td>
<td>UQ-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.930</td>
<td><0.05</td>
<td>30 kDa</td>
<td>1.026</td>
<td>0.926</td>
<td>0.256</td>
<td>1.182</td>
</tr>
<tr>
<td></td>
<td>UQ-10</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.891</td>
<td><0.1</td>
<td>30 kDa</td>
<td>1.636</td>
<td>1.120</td>
<td>0.647</td>
<td>1.767</td>
</tr>
<tr>
<td></td>
<td>MK-8</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.393</td>
<td>NS</td>
<td>30 kDa</td>
<td>0.026</td>
<td>0.326</td>
<td>-0.269</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>MK-9</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.535</td>
<td>NS</td>
<td>30 kDa</td>
<td>1.398</td>
<td>0.409</td>
<td>0.893</td>
<td>1.302</td>
</tr>
<tr>
<td></td>
<td>MK-9(H8)</td>
<td>0.2 µm</td>
<td>4</td>
<td>0.641</td>
<td><0.1</td>
<td>30 kDa</td>
<td>0.056</td>
<td>0.933</td>
<td>-0.684</td>
<td>0.249</td>
</tr>
</tbody>
</table>

Statistically meaningful values are shown in bold.

NS, Not significant

*20% Initial sample was under the detection limit.

**40% Initial sample could not be measured due to laboratory accident.
Table 3. Ranges and averages of daily growth (μ), grazing mortality (M_g), lysis mortality (M_v), and total mortality (M_{g+v}).

<table>
<thead>
<tr>
<th>Bacterial RQ type</th>
<th>μ (d$^{-1}$)</th>
<th>M_g (d$^{-1}$)</th>
<th>M_v (d$^{-1}$)</th>
<th>M_{g+v} (d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range (Min - Max)</td>
<td>Average ± SD</td>
<td>Range (Min - Max)</td>
<td>Average ± SD</td>
</tr>
<tr>
<td>RQ</td>
<td>1.05 – 2.42</td>
<td>1.57 ± 0.75</td>
<td>0.46 – 0.74</td>
<td>0.64 ± 0.13</td>
</tr>
<tr>
<td>UQ</td>
<td>1.38 – 1.77</td>
<td>1.53 ± 0.21</td>
<td>0.27 – 2.07</td>
<td>1.10 ± 0.67</td>
</tr>
<tr>
<td>MK</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.11 – 0.60</td>
</tr>
<tr>
<td>UQ-8</td>
<td>1.20 – 2.96</td>
<td>2.07 ± 0.73</td>
<td>0.54 – 1.59</td>
<td>0.91 ± 0.49</td>
</tr>
<tr>
<td>UQ-10</td>
<td>1.64 – 2.52</td>
<td>2.08 ± 0.63</td>
<td>0.81 – 1.12</td>
<td>1.00 ± 0.17</td>
</tr>
<tr>
<td>MK-8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MK-9</td>
<td>–</td>
<td>1.40</td>
<td>–</td>
<td>0.59</td>
</tr>
<tr>
<td>MK-9(H$_{60}$)</td>
<td>–</td>
<td>0.24</td>
<td>-0.25 – 0.93</td>
<td>0.35 ± 0.59</td>
</tr>
</tbody>
</table>

SD, Standard Deviation
Table 4. Ranges and averages of daily carbon production (\(CP\)), grazing loss (\(GL\)), lysis loss (\(LL\)), total losses (\(TL\)) and net carbon production (\(CP_{\text{net}}\))

<table>
<thead>
<tr>
<th>Bacterial RQ type</th>
<th>Range ((\mu g \text{ C L}^{-1} \text{ d}^{-1}))</th>
<th>Average ((\mu g \text{ C L}^{-1} \text{ d}^{-1})) ± SD</th>
<th>Range ((\mu g \text{ C L}^{-1} \text{ d}^{-1}))</th>
<th>Average ((\mu g \text{ C L}^{-1} \text{ d}^{-1})) ± SD</th>
<th>Range ((\mu g \text{ C L}^{-1} \text{ d}^{-1}))</th>
<th>Average ((\mu g \text{ C L}^{-1} \text{ d}^{-1})) ± SD</th>
<th>Range ((\mu g \text{ C L}^{-1} \text{ d}^{-1}))</th>
<th>Average ((\mu g \text{ C L}^{-1} \text{ d}^{-1})) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ</td>
<td>16.3 – 52.5</td>
<td>37.4 ± 18.8</td>
<td>6.1 – 30.9</td>
<td>18.5 ± 17.5</td>
<td>–</td>
<td>9.2</td>
<td>15.3 – 46.7</td>
<td>36.2 ± 18.1</td>
</tr>
<tr>
<td>UQ</td>
<td>8.0 – 27.0</td>
<td>19.7 ± 18.8</td>
<td>1.3 – 40.3</td>
<td>19.4 ± 19.7</td>
<td>-18.3 – 9.9</td>
<td>-5.7 ± 17.8</td>
<td>8.1 – 24.7</td>
<td>18.3 ± 8.9</td>
</tr>
<tr>
<td>MK</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>UQ-8</td>
<td>5.1 – 18.5</td>
<td>12.2 ± 5.5</td>
<td>1.3 – 9.5</td>
<td>4.9 ± 4.2</td>
<td>3.6 – 7.2</td>
<td>5.4 ± 2.5</td>
<td>4.9 – 17.3</td>
<td>11.3 ± 5.1</td>
</tr>
<tr>
<td>UQ-10</td>
<td>10.9 – 16.8</td>
<td>13.8 ± 4.2</td>
<td>–</td>
<td>7.4</td>
<td>–</td>
<td>–</td>
<td>11.7 – 17.1</td>
<td>14.4 ± 3.8</td>
</tr>
<tr>
<td>MK-8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MK-9</td>
<td>–</td>
<td>5.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5.4</td>
</tr>
<tr>
<td>MK-9(H8)</td>
<td>–</td>
<td>0.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.8</td>
<td>–</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

SD, Standard Deviation
Table 5. Studies of simultaneous determination of grazing and viral lysis rates in freshwater systems

<table>
<thead>
<tr>
<th>Method</th>
<th>Grazing % potential production</th>
<th>Lysis % potential production</th>
<th>Location and water layer</th>
<th>Trophic status</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC & FVIC</td>
<td>81.8 - 108.0</td>
<td>7.7 - 27.8</td>
<td>Lake Pluβsee, Epilimnion</td>
<td>Eutrophic</td>
<td>Weinbauer & Hofle 1998</td>
</tr>
<tr>
<td></td>
<td>2.9 - 27.6</td>
<td>19.6 - 46.8</td>
<td>Lake Pluβsee, Metalimnion</td>
<td></td>
<td>Weinbauer & Hofle 1998</td>
</tr>
<tr>
<td></td>
<td>5.0 - 8.9</td>
<td>38.4 - 97.3</td>
<td>Lake Pluβsee, Hypolimnion</td>
<td></td>
<td>Weinbauer & Hofle 1998</td>
</tr>
<tr>
<td>FLB & FVIC</td>
<td>50</td>
<td>25</td>
<td>Římov Reservoir, Surface water</td>
<td>Meso-Eutrophic</td>
<td>Šimek et al. 2006</td>
</tr>
<tr>
<td>TC & FVIC</td>
<td>10.3</td>
<td>6.4</td>
<td>Lake Pavin, Epilimnion</td>
<td>Oligomesotrophic</td>
<td>Bettarel et al. 2003</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>15.6</td>
<td>Lake Pavin, Epilimnion</td>
<td></td>
<td>Bettarel et al. 2003</td>
</tr>
<tr>
<td>Tritiated thymidine labeled bacteria</td>
<td>58.2</td>
<td>26.3</td>
<td>Lake Tanganyika, Upper water (Wet season)</td>
<td>Oligotrophic</td>
<td>Pirlot et al. 2007</td>
</tr>
<tr>
<td></td>
<td>88.5</td>
<td>39.6</td>
<td>Lake Tanganyika, Upper water (Dry season)</td>
<td></td>
<td>Pirlot et al. 2007</td>
</tr>
<tr>
<td>CD & FVIC</td>
<td>78*</td>
<td>7.7*</td>
<td>Lake Erie, Surface and Deep water</td>
<td>Eutrophic</td>
<td>Gobler et al. 2008</td>
</tr>
<tr>
<td>FLMB & viral dilution & FVIC</td>
<td>18 - 63*</td>
<td>35 - 60*</td>
<td>Lake Bourget, Surface layer</td>
<td>Mesotrophic</td>
<td>Jacquet et al. 2005</td>
</tr>
<tr>
<td>MD</td>
<td>45.9</td>
<td>100.5</td>
<td>Lake Loosdrecht, Surface layer</td>
<td>Eutrophic</td>
<td>Tijdens et al. 2008</td>
</tr>
<tr>
<td>MD</td>
<td>37.3 - 76.5</td>
<td>ND</td>
<td>Lake Geneva, Surface layer</td>
<td>Mesotrophic</td>
<td>Perssonic et al. 2009</td>
</tr>
<tr>
<td></td>
<td>18.2 - 56.8</td>
<td>ND</td>
<td>Lake Bourget, Surface layer</td>
<td>Mesotrochip</td>
<td>Perssonic et al. 2009</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>ND</td>
<td>Lake Annecy, Surface layer</td>
<td>Oligotrophic</td>
<td>Perssonic et al. 2009</td>
</tr>
<tr>
<td>MD</td>
<td>37.5 - 71.0</td>
<td>56.2</td>
<td>Lake Biou, Epilimnion</td>
<td>Mesotrophic</td>
<td>This study</td>
</tr>
</tbody>
</table>

TC, theoretical calculation; FVIC, frequency of visible infected cells; FLB, fluorescence labeled bacteria; CD, conventional dilution method; FLMB, fluorescence labeled micro-beads; MD, modified dilution method

*Grazing or lysis % standing stock d^{-1}

ND, not determined
Figure legends

Fig. 1. RQs concentration (A) and composition (B) of 100% samples at the beginning experiments.

Fig. 2. Changes in growth (µ), grazing mortality (Mg), lysis mortality (Mv), and total mortality (Mv+g) rates of total bacteria (RQ) and major bacterial groups. An asterisk indicates that the rate is statistically meaningful (see Table 2).

Fig. 3. Changes in carbon biomass (CB), production (CP), grazing loss (GL), lysis loss (LL) and total losses (TL) of total bacteria (RQ) and major bacterial groups. An asterisk indicates that the rate is statistically meaningful (see Table 2).

Appendix

Fig. S1. Regression analyses of dilution experiments to estimate growth and mortality
Growth or mortality rate (d^{-1})

Takasu et al. Fig. 2
Takasu et al. Fig. 3

Carbon equivalent (µg C L$^{-1}$)
Takasu et al. Fig. S1
Takasu et al. Fig. S1 continued.