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Abstract Estimation schemes of Radio Frequency IDentification (RFID) tag set car-
dinality are studied in this paper using Maximum Likelihood (ML) approach. We
consider the estimation problem under the model of multiple independent reader
sessions with detection errors due to unreliable radio communication links and/or
collisions. In every reader session, both the detection error probability and the total
number of tags are estimated. In particular, after the R-th reader session, the number
of tags detected in j ( j= 1,2, ...,R) reader sessions out of R sessions is updated, which
we call observed evidence. Then, in order to maximize the likelihood function of the
number of tags and the detection error probability given the observed evidences, we
propose three different estimation methods depending on how to treat the discrete
nature of the tag set cardinality. The performance of the proposed methods is eval-
uated under different system parameters and compared with that of the conventional
method via computer simulations assuming flat Rayleigh fading environments and
framed-slotted ALOHA based protocol.

Keywords RFID · tag cardinality estimation · maximum likelihood · detection error

1 Introduction

Radio Frequency IDentification (RFID) technology has become very popular in many
applications of identifying objects automatically. Some of them are inventory control
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and tracking, medical patient management and security check [1–5]. One of the fun-
damental tasks in such RFID systems is to estimate the total number of tags fast and
reliably [6]. For example, this task can be met in inventory management applications
where the total number of products in a warehouse should be known. Other applica-
tions could be Intelligent Transportation Systems (ITS) [7] and indoor stadium sys-
tems that track and monitor the population distribution of metropolitan vehicles and
visitors, respectively [8]. We can also see this estimation application in factories that
store one kind of products, or in conferences, where thousands of participants need
to be monitored. Besides, giving an accurate estimate of the tag cardinality could
improve the efficiency of other operations such as key assignment, updating [9], and
categorization [10].

Collisions happen when multiple tags simultaneously respond to the reader, which
results in the detection error of the tags involved in the collisions. Several estimation
methods of the tag set cardinality have been proposed in order to cope with collisions
in the framed-slotted ALOHA based protocol. In particular, the method proposed in
[11] minimizes the distance between the observed and analytical reading results as
presented by vectors [E,S ,C]T and [Ē, S̄ ,C̄]T, where E (Ē), S (S̄ ) and C (C̄) denote
the observed (analytical) numbers of empty, singleton and collision slots in the frame,
respectively. Another simple estimation method is presented in [12] by assuming that
the number of tags responding in each time slot is Poisson distributed with mean one
which is valid when the number of slots in the frame is the same as that of tags.
Besides, [13] has proposed a method using Maximum a Posteriori (MAP) approach.

Apart from the collision problem, transmission errors due to multi-path fading,
obstacles in the radio path, blind spot phenomenon [14] or materials to which the
tags are affixed [15], can be another limiting factor of not only the tag reading but
also the tag cardinality estimation in RFID systems. In [16], the tag cardinality es-
timation is considered under unreliable radio channels by modeling the tags’ spatial
distribution and the corresponding channel fading effects. Specifically, a tag responds
to the reader only if it receives sufficient power to process the reader’s request, which
depends on the tag’s location and the channel propagation model that is assumed to
be Lognormal or Rayleigh fading. However, the spatial distribution of the tags is dif-
ficult to know in many practical applications, and also errors due to collisions are not
considered. Another solution, in this case, could be deploying multiple readers with
overlapping interrogation zones [17], but the disadvantages of this method are high
cost, system complexity and reader-to-reader interference [18]. On the other hand,
assuming uniform transmission error probability for every tag, a practical method
named Remove Element Greater than Mean (REGM) is recently proposed in [19–
21], where multiple independent reader sessions and capture-recapture approach are
employed. In particular, in the R-th reader session, the transmission error probability
and the total number of tags are estimated by finding appropriate weights for the ob-
served evidence, which is defined as the number of tags detected in j ( j = 1,2, ...,R)
reader sessions out of R sessions. Although only the transmission errors are assumed
in [19–21], REGM can cope with collision errors as well. However, since the weights
in REGM are found in a heuristic manner, there might be room to improve the esti-
mation performance.
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In this paper, we employ the multiple independent reader sessions model and
consider the tag set cardinality estimation problem of RFID systems under both the
transmission errors and collisions phenomena, and to the best of our knowledge, this
is one of the first works dealing with such a scenario. Due to the phenomena, each
tag is assumed not to be detected with a probability p, which we call a detection error
probability, in each reader session. The detection error probability and the tag cardi-
nality are then, estimated by using a maximum likelihood (ML) approach. In partic-
ular, the likelihood function of the detection error probability p, which is assumed to
be the same for all tags, and number of tags N given the current observed evidences is
firstly derived. In order to maximize the likelihood function, three different methods,
namely, Exhaustive ML (EML), ML with Sample Mean for N (MLSM), and ML with
search Stopping Criterion (MLSC) are considered depending on the ways of treating
the discrete nature of N. In EML method, the likelihood function is evaluated for all
possible values of N, thus, it can achieve the best performance among all the meth-
ods but with high computational complexity due to the exhaustive search. In order
to reduce the complexity, MLSM method is proposed as the simplest one, where p
is firstly estimated using a rough initial estimate of N, and then the estimate of N
is updated by the sample mean of the observed evidences using the estimated p. To
obtain MLSC method, the behavior of the likelihood function with respect to N is
analyzed based on the continuous relaxation for N. Based on the analysis, MLSC
method evaluates the likelihood function for discrete values of N in ascending order
starting from the minimum possible value, and it stops searching as the value of the
likelihood starts decreasing. The performance of the proposed methods is evaluated
and compared with that of the conventional REGM method via computer simula-
tions, both with simple detection error models and practical Rayleigh fading channel
model, as well as the collision model with framed-slotted ALOHA based protocol.

The rest of this paper is organized as follows. In Section 2, the system model
and the conventional approach are described. Section 3 provides the proposed meth-
ods in detail and simulation results are shown in Section 4. Finally, we conclude in
Section 5.

2 System Model and Conventional Approach

2.1 System Model

The considered RFID system consists of a reader and N unknown tags in the commu-
nication range where multiple independent reader sessions are performed. A reader
session is defined as a reading of the tag set in which the reader broadcasts a mes-
sage to all tags and receives responses from them. Note that if a tag responds to the
reader, its IDentity (ID) is obtained correctly, and it can respond in different reader
sessions even after being detected, which is valid for passive RFID systems [1,6].
The detection error probability p, which is the probability that a tag is not read in
each reader session, is assumed to be unknown a priori and identical for all the tags.
After R reading rounds, the number of tags observed in R+ 1− j ( j = 1, ..,R) reader
sessions k j is updated, which is denoted as an observed evidence. Our problem is
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Fig. 1 Venn diagram of observed evidences (R = 2)

to estimate the detection error probability p and the tag set cardinality N using the
observed evidences at each reader session.

Figure 1 shows a Venn diagram of the observed evidences for the case with two
reader sessions, where k1 is the number of tags that have been read in both reader
sessions, and k2a(k2b) is the tag set cardinality that is read only in the first (second)
reader session. In this case, k1 and k2 = k2a + k2b are the observed evidences, which
will be used for the estimation of N and p.

2.2 Conventional Approach-REGM Method

For the case of two reader sessions (R = 2), REGM method utilizes the relations of

E[k1] = N p1 = N(1− p)2, (1)
E[k2] = N p2 = 2N(1− p)p, (2)

where p1 and p2 are the probabilities of detecting a tag in both reader sessions and
only one reader session respectively. Let p̂ and N̂ denote the estimates of p and N
respectively obtained by replacing E[k j] with the observed evidence k j ( j = 1,2).
Then, with the replacement, Equations (1) and (2) become a set of linear equations
of p̂ and N̂, which can be easily solved as

p̂ =
k2

2k1+ k2
, (3)

and

N̂ =
k1+ k2

1− p̂2 . (4)

The problem is also extended to the model with R (> 2) independent reader ses-
sions in which the corresponding observed evidences are k1,k2, ...,kR. In this case, N
can be estimated for given p̂ as

N̂ =

∑R
j=1 k j

1− p̂R , (5)
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while REGM estimates p̂ by using a generalized form of Equation (3) as∑R
j=1ϕn( j)k j∑R
j=1ϕd( j)k j

=

∑R
j=1ϕn( j)

(
R

R−( j−1)

)
(1− p̂)R−( j−1) p̂ j−1∑R

j=1ϕd( j)
(

R
R−( j−1)

)
(1− p̂)R−( j−1) p̂ j−1

. (6)

Two window functions ϕn( j) and ϕd( j) determine the observed evidences used to
compute p̂, which are chosen as

ϕn( j) =

1 if w j , 0,
0 otherwise

(7)

and

ϕd( j) =

1 if w j , 0 and w j < mw,

0 otherwise
(8)

where w = [w1,w2, ...,wR]T =

[
k1

(R
R)
, k2

( R
R−1)
, ..., kR

(R
1)

]T
and mw is the sample mean of the

nonzero elements in w. The basic strategy here is to utilize the observed evidences
with smaller normalized values except for zero elements, although no explicit jus-
tification is given in [19]. While it has been shown that the REGM can outperform
the estimator based on [22] with Capture-Recapture model [23], there might be room
to improve the estimation performance using the multiple reader sessions model, be-
cause Equation (6) and the window functions are chosen in a rather heuristic manner.

3 Proposed Method

Here, we propose three different estimation methods using ML approach for the
model of multiple independent reader sessions.

3.1 Likelihood Function

The probability of detecting a tag in R+1− j reader sessions is given by

p j =

(
R

R− ( j−1)

)
(1− p)R−( j−1) p( j−1). (9)

Therefore, if random variables representing the observed evidences obtained after R
reader sessions are denoted by K1,K2, ...,KR, they will follow the multinomial distri-
bution. Thus, the likelihood function of N and p can be represented as

P(k1, ...,kR|N, p) = P(K1 = k1, ...,KR = kR|N, p)

=
N!

k0!k1!k2! · · · kR!

R∏
j=0

p
k j
j , (10)
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where p0 = 1− p1− · · ·− pR and k0 = N − k1− · · ·− kR are the probability that no tags
are detected and the number of undetected tags after R reader sessions, respectively.
Then, the log likelihood function is obtained as

ln P(k1,k2, ...,kR|N, p) = ln
N!

k1!k2! · · · kR!k0!
+

R∑
j=1

k j ln
(

R
R− ( j−1)

)

+

R∑
j=1

(R+1− j)k j ln(1− p)+
R∑

j=1

k j( j−1) ln p+ k0R ln p. (11)

Our problem is thereby equivalent to finding the values of N, p, which maximize
the log likelihood function (11) as

(N̂, p̂) = arg max
N∈N,p∈[0,1]

ln P(k1,k2, ...,kR|N, p). (12)

Setting the derivative of (11) with respect to p to be equal to zero, we obtain

p̂ =
RN −∑R

j=1(R+1− j)k j

RN
. (13)

On the other hand, due to the discrete nature of N, we cannot obtain an estimate N̂
by using the same approach with derivation. Thus, in the sequel, we propose three
different approaches depending on how to deal with the discrete nature of N.

3.2 Exhaustive ML (EML)

An exhaustive search algorithm will be employed in this method. In particular, by
substituting p̂ of Equation (13) into p of the log likelihood function (11), we obtain

ln P(k1, ...,kR|N) = ln N!− ln

N −
R∑

j=1

k j

!− lnk1!k2! · · · kR!+
R∑

j=1

k j ln
(

R
R− ( j−1)

)

+

R∑
j=1

(R+1− j)k j ln

∑R
j=1(R+1− j)k j

RN

+

RN −
R∑

j=1

(R+1− j)k j

 ln
RN −∑R

j=1(R+1− j)k j

RN
. (14)

Then, for each discrete value of N, the log likelihood function (14) is evaluated. In
the search algorithm, the total number of tags observed in the reader sessions

N̂0 =

R∑
j=1

k j, (15)

can be used as the minimum possible value of N. The optimal value N̂ is the one
that maximizes the likelihood function. Hence, EML method can achieve the best
performance among the three methods, which will be further discussed via simulation
results. However, this method requires a high computational complexity due to the
exhaustive search.
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3.3 ML with Sample Mean of N (MLSM)

To reduce the computational complexity, MLSM method is proposed in this section.
In this method, p̂ is firstly estimated by using Equation (13) where N̂0 is used as a
rough estimate of N. Then, N̂ will be updated by the sample mean of the observed
evidences using Equation (5). MLSM method can obtain the estimates of p̂ and N̂
from the observed evidences with very low computational cost. Although there will
be some performance degradation compared as EML, we can expect good perfor-
mance for a large number of reader sessions R, since N̂0 will be close to the actual
total number of tags.

3.4 ML with search Stopping Criterion (MLSC)

EML method requires a high computational complexity because in the exhaustive
search algorithm, all possible values of N have to be evaluated. To overcome this
inconvenience, in this section, we derive a stopping criterion of the search algorithm
by analyzing the log likelihood function. In particular, by using the continuous relax-
ation, we can consider the derivative of (14) with respect to N as

fP(N) =
∂ ln P(k1,k2, ...,kR|N)

∂N

= Ψ (N +1)−Ψ

N −
R∑

j=1

k j+1

+R ln
RN −∑R

j=1(R+1− j)k j

RN

= f1P(N)+ f2P(N), (16)

where

f1P(N) = Ψ (N +1)−Ψ (N − N̂0+1), (17)

f2P(N) = R ln

1− R∑
j=1

R+1− j
RN

k j

, (18)

and Ψ (x) is the digamma function [24] i.e., Ψ (x) = d
dx lnΓ(x) and Γ(x) = (x−1)!.

In order to see the behavior of the log likelihood function, the existence and the
uniqueness of the solution fP(N) = 0 have to be considered by analyzing f1P(N) and
f2P(N) in what follows.

Since we have d
dxΨ (x) =

∑∞
n=0

1
(x+n)2 [24], we obtain

d f1P(N)
dN

=

N−N̂0∑
m=1

1
m2 −

N∑
m=1

1
m2 = −

N∑
m=N−N̂0+1

1
m2 < 0, (19)

and we also have f1P(N) > 0 because the digamma function is monotonically increas-
ing. Hence f1P(N) is a positive monotonically decreasing function of N.
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On the other hand, the differentiation of f2P(N) with respect to N gives

d f2P(N)
dN

= R

∑R
j=1

R+1− j
R k j

1−∑R
j=1

R+1− j
RN k j

1
N2 . (20)

Here, by using the fact that N ≥∑R
j=1 k j(= N̂0), we have

1 ≥ 1−
R∑

j=1

R+1− j
RN

k j ≥ 1−
∑R

j=1(R+1− j)k j∑R
j=1 Rk j

≥ 0. (21)

Therefore, f2P(N) is a negative monotonically increasing function of N.
Although

∑N
m=1

1
m2 in (19) is intractable1, the negative of d f1P(N)

dN can be upper and
lower bounded as ∫ N

N−N̂0+1

1
x2 dx <

N∑
m=N−N̂0+1

1
m2 <

∫ N

N−N̂0

1
x2 dx,

or equivalently

N̂0−1
N(N − N̂0+1)

<

N∑
m=N−N̂0+1

1
m2 <

N̂0

N(N − N̂0)
. (22)

Thus, by using (20), (22) and L’Hôpital’s rule [26], we have

lim
N→∞

− f1P(N)
f2P(N)

= lim
N→∞

−d
dN f1P(N)
d

dN f2P(N)
< lim

N→∞

N̂0
N(N−N̂0)

R

[
N̂0+

∑R
j=1

1− j
R k j

]
N
(
N−

[
N̂0+

∑R
j=1

1− j
R k j

])
=

N̂0

N̂0+RN̂0−
∑R

j=1 jk j
≤ 1. (23)

The inequality in the last line holds since RN̂0 >
∑R

j=1 jk j. Therefore, we obtain

limN→∞
− f1P(N)
f2P(N) < 1 and hence fP(N) has a negative value as N→∞.

Then, we consider the shape of fP(N) from the derivative. By using (20) and (22)
again, we obtain

d fP(N)
dN

<
d f2P(N)

dN
− N̂0−1

N(N − N̂0+1)
=

A
B
,

1 ∑∞
m=1

1
m2 is known as the Basel problem and the value is known to be π2/6 = ζ(2), where ζ(s) is the

Riemann zeta function defined as ζ(s) =
∑∞

n=1
1
ns [25].
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where A = N
(
RN̂0−

∑R
j=1 jk j+1

)
− (N̂0 − 1)(R− 1)(N̂0 +

∑R
j=1

1− j
R k j) and B = N(N −

N̂0−
∑R

j=1
1− j
R k j)(N− N̂0+1). It is observed that B> 0 for N ≥ N̂0 and RN̂0−

∑R
j=1 jk j+

1 > 0. Thus, d fP(N)
dN < 0 if N ≤ N∗, where

N∗ =
(N̂0−1)(R−1)(N̂0+

∑R
j=1

1− j
R k j)

RN̂0−
∑R

j=1 jk j+1
. (24)

Moreover, we also obtain

d fP(N)
dN

>
d f2P(N)

dN
− N̂0

N(N − N̂0)
=

C
D
,

where C = N
(
RN̂0−

∑R
j=1 jk j

)
− N̂0(R − 1)(N̂0 +

∑R
j=1

1− j
R k j) and D = N(N − N̂0 −∑R

j=1
1− j
R k j)(N − N̂0). In this case, d fP(N)

dN ≥ 0 if N ≥ N∗∗, where

N∗∗ =
N̂0(R−1)(N̂0+

∑R
j=1

1− j
R k j)

RN̂0−
∑R

j=1 jk j
(25)

Therefore, fP(N) is monotonically decreasing for N < N∗ and is monotonically in-
creasing for N > N∗∗. It is also easily verified that N∗∗ > N∗ > 0 and N∗∗ > N̂0 while
N∗ ≈ N∗∗ for sufficiently large N̂0.

In summary, assuming sufficiently large N̂0, we can conclude that fP(N) has a
unique minimum at N∗ ≈ N∗∗ in the region N > 0 and has a negative value as N→∞.
This means that, if fP(N̂0) > 0, the equation fP(N) = 0 has a unique solution N∗∗∗

where N∗∗∗ > N̂0. In other words, the log likelihood function (14) is monotonically
increasing with respect to N̂0 ≤ N < N∗∗∗ and then is monotonically decreasing with
respect to N > N∗∗∗ after reaching to the maximum value at N = N∗∗∗. On the other
hand, if fP(N̂0) ≤ 0, fP(N) is negative in all the range N ≥ N̂0 and hence, the log
likelihood function is monotonically decreasing with respect to N ≥ N̂0. It implies
that the log likelihood function obtains the maximum value at N = N̂0. Thus, we
evaluate the value of the log likelihood function for each discrete N in an increasing
order starting from N = N̂0, and, if we observe the decrease of the likelihood, then N
in the previous step is selected as the estimated value N̂. We call this method MLSC.

4 Simulation Results

In this section, we will show the performance of the proposed methods under different
system parameters via computer simulations. The performance of the methods is also
compared with that of REGM method [19,20]. The simulation results are obtained
by Monte Carlo method with S = 10000 runs.

We first plot the function fP(N) in MLSC for a certain simulation run in Figures 2
and 3 with p = 0.2 and R =2, 4, 8, where the actual tag set cardinalities are set to be
10 and 100, respectively. We can see that fP(N) < 0 as N gets large for all the cases,
which supports the validity of our analysis. The value of N at the leftmost point of
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Fig. 2 fP(N) with p = 0.2, R = 2,4,8, N = 10
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Fig. 3 fP(N) with p = 0.2, R = 2,4,8, N = 100

each line corresponds to the total number of observed evidences N̂0. Note that, since
p = 0.2 the number of detected tags in a reader session is large, and hence, N̂0 is
almost equal to the actual number of tags for R = 4, 8, however, it does not obtain the
actual one for R = 2. For the case of small number of reader sessions R, we can see
that fP(N̂0) > 0, and the equation fP(N) = 0 has a unique solution in the range N > N̂0.
For larger number of reader sessions (R = 4,8), we have fP(N̂0) < 0, and fP(N) has
negative values in the range N > N̂0. Thus, N̂0 is the optimal estimate of N, which
accurately reflects the actual number of tags. It should be noted that, although our
analysis is valid only when N̂0 is large enough, the results could be applicable for the
case of relatively small N̂0, because N = 10 means N̂0 ≤ 10 in Figure 2.

In Figure 4, we show the root mean-square-error (RMSE) performance of the
estimated probability obtained by the proposed methods and the conventional REGM
method with p = 0.2 and N = 10. The RMSE is defined as

ep =

√√√
1
S

S∑
i=1

(p̂i− p)2, (26)
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Fig. 4 RMSE of p (p = 0.2, N = 10)
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Fig. 5 Average normalized error of N (p = 0.2, N = 10)

where p̂i is the estimate of p at the i-th simulation run. We can observe that the
estimation accuracy is improved by all the proposed methods compared to the REGM
method. This is because the window functions used in REGM method are determined
in a rather heuristic manner, while our methods utilize ML approach.

The comparison is also presented in terms of the estimation of the cardinality in
Figure 5 with p = 0.2 and N = 10, where the average normalized error is given by

eN =
1
S

S∑
i=1

|N̂i−N |
N
, (27)

where N̂i is the estimate of N at the i-th simulation run. From the figure, we can
see that MLSM and conventional REGM have almost the same performance, while
MLSM achieves better estimation accuracy of p. The reason is that they share the
same estimation method of Equation (5) for N̂, and the improvement of p̂ does not
have a large impact on N̂. However, MLSM method requires much smaller number
of computations than that of REGM method, where p̂ is computed by numerical least



12 Chuyen T. Nguyen et al.

2 3 4 5 6 7
10

−2

10
−1

Number of reader sessions R

e p

 

 

REGM
MLSM
EML
MLSC

Fig. 6 RMSE of p (p = 0.2, N = 100)
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Fig. 7 Average normalized error of N (p = 0.2, N = 100)

squares method. On the other hand, EML method, which requires high computa-
tional complexity due to the exhaustive search, always presents the best performance
among the methods, while MLSC method achieves the same performance as EML
method. This is because, unlike MLSM or REGM methods, EML and MLSC utilize
ML approach for the estimation of N as well. The performance gain gets greater as
the number of reader sessions is increased because all the information of the observed
evidences can be utilized in the methods.

We also evaluate the performance of the methods for a larger number of tags
(N = 100) in Figures 6 and 7. We can observe the same tendency as in the case of
N = 10, p = 0.2, however, there is a performance degradation in ep of MLSM for
R = 2, which is shown in Figure 6. This is because N̂0 is not an accurate estimate of
N due to its large value and small number of reader sessions. Besides, the comparison
of computational complexity (CC) between MLSC and EML is also shown in Table 1
where p = 0.2, N = 10, 100. The results tell us that as the searching range is fixed
(Nmax = 20, 170), the computational complexity of MLSC is much smaller than that
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Table 1 Computational complexity of MLSC compared to EML (%) for p = 0.2

Case: CCMLS C/CCEML(%): R = 2→ 7
N = 10

(Nmax = 20) 9.95 2.88 2.43 2.43 2.43 2.43
N = 100

(Nmax = 170) 5.92 1.71 1.41 1.40 1.40 1.40
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Fig. 8 Average error of N with collisions (L = 32, N = 10)

of EML especially when R is large. This is because, unlike EML method where all
the searching range is considered, MLSC just takes a few of searching steps to find
the point where the log likelihood function starts decreasing.

The model of multiple independent reader sessions with the identical detection
error probability can be met in practical RFID applications using a framed-slotted
ALOHA based protocol. Indeed, a reader session can be considered as a process that
the reader transmits a time slotted frame to all tags, and then, each tag randomly se-
lects one of the slots to respond. If multiple tags respond in the same slot, collision
happens and hence tags in the slot are unreadable, which results in the identical de-
tection error for every tag in every reader session assuming that every tag responds to
the reader’s request in every reading round. The average error of N of all the meth-
ods using the framed-slotted ALOHA based protocol with collisions is evaluated in
Figure 8, in which a frame size L and the actual number of tags are set to 32 and 10,
respectively. The expected value of the number of singleton slots S̄ (slots with one
transmission) is determined by S̄ = N(1−1/L)N−1 [13]. Therefore, the detection error
probability is found as

p =
N − S̄

N
≈ 0.25. (28)

We can see that the proposed methods also outperform the conventional REGM in
term of estimation accuracy of N.

The assumption of independent reader session will be also valid in time-selective
fading environments, which could be seen in practical indoor applications with mov-
ing target tags typically on conveyor belt systems. In RFID indoor applications, the
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Fig. 9 RMSE of p with transmission errors

channel will be scattering rich and the transmission is considered to be short range,
and hence, the communication scenario can be assumed to be flat Rayleigh fading
[27,28]. Then, each tag can be supposed to be read in each reader session only if its
instantaneous Signal-to-Noise Ratio (SNR) is higher than the tag’s sensitivity thresh-
old regardless of its position [6]. Therefore, the detection error probability is iden-
tical for every tag in every reader session. We now evaluate the performance of all
the methods in the flat Rayleigh fading scenario where tag j is identified in a reader
session only if

|h j|2 > η, (29)

where h j is the tag j’s channel gain and h j ∼ CN(0,1), and η is a given threshold set
to 0.2 in what follows. In the channel model, the probability p that a tag is not read
in a reader session is identical for every tag, and it can be calculated as

p = Pr
(
|h j|2 ≤ η

)
=

∫ η

0
e−xdx = 1− e−η. (30)

The performance of all the methods is plotted in Figures 9 and 10. We can see that the
proposed methods also give more accurate estimates of p and N than the conventional
REGM method in the flat Rayleigh fading scenario as well.

Moreover, in Figure 11, we show the average error of N of all methods in both
the framed-slotted ALOHA based protocol with collisions and the flat fading channel
with transmission errors, where the frame size, the actual number of tags and the
threshold are set to 32, 10 and 0.1 respectively. In particular, each tag responds to
the reader when its instantaneous channel power is greater than the threshold, and if
the tag responds, it randomly selects one of the slots to transmit its ID. The detection
error probability p can be easily obtained by using Equations (28) and (30). Once
again, we can see that our methods show a better performance compared to REGM.
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Fig. 10 Average normalized error of N with transmission errors

2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

Number of reader sessions R

e N

 

 

REGM
MLSM
EML
MLSC

Fig. 11 Average error of N in both collisions and transmission errors (L = 32, N = 10, η = 0.1)

5 Conclusion

In this paper, we have studied practical and efficient estimation methods of the tag set
cardinality and the detection error probability in RFID systems using the maximum
likelihood approach. For multiple independent reader sessions model, three different
methods, namely, EML, MLSM, and MLSC have been proposed in order to maximize
the likelihood function by taking different approaches in the way of treating the dis-
crete nature of N. Specifically, EML method with the exhaustive search algorithm
achieved the best performance among the three, however, it required high computa-
tional complexity. To reduce the computational complexity, two methods were pro-
posed where the first one was MLSM in which N̂ was obtained by the sample mean
of the observed evidences. The other method, MLSC, utilized the continuous relax-
ation for N to analyze the behavior of the log likelihood function and then, gave a
stop-searching criterion. Computer simulation results showed that the estimates of p
and N of the proposed methods were more accurate than those of the conventional
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REGM method, which also implied that the proposed methods enabled us to deter-
mine the number of required reader sessions accurately in order to meet a required
missing tag probability. In particular, MLSM method achieved a slightly better esti-
mate of N than REGM method for small number of tags N, while MLSM method
outperformed REGM method in terms of the accuracy of p̂ regardless of N. MLSC
method achieved the same performance as EML method, providing the performance
bound for the ML approach. Moreover, the proposed methods achieved similar gains
compared to the REGM method under a more practical scenario with flat Rayleigh
fading and framed-slotted ALOHA based protocol with collisions. In future work, we
intend to consider the proposed approach with framed-slotted ALOHA based proto-
col under both capture effect and detection errors phenomena, where tags might be
detected even in collision time slots, while they might not be identified in singleton
slots.
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14. L. W. F. Chaves, E. Buchmann, and K. Böhm, Tagmark: Reliable Estimations of RFID Tags for
Business Processes, in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 999-1007, 2008.

15. RFID for Logistic Applications - Test Results, in EPCglobal Inc., 2005.
16. W.-K. Sze, W.-C. Lau and O.-C. Yue, Fast RFID Counting under Unreliable Radio Channel, in Pro-

ceedings of the IEEE Internation Conference in Communications, pp. 1-5, June, 2009.
17. V. S. Mansouri and V. W.S. Wong, Cardinality Estimation in RFID Systems with Multiple Readers,

IEEE Transactions on Communications, vol. 10, no. 5, pp. 1458-1469, 2011.



Title Suppressed Due to Excessive Length 17

18. D.-Y. Kim, H.-G. Yoon, B.-J. Jang, J.-G. Yook, Effects of Reader-to-Reader Interference on the UHF
RFID Interrogation Range, IEEE Transactions on Communications, vol. 57, no. 7, pp. 2337-2346, July,
2009.

19. R. Jacobsen, K. F. Nielsen, P. Popovski and T. Larsen, Reliable Identification of RFID Tags Using
Multiple Independent Reader Sessions, in Proceedings of the IEEE International Conference on RFID,
pp. 64-71, Apr., 2009.

20. P. Popovski, K. Fyhn, R. Jacobsen, and T. Larsen, Robust Statistical Methods for Detection of Missing
RFID Tags, IEEE Wireless Communications, vol. 18, no. 4, pp. 74-80, 2011.

21. K. Fyhn, R. M. Jacobsen, P. Popovski and T. Larsen, Fast Capture-Recapture Approach for Mitigating
the Problem of Missing RFID Tags, in IEEE Transactions on Mobile Computing, vol. 11, no. 3, pp. 518-
528, 2012.

22. Z. E. Schnabel, The Estimation of Total Fish Population of a Lake, The American Mathematical
Monthly, vol. 45, no. 6, pp. 348-352, 1938.

23. P. Yip, A Martingale Estimating Equation for a Capture-Recapture Experiment in Discrete Time,
Biometrics, vol. 47, no. 3, pp. 1081-1088, 1991.

24. G. D. Anderson and S.-L. Qiu, A Monotoneity Property of the Gamma Function, in Proceedings of
the American Mathematical Society, vol. 125, no. 11, pp. 3355-3362, Nov., 1997.

25. S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge University
Press, 1988.

26. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and
Mathematical Tables, New York, 1972.

27. M. Islam, S. A. Samad, M. A. Hannan and A. Hussain, Software defined radio for RFID signal in
Rayleigh Fading Channel, in Proceedings of the IEEE Region 10 Conference TENCON, pp. 1368-1372,
Oct., 2010.

28. C. He and Z. J. Wang, Closed-Form BER Analysis of Non-Coherent FSK in MISO Double Rayleigh
Fading/RFID Channel, IEEE Communications Letters, vol. 15, no. 8, pp. 848-850, Aug., 2011.

Chuyen T. Nguyen received his B.S. degree in Electronics and
Telecommunications Engineering from Hanoi University of Tech-
nology, Hanoi, Vietnam and M.S. degree from Institute of Com-
munications Engineering, National Tsing Hua University, Hsinchu,
Taiwan, in 2006 and 2008 respectively. He is currently pursu-
ing his Ph.D. degree in Graduate School of Informatics at Kyoto
University, Japan. His research interests include statistical signal
processing for wireless communication systems.

Kazunori Hayashi received the B.E., M.E. and Ph.D. degrees
in communication engineering from Osaka University, Osaka,
Japan, in 1997, 1999 and 2002, respectively. Since 2002, he has
been with the Department of Systems Science, Graduate School
of Informatics, Kyoto University. He is currently an Associate
Professor there. His research interests include digital signal pro-
cessing for communication systems. He received the ICF Re-
search Award from the KDDI Foundation in 2008, the IEEE

Globecom 2009 Best Paper Award, and the IEICE Communications Society Excel-
lent Paper Award in 2011.



18 Chuyen T. Nguyen et al.

Megumi Kaneko received her B.S. and MSc. degrees in com-
munication engineering in 2003 and 2004 from Institut National
des Télécommunications (INT), France, jointly with a MSc. from
Aalborg University, Denmark, where she received her Ph.D. de-
gree in 2007. From January to July 2007, she was a visiting
researcher in Kyoto University, Kyoto, Japan, and a JSPS post-
doctoral fellow from April 2008 to August 2010. She is currently
an Assistant Professor in the Department of Systems Science,
Graduate School of Informatics, Kyoto University. Her research

interests include wireless communication, protocol design and communication the-
ory. She received the 2009 Ericsson Young Scientist Award, the IEEE Globecom’09
Best Paper Award in Wireless Communications Symposium, and the 2011 Funai
Young Researcher’s Award.

Petar Popovski received the Dipl.-Ing. in electrical engineer-
ing and M.Sc. in communication engineering from the Faculty
of Electrical Engineering, Sts. Cyril and Methodius University,
Skopje, Macedonia, in 1997 and 2000, respectively and a Ph.D.
degree from Aalborg University, Denmark, in 2004. He worked
as Assistant Professor at Aalborg University from 2004 to 2009.
From 2008 to 2009 he held parttime position as a wireless archi-
tect at Oticon A/S. Since 2009 he is an Associate Professor at
Aalborg University. He has more than 100 publications in jour-

nals, conference proceedings and books and has more than 25 patents and patent
applications. In January 2009 he received the Young Elite Researcher award from
the Danish Ministry of Science and Technology. He has received several best paper
awards, among which the ones at IEEE Globecom 2008 and 2009, as well as Best Re-
cent Result at IEEE Communication Theory Workshop in 2010. He has served as a
technical program committee member in more than 30. Dr. Popovski has been a Guest
Editor for special issues in EURASIP Journals and the Journal of Communication
Networks. He serves on the editorial board of IEEE TRANSACTIONS ON WIRE-
LESS COMMUNICATIONS, IEEE COMMUNICATIONS LETTERS, Ad Hoc and
Sensor Wireless Networks journal, and International Journal of Communications,
Network and System Sciences (IJCNS). His research interests are in the broad area
of wireless communication and networking, information theory and protocol design.

Hideaki Sakai received the B.E. and D.E. degrees in applied
mathematics and physics from Kyoto University, Kyoto, Japan,
in 1972 and 1981, respectively. From 1975 to 1978, he was with
Tokushima University. He is currently a Professor in the Depart-
ment of Systems Science, Graduate School of Informatics, Ky-
oto University. He spent 6 months from 1987 to 1988 at Stanford
University as a Visiting Scholar. His research interests are in the
areas of adaptive and statistical signal processing. He served as

an associate editor of IEEE Transactions on Signal Processing from January 1999 to
January 2001. He is a Fellow of the IEEE and the IEICE.


