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Gliomas are themost common intra-axial primary brain tumour; therefore, predicting glioma gradewould influ-
ence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic
images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed
to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for
obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade glio-
mas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted
magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging,
fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal
with nodiffusionweighting,were extracted asmultiple parameters fromdiffusion tensor imaging.Wedeveloped
a two-level clustering approach for a self-organizingmap followed by the K-means algorithm to enable unsuper-
vised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were
grouped by the self-organizingmap as protoclusters,whichwere classified into the smaller number of clusters by
K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the
diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a super-
vised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the re-
gions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales
were calculated. We then applied support vector machine as a classifier for distinguishing between low- and
high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver op-
erating characteristic curves from the 16-class diffusion tensor-based clustered images that showed the best per-
formance for differentiating high- and low-grade gliomas were 0.848, 0.745, 0.804 and 0.912, respectively.
Furthermore, the log-ratio value of each class of the 16-class diffusion tensor-based clustered images was
compared between low- and high-grade gliomas, and the log-ratio values of classes 14, 15 and 16 in the high-
grade gliomas were significantly higher than those in the low-grade gliomas (p b 0.005, p b 0.001 and p b 0.001,
respectively). These classes comprised different patterns of the seven diffusion tensor imaging-based parameters.
The results suggest that the multiple diffusion tensor imaging-based parameters from the voxel-based diffusion
tensor-based clustered images can help differentiate between low- and high-grade gliomas.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Gliomas are the most common primary neoplasms of the central
nervous system (CNS), and are classified according to a grading system,
commonly that of the World Health Organization (WHO), on the basis
of their histological appearance. Tumour grading is an important factor
that influences the choice of therapy, such as adjuvant radiation and
chemotherapy (Louis et al., 2007b).

Patientswith low-grade gliomas (LGGs) (WHOgrade II)may live for
a long time, and the 5-year survival rate is 42%–92% (Sanai and Berger,
2008). In contrast, patients with high-grade gliomas (HGGs) (WHO
grades III and IV) have a worst prognosis of brain tumours (Law et al.,
2006); particularly, glioblastoma (WHO grade IV) develops rapidly
(Ohgaki and Kleihues, 2007), and the 5-year survival rate is only 2%
(McLendon and Halperin, 2003). Therefore, patients with HGGs need
to be treated as soon as possible and more aggressively with chemo-
therapy and radiation. Thus, it is important to accurately classify gliomas
into low or high grades to provide the best treatment for patients.

Magnetic resonance imaging (MRI) is essential for non-invasively di-
agnosing the existence, extent and characteristics of brain tumours. Dif-
ferent MRI sequences are used for evaluation and include T1-weighted
image (T1WI), contrast-enhanced T1-weighted image (T1WIce), T2-
weighted image (T2WI), diffusion-weighted imaging (DWI) and fluid-
attenuated inversion-recovery (FLAIR) sequences. The images can
provide much information about tumours, such as tumour morphol-
ogy, the presence of enhancement, intra-tumoural haemorrhage or
peri-tumoural oedema and can be helpful to predict tumour grade.
The presence of contrast enhancement is often regarded as a sign ofma-
lignancy.Watanabe et al. reported that enhancementwas present in 11
of 12 HGGs in their study, and histological examination revealed that
areas of enhancement were related to neovascularity in tumour tissue
or tumour cell infiltration (Watanabe et al., 1992). However, it was
also reported that 9% of malignant gliomas lacked enhancement and
48% of LGGswere enhanced (Scott et al., 2002). These studies suggested
that T1WIce was less useful than expected for prediction of glioma
grade. Furthermore, gadolinium-based contrast agents, which are typi-
cally used in MRI, can cause side effects. Acute reactions after injection
of gadolinium may cause flushing and nausea as minor reactions and
hypotension and bronchospasm as intermediate reactions. In addition
to these side effects, severe reactions are all symptoms of minor and in-
termediate reactions and sometimes cause cardiac arrest (Thomsen,
2003). Thus, T1WIce cannot be used for definitive pre-operative glioma
grading because of insufficient information or side effects.

Some previous studies have used other MRI sequences without con-
trast agents, including diffusion tensor imaging (DTI), for glioma grading.
Diffusion is sensitive to water movement, particularly along axonal fi-
bres. DTI provides useful information about diffusion measurements
and enables calculation of several parameters from DTI. Because tumour
cells of gliomasmainly invade alongwhitematter tracts (Scherer, 1938),
we believe that DTI is a potentially useful sequence because of its sensi-
tivity to white matter abnormalities (Filippi et al., 2001). Fractional an-
isotropy (FA) and apparent diffusion coefficient (ADC) calculated from
DTI are more sensitive indicators of the integrity of white matter and tu-
mour infiltration than are T1WI or T2WI (Price et al., 2003). Thus, DTI pa-
rameters can have an important role in the assessment of tumours. It has
been reported that compared with white matter, HGGs show a mixture
of hyper- and iso-intensities in DWI (Tien et al., 1994; Stadnik et al.,
2001). One study found that lower ADC values corresponded to in-
creased cellularity and HGGs (Kao et al., 2013). However, another
study found no significant difference in ADC values between LGGs
and HGGs (Lam et al., 2002). The FA values of LGGs were significantly
lower than those of HGGs (Inoue et al., 2005; Kao et al., 2013),
whereas another study showed low FA ratios in the tumour centres
of both LGGs and HGGs (Goebell et al., 2006). These previous studies
suggest that glioma grading with a single parameter of MRI remains
controversial.
Recently, a pattern recognition method using multiple parameters
has been applied to predict tumour grading. In a study, support vector
machine (SVM), which is a widely used supervised machine-learning
method because of its remarkable performance of classification,was ap-
plied and involved 161 features extracted from manually defined re-
gions of interest (ROIs) on T1WI, T1WIce, T2WI, FLAIR and perfusion
MRI using a contrast agent, and a combination of multiple features
that differentiated HGGs and LGGswith an accuracy of 87.8%, sensitivity
of 84.6% and specificity of 95.5% was reported (Zacharaki et al., 2009).
Another study used a self-organizing map (SOM) based on a competi-
tive learning algorithm, which is a type of neural network unsupervised
learning, with seven features extracted fromwavelet-filtered ADC, ADC,
FLAIR and T2WI for each voxel (Vijayakumar et al., 2007). SOM was la-
belled for seven tissue classes, including low- and high-grade tumours,
in a supervised manner using 700 voxel-based training pattern vectors.
Although the sample size was small (four patients with low- and six
with high-grade tumours), the method differentiated low-grade tu-
mour from other tissues, with a sensitivity of 88% and a specificity of
98%, and high-grade tumour from other tissues, with a sensitivity of
87% and a specificity of 93%. Although pattern recognition methods
with multiple parameters and a supervised manner can be useful for
prediction of tumour grading, they have some problems in clinical
applications. In voxel-based labelling, because it is impossible to ex-
amine the pathology of each voxel, supervised voxel-based labelling
can be inaccurate and cause rater bias. Furthermore, complicated
features make it difficult to determine the most sensitive parameter
for characterizing grading. Therefore, a pattern recognition method
with multiple uncomplicated parameters without supervised infor-
mation can be helpful to predict glioma grade. Furthermore, SOM is
well-known to its visualization and would help to lead to a novel
classification.

This study aimed to develop a newmethod usingmultiple DTI-based
parameters for voxel-based clustered images in an unsupervised man-
ner that can be used to visually grade gliomas. We also determined if
the method is really helpful for pre-operative prediction of glioma
grade in a supervised manner.

2. Materials and methods

2.1. Subjects

We retrospectively reviewed 111 patients whowere aged 6–87 years
and had newly diagnosed and histologically confirmed diffusely infiltra-
tive gliomas, defined according to the WHO classification (Louis et al.,
2007a), betweenMarch 2010 and June 2013 in Kyoto University Hospital.
We classified grade II as LGG (n = 36) and grades III and IV gliomas as
HGG (n= 75) in this study. Patients with LGGs had 22 diffuse astrocyto-
mas, eight oligodendrogliomas, four oligoastrocytomas and two mixed
oligoastrocytoma. Patients with HGGs had 17 anaplastic astrocytomas,
three anaplastic oligoastrocytomas, two anaplastic oligodendrogliomas
and 53 glioblastomas. Among these patients, 51 underwent DTI and
magnetization-prepared rapid gradient-echo (MP-RAGE). We excluded
13 patientswho had undergone previous tumour resections or exposures
to radiotherapyor chemotherapyprior toDTI acquisition.We also exclud-
ed three patientswhose tumourswere located around the temporal basal
regions that were severely influenced by distortions of DTI (Mangin
et al., 2002) and one patient because of appreciable motion artefacts
in MP-RAGE. We excluded one patient b12 years of age because FA
values in the frontal white matter are significantly lower in children
aged 8–12 years than in adults because of less myelination in children
(Klingberg et al., 1999). Consequently, 33 patients (22 men, 11 women)
were enrolled in the study. Thirty-two patients had undergone tumour
resections, and one had only undergone a biopsy. Twenty-one tumours
were located in the frontal region, seven in temporal, two in parietal,
one in occipital and two in frontoparietal (Table 1). This study was ap-
proved by the Ethics Committee of the Kyoto University Graduate School



Table 1
Summary of patient data.

Histopathology n WHO grade Age (years) Location 

High-grade gliomas 19 III and IV 51.7 ± 18.6 

Glioblastoma 13 IV 54.1 ± 18.0 Frontal, parietal, temporal, frontoparietal 

Anaplastic astrocytoma 4 III 33.5 ± 4.8  Frontal, temporal 

Anaplastic oligoastrocytoma 2 III 72.0 ± 5.0  Frontal 

Low-grade gliomas 14 II 42.7 ± 13.4 

Diffuse astrocytoma 6 II 47.5 ± 15.8 Frontal, parietal, frontoparietal 

Oligoastrocytoma 3 II 40.3 ± 15.5 Frontal, temporal 

Oligodendroglioma 4 II 38.0 ± 3.7  Frontal, temporal 

Mixed oligoastrocytoma 1 II 40.0 Frontoparietal 

Age (years) is given as means ± standard deviation.
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ofMedicine (C 570), andwritten informed consent was obtained from all
patients.
2.2. MRI data acquisition and pre-processing

MRI images were scanned on a 3 Tesla Trio (Siemens, Erlangen,
Germany) equipped with an eight-channel phased-array head coil.

DWI in an axial orientation used the following parameters: repeti-
tion time = 10,500 ms; echo time = 96 ms; flip angle = 90°; field of
view=192× 192mm; slices=70; and voxel size=2× 2× 2mm. Dif-
fusion weighting was isotropically distributed along 81 directions by
using a b-value of 1500 s/mm2 (Jones et al., 1999). Nine volumes with
no diffusion weighting (b = 0 s/mm2) were also acquired at points
throughout acquisition. A set of diffusion-weighted data was acquired
during a scanning time of approximately 18 min.

MP-RAGE using the following parameters was used to acquire
three-dimensional T1-weighted anatomical images: repetition
time = 2000 ms; echo time = 4.38 ms; flip angle = 8°; field of
view = 176 × 192 mm; slices = 160; and voxel size = 1 × 1 × 1 mm.
A dual-gradient field map in an axial orientation was also obtained by
using the following parameters: repetition time = 511 ms; echo time
1/echo time 2 = 5.19/7.65 ms; flip angle = 60°; field of view =
192 × 192 mm; slices = 46; and voxel size = 3 × 3 × 3 mm.

DTI data were analysed using FSL [FMRIB Software Library v5.0.2.2,
http://www.fmrib.ox.ac.uk/fsl (Smith et al., 2004)]. The data were
corrected for eddy currents and head motion using affine registration
to the first b = 0 reference volume. The data were also corrected for
geometric distortions occurring in an echo planar image (EPI) (Jezzard
and Balaban, 1995) by FUGUE, which is a part of the FSL tool for EPI cor-
rection of distortions caused by static magnetic field inhomogeneities
(Jenkinson et al., 2012). Field inhomogeneities were measured by
using a field-map image, and EPI was unwarped according to field-
map data. Seven features, including DWI, FA, first eigenvalue (L1), sec-
ond eigenvalue (L2), third eigenvalue (L3), mean diffusivity (MD) and
raw T2 signal with no diffusion weighting (S0), were extracted from
DTIs using the FMRIB3s diffusion toolbox (FDT) program (Smith et al.,
2004). The diffusivities derived fromDTImeasurementswere separated
into components parallel (L1) and perpendicular (L2 and L3) to the
white matter tract. These components are referred to as MD,
(L1 + L2 + L3)/3. FA, which assigns values between 0 and 1,
represents how strongly water diffuses in the direction of the prin-
cipal eigenvector (Holodny et al., 2001).

2.3. Feature extraction for clustering

The overview of the processing pipeline in the study is depicted in
Fig. 1. The summary is as follows:
1 Feature extraction from DTI.

2 Clustering using SOM followed by K-means (KM).
3 Visualization of whole brain images by diffusion tensor-based clus-

tering images (DTcIs).
4 Classification using DTcIs by SVM.

Features for unsupervised clustering were extracted from voxels on
the seven intensity-normalized diffusion tensor images sampled at
every 64 (4 × 4 × 4) voxels within the binary mask image obtained by
FSL3s Brain Extraction Tool (BET). The number of extracted features
was 3552 ± 315 (mean ± SD) for each subject. The features of all sub-
jects were then stacked and used for input vectors defined as T =
{bm,1 ≤ m ≤ n}, where bm is the mth vector and n is the number of
vectors (117,232 in the study). The individual input vector (bm) is de-
fined as bm = [x1,x2,x3,x4,x5,x6,x7], where x1,…,x7 are components of
the input vector. The components of each input vector (bm) were ex-
tracted from DWI, ADC, MD, S0, L1, L2 and L3 images in the study.

2.4. Unsupervised clustering

The extracted feature vectors were used for calculating voxel-based
clustered images. We applied the two-level clustering approach of SOM
(Kohonen, 1995) and the KMalgorithm (MacQueen, 1967) for unsuper-
vised clustering (Fig. 1). First, a large number of input vectorswere clus-
tered into a much larger than the expected number of clusters, defined
as ‘protoclusters’, by SOM. Then, the protoclusters were classified into
the expected number of clusters, defined as ‘clusters’, by KM. TheKMal-
gorithm is a popular partition algorithm for clustering. Similar two-level
clustering approaches have been reported (Chuang et al., 1999; Vesanto
and Alhoniemi, 2000; Thomassey and Happiette, 2007) and applied in
the fields of medicine (Wang et al., 2002) and others (Beccali et al.,
2004; Lu et al., 2006). The two-level clustering approach has the fol-
lowing two important benefits compared with the KM algorithm,

http://www.fmrib.ox.ac.uk/fsl


Fig. 1. Simplified graphical overview of the processing pipeline.
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which is one of the most famous and effective unsupervised cluster-
ing approaches: One is noise reduction. It is known that the KM algo-
rithm is very sensitive to outliers (Velmurugan and Santhanam, 2010).
Because protoclusters are local averages of the input vectors and outliers
can be filtered out, they are more robust to outliers than are the original
vectors. The other is the reduction of the computational cost. Further-
more, the two-dimensional arrangement of the larger protoclusters by
SOM can be easily visualized, thus, providing useful information about
the features (Jin et al., 2004).
2.4.1. Unsupervised clustering: SOM
SOM is based on a competitive learning algorithm, which is a type of

neural network unsupervised learning. It typically comprises hexagonal
and two-dimensional grids of map units (also called neurons) defined
as H = {wi; 1 ≤ i ≤ K × L}. Here, K and L are the numbers of columns
and rows, respectively, wi represents the weight vectors assigned to
the ith unit of the SOM architecture, defined as wi = [v1,…,vd], where
d is the dimension of the weight and v1,…,vd are components of the
weight vector. The dimension of the weight vector was seven in this
study.

A major problem in the standard sequential SOM algorithm is that
the results differ according to the input order. Therefore, the batch-
learning algorithm for the SOM (batch-learning self-organizing map;
BLSOM) (Kohonen, 1995) was used in the study. The results by BLSOM
are consistent because its learning does not depend on the input order.
Other advantages of BLSOM compared with the standard sequential
SOM are that no learning rate has to be specified by the user of the
algorithm and convergence of the input vectors is faster towards their
final values (Brugger et al., 2008). The following algorithm was used for
BLSOM:

1 Initialize the weight vectors wi(0) of all map units.
2 Calculate the Voronoi sets Vi(t) = {b | d(bj, wi(t)) b d(bj, wk(t))∀k≠i

}
and the sums siðtÞ ¼ ∑jViðtÞj

j¼1 bj.
3 Update the weight vectors according to wiðt þ 1Þ ¼ ∑

j
hi jðtÞs jðtÞ=

∑
j
jViðtÞjhi jðtÞ.

4 Repeat steps 2 and 3 until a predefined number of steps τ.

Here, wi(t) is a weight vector in the tth step and hij(t) is the
neighbourhood function defined by hij(t) = exp(−||ri − rj||

2/2σ2(t)),
where ri and rj are the ith and jth units of the SOM architecture, respec-
tively, ||ri − rj|| denotes the Euclidean distance between ri and rj, and
σ(t) is the neighbourhood radius defined by σ(t) = σfinal + (σinitial −
σfinal)(1− t/τ), where σinitial and σfinal are the neighbourhood radii in
the initial and final steps, respectively. In the study, the initial weight
vectors wi(0) in step 1 were defined on the basis of principal com-
ponent analysis of the input vectors bm bywið0Þ ¼ �bþ 10s1fðk−K=2Þ=
Kga1 þ 10s2fðl−L=2Þ=Lga2, where �b is the average vector of bm, a1 and
a2 are the eigenvectors of the first and second principal components
and s1 and s2 are the standard deviations of the first and second princi-
pal components. k and l are the kth column and lth row in the ith unit of
the SOM architecture, respectively. The parameters for BLSOM used in
the study were defined as K = 20, L = 20, σinitial = 3.0, σfinal = 2.0
and τ = 100 based on the previous studies. Vijayakumar et al. used
SOM for segmentation of brain tumour on MRI with pre-defined

image of Fig.�1
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parameters of K = 20, L = 20 (Vijayakumar et al., 2007). Furthermore,
Vesanto and Alhoniemi who reported two-level clustering suggested
that the number of protoclusters N was determined as N = kmax

2 ,
where kmax was an estimated maximum number of clusters (Vesanto
and Alhoniemi, 2000). Because we predefined k = 20 from the view-
point of a pathological estimation, the number of protoclusters was
400 according to the formula. According to the previous report and for-
mula, we think the 20 × 20 matrix may be acceptable. Chavez-Alvarez
et al. reported that the neighbourhood function was Gaussian with an
initial radius (σinitial) of 3.0 when K = 20 and L = 20 in their study
(Chavez-Alvarez et al., 2014). To determine a final radius (σfinal), we
tested BLSOM with a set of parameters (0.01, 0.05, 0.1, 0.25, 0.5, 1, 2,
3) according to the previous study (Ehsani and Quiel, 2008). Lower
final radius than 2.0 could cause stepping-stone like clusters by the
KM++ with k = 20, which was the maximum number in the study,
partly because of overfitting. Therefore, we finally applied σfinal =
2.0, which did not cause any stepping-stone like clusters. As to τ,
the number of total iterations of SOM, some previous neuroimaging
studies applied 100 iterations for SOM and suggested that 100 itera-
tions were sufficient to establish convergence of SOM, and, therefore
we followed them (Peltier et al., 2003; Liao et al., 2008). We have im-
plemented BLSOM software (in-house developed products) devel-
oped in C++.

One of the greatest advantages of SOM is the powerful visualization
(Vesanto and Alhoniemi, 2000), which enables SOM to be suited for
data understanding or survey. There are two commonmethods to visual-
ize the results of SOM, U-Matrix and Component Planes. Especially, the
Component Planes can show the information of each parameter in
each map unit and associations between clusters and variables
(Alhoniemi et al., 1999). We used the Component Planes to visualize
the relation between variables of each DTI-based parameter clearly.
Using the Component Planes, SOMmay allow us to evaluate the clas-
sification options different from a fixed diagnosis (Wang et al.,
2002).

2.6. Unsupervised clustering: KM clustering

TheKMalgorithm is a classic statistical clusteringmethod (MacQueen,
1967) computed in an off-line mode and does not perform competitive
learning as does SOM. Its objective, for K clusters, is to iteratively mini-
mize the within-class inertia by assigning the feature vectors to the
nearest cluster centre and update its value. The number of clusters has
to be determined prior to calculation.

The algorithm of the standard KM is as follows:

1 Start by initializing C that will contain K cluster centres ck∈ℝd such
that 1 ≤ K ≤ N. The set C = {c1,c2,…,ck} will be initialized with the
vectors xj randomly chosen from the data set X⊂ℝi.

2 Assign each vector xj from the data set to the nearest centre ck using
the Euclidean distance metric, d(xj,ck) = ||xj − ck||.

3 Update the new cluster centres ck with the average value of its mem-
bers by ck ¼ ð1=CkÞ ∑

x j∈Ck

x j , where Ck represents the number of

elements in the respective cluster.
4 Repeat steps 2 and 3 if any partition wasmodified since last iteration.

Although the procedure will always terminate, the standard KM
might converge to a local minimum because it uses vectors chosen at
random from the data set to initialize the clusters. Therefore, we used
a modified version of KM, called the K-means++ (KM++) algorithm
(Arthur and Vassilvitskii, 2007), that chooses centres at random from
the data points but weighs the data points according to their squared
distance from the closest centre already chosen. The KM++ algorithm
shows drastic improvement in both speed and accuracy comparedwith
the classic algorithm. The KM++ algorithm is defined as follows:

1a Take one centre c1, chosen uniformly at random from X.
1b Take a new centre ci, choosing x∈ Xwith probabilityDðxÞ2=∑

x∈X
DðxÞ2
1c Repeat step 1b until we have taken K centres altogether.
2–4. Proceed as with the standard KM algorithm.

In addition to KM++, we repeated KM++ trials and selected the
best cluster among different clusters from multiple KM++ trials by
the silhouette index (Rousseeuw, 1987). It calculates the silhouette
index for each datum, average silhouette index for each cluster and
overall average silhouette index for the total data set. Using themethod,
each cluster could be represented by so-called silhouette,which is based
on the comparison of its tightness and separation. The average silhou-
ette index can be applied for evaluation of clustering validity. The over-

all average silhouette index (SI) is defined by SI ¼ ð1=KÞ∑K
j¼1 Sj, where

Sj is a silhouette local coefficient defined by Sj ¼ ð1=njÞ∑n j

i¼1 si, where si
is a silhouette index for the i-th object defined by si=(bi− ai)/max(bi,ai),
where ai is the mean distance between object i and objects of the same
class j and bi is theminimummean distance between object i and objects
in class closest to class j. In the study, 1000 KM++ trials were performed
in each K. We have little prior knowledge about the number of K, and it
can differ according to what users want to know (e.g. tumour detection,
tumour grading or outcome prediction) using the clustered images. In
the present study, we empirically chose the numbers of K = 4, 6, 8, 10,
12, 16, 20 according to the number of estimated segmentations in the ab-
normal brain with a glioma. We implemented these algorithms in the in-
house SOM software, which enabled the use of BLSOM followed by
KM++.

2.7. Diffusion tensor-based clustered image (DTcI)

After unsupervised clustering by BLSOM followed by KM++, 400
protoclusters (weighted vectors) with K-class label information were
generated. Label information of the nearest protocluster using the
Euclidean distance metric was assigned to each voxel on the seven
intensity-normalized diffusion tensor images within the binary mask
image from FSL3s BET. Finally, voxel-based images with K-class label in-
formationwere obtained.We called themDTcIs (Fig. 1). Using the unsu-
pervised clustering method, DTcIs can be easily obtained without any
initial segmentation.

2.8. Classification using DTcI: definition of ROI

Gliomas generally show unclear and irregular boundaries with
discontinuities and variety. ROIsweremanually traced by two of the au-
thors in the DTI space according to abnormalities onMP-RAGE, without
any knowledge of the clinical or pathological data. It should be noted
that ROIs were defined on the basis of abnormal signal intensities in
MP-RAGE, which could include tumour as well as oedema, necrosis
and cystic parts. For simplicity, we defined ROIs per four axial slices
from the top slice of the abnormal regions and counted the total number
of voxels in each patient. If the number of voxels was b400, we redefined
ROIs per two axial slices to increase the number of total voxels. Finally, the
number of voxels in each ROI ranged from 326 to 9316. We only used
these ROIs for feature extraction for SVM as mentioned in the next
subsection.

2.9. Classification using DTcI: feature extraction for tumour grading

The ratio of each class in DTcIs was calculated from ROIs in each
subject. Then, the common logarithmic value of the ratio was calcu-
lated by log10(p+10−2), where p is a ratio of each class (%) and used
for input features to SVM. The features were defined as log-ratio
values according to U ¼ fxi∈ℝK ;1≤ i≤Ng, where N is the number of
subjects (Fig. 1).

2.9.1. Classification using DTcI: SVM
SVM (Vapnik, 1998) is a widely usedmethod because of its remark-

able classification performance and the simplicity of its theory and
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implementation. Accordingly, we chose a linear kernel SVM as a classi-
fier to distinguish between LGGs and HGGs. The hyperparameter (C) of
the linear kernel SVM was optimized by using a two-step grid-search
technique with five-fold cross-validation according to the recommenda-
tion described in a practical guide to SVM classification (Hsu et al.,
2003; Ota et al., 2014). First, the best value of Ccoarsewas found by a coarse
grid-search on log2C = −5, −3, …, 15. Then, the best value of Cfine was
obtained by a fine grid-search on log2C = Ccoarse − 2, Ccoarse − 1.75,
…, Ccoarse + 1.75, Ccoarse + 2. The best Cfine was used to generate the
final classifier for each training set.

A LOOCV strategy was used to assess the classification performance
because the strategy is widely used in machine learning and allows
using most of the data for training (Dosenbach et al., 2010). During
LOOCV, each subject is designated as a test subject in turn, while the re-
maining subjects are used to train the SVM classifier. The decision func-
tion derived from the training subjects is then used to classify or
calculate a decision value about the test subject. After all LOOCV repeats,
the accuracy, sensitivity and specificity for all folds are averaged togeth-
er to generate the final accuracy, sensitivity and specificity estimate.We
also evaluated decision values (Chang and Lin, 2011) for receiver oper-
ating characteristic (ROC) curves and area under the curve (AUC). Fur-
thermore, we repeated the LOOCV strategy 100 times to calculate
confidence intervals (CIs) of these estimates.

Weused C++and the LIBSVM library (Chang and Lin, 2011; software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm) to implement a
linear kernel SVM with a two-step grid-search technique and a LOOCV
strategy.
2.10. Statistical analysis

To determine if the classification performances were significantly
different according to the number of K in the KM++ method (K =
4, 6, 8, 10, 12, 16, 20), we repeated the LOOCV strategy 100 times.
AUCs in different K were then analysed by one-way ANOVA followed
by Tukey3s multiple comparison tests. Differences were considered sig-
nificant for p b 0.05.
Fig. 2.Visualization of sevenDTI-based variables on Component Planeswith SOM. Each node (pr
image. Thewhite lines between nodes denote inter-class borderlines obtained by KM++with
patterns in each diffusion tensor image (lower right). The 16-class cluster map on the 20 × 20
diffusion-weighted imaging; FA= fractional anisotropy; L1 = first eigenvalue; L2= second ei
fusion weighting.
Then, to evaluate the behaviour of the classifier in theK-class that re-
vealed the best classification performance, we used the pROC library for
R to generate ROC curves with 95% CIs computed with 2000 stratified
bootstrap replicates (Robin et al., 2011).

Wilcoxon–Mann–Whitney tests with exact p-values and CIs cal-
culated by a permutation test were used to compare the log-ratio
values of each class in the K class that revealed the best classification
performance between the LGG and HGG groups (Hothorn et al.,
2006). Because of the multiple comparisons in K classes, a Bonferroni
correction for multiple comparisons was applied, and differences be-
tween the groups were considered to be significant at a level of
p b 0.05/K.

The ratios of normalized intensities on the sevendiffusion tensor im-
ages of each class in the K class that revealed the best classification per-
formance were analysed with the bootstrapped 95% CIs. The statistical
software package R version 3.0.2 (The R Foundation for Statistical Com-
puting, http://www.r-project.org/) was used to perform all statistical
analyses.

3. Results

3.1. Unsupervised clustering

Fig. 2 illustrates the Component Planes in seven DTI-based variables
by the SOManalysis. Visual inspection of the SOMpatterns demonstrat-
ed that the Component Planes of DWI and FA were obviously different
from the others. Although general patterns of MD, S0, L1, L2 and L3
Component Planes seemed similar, the details among them differed.
In the case of K = 16 (Fig. 2), for example, FA values in class number
13, DWI values in class number 15 and MD, S0, L1, L2 and L3 values in
class number 4 were highest among all classes. SOM also showed that
the DWI component of class numbers 1, 2, 9, 12 and 13 had variations
from low to high values, and that the FA component of class numbers
9, 10, 12 and 14 had variations from low to high values. Class numbers
12, 13 and 16 in the L1 Component Plane were higher than those of
the MD, S0, L2 and L3 Component Planes. Class numbers 2, 6, 7 and
8 in the MD, L1, L2 and L3 Component Planes were higher than
otocluster) is colorized fromblue to red according to the intensities in eachdiffusion tensor
K=16 on SOM. SOM component planes can help to interpret detailed intensity profiles or
SOM. Each class number corresponds to intensity on DTI-based clustered images. DWI =
genvalue; L3 = third eigenvalue; MD=mean diffusivity; S0= raw T2 signal without dif-

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.r-project.org/
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Fig. 3. The representative cases of low- (upper) and high- (lower) grade gliomas, including the 16-class DTcIs that showed the highest classification performance. The T1-weighted images,
DTcIs, seven diffusion tensor images and the ratios in each class number are shown for each patient. DWI=diffusion-weighted imaging; FA= fractional anisotropy; L1= first eigenvalue;
L2= second eigenvalue; L3= third eigenvalue;MD=mean diffusivity; S0= raw T2 signal without diffusionweighting. Each colour onDTcIs and circular charts correspond to each class
number, shown in the colour bar.
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those in the S0 Component Plane. Class number 9 in the MD and L1
Component Planes was higher than that in the S0, L2 and L3 Compo-
nent Planes.
Fig. 4. Plots of AUC versus the number of K in the KM++method. Values are means and
error bars, and light blue shades represent 95% CIs. ***p b 0.001 (versus all the rest).
‡‡‡p b 0.001 (versus K=4,6,8,10,16), one-way ANOVA followed by Tukey3smultiple com-
parison tests. The 16-class diffusion tensor-based clustered images significantly showed
the highest AUC (0.912; 95% CIs = 0.903–0.922).
Representative cases of LGGs andHGGs are shown in Fig. 3. Although
theboundaries of LGGs could be clearly recognized, itwasmuchdifficult
to recognize the boundaries of HGGs. Furthermore, DTcIs revealed few
warm coloured classes, such as class numbers 14, 15 and 16 in LGGs,
whereas there were more warm coloured classes in HGGs than in LGGs.
Thus, the clear differentiations between LGGs and HGGs on DTcIs could
be visually recognized.

3.2. SVM classification using DTcI

The performances of LOOCV using DTcI and SVM are shown in Fig. 4.
The differences in AUCswere significant among the classes [F(6, 693)=
246.1, p b 10−168,η2p ¼ 0:68�:Tukey3s post-hoc tests showed that AUC
was significantly higher for the 16-class DTcIs than for others
(p b 0.001). The tests also showed that AUCs were significantly higher
for the 12- and 20-class DTcIs than for the 4-, 6-, 8- and 10-class DTcIs
(p b 0.001). There were no significant differences in AUCs between the
12-class and 20-class DTcIs. The tests also showed that AUC was signifi-
cantly lower for the 4-class DTcIs than for the others (p b 0.001). AUC of
the 16-class DTcIs was the highest among classes (0.912; 95% CI =
0.903–0.922) (Fig. 5). The sensitivity, specificity and accuracy of the 16-
class DTcIs were 0.848 (95% CI = 0.845–0.852), 0.745 (95% CI =
0.733–0.757) and 0.804 (95% CI = 0.800–0.809), respectively. In con-
trast, AUC of the 4-class DTcIs was the lowest (0.729; 95% CI =
0.718–0.739). There were no significant group differences in AUCs be-
tween in the 6-, 8- and 10-class DTcIs (0.856, 0.844 and 0.850,
respectively).

image of Fig.�3
image of Fig.�4


Fig. 5. ROC curves (dark blue line), with AUC and 95% CIs shown in blue shades surround-
ing the dark blue line, for differentiating high-grade from low-grade gliomas by using the
16-class diffusion tensor-based clustered images.
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3.3. Differences in log-ratio values

The log-ratio values of each class of the 16-class DTcIs that had
the highest classification performance were compared between
LGGs and HGGs (Fig. 6). The values of class numbers 14, 15 and 16
were significantly higher in HGGs than in LGGs (p b 0.005, r = 0.52;
p b 0.001, r = 0.60; p b 0.001, r = 0.73; respectively). The values
of class numbers 12 and 13 also revealed higher trends in HGGs
(p b 0.01, r = 0.48; p b 0.01, r = 0.50; respectively).

3.4. Ratio of DTI-based parameters

The ratios of normalized intensities of the seven diffusion tensor im-
ages for each class number in the 16-class DTcIs that revealed the
highest classification performance are shown in Fig. 7.

As mentioned above, the ratios of class numbers 14, 15 and 16 were
significantly higher in HGGs than in LGGs. The chart patterns of class
numbers 14 and 15 seemed similar and comprised high DWI values
and low FA values. Class number 15 had the highest DWI values
among all. In FA, class number 14 had higher values than class number
15. The variables of class number 16 comprised high FA and DWI values
andwere different from those of class numbers 14 and 15. All three clas-
ses included low values in MD, S0, L1, L2 and L3. Although the variables
of class numbers 3 and 5 included high DWI values and low values for
Fig. 6. Strip chart and box plots showingmedian, interquartile range, inner fence and outliers (
patients with low- (green) and high- (red) grade gliomas. ***p b 0.001, **p b 0.005, †p b 0.01 b
other features, there were no significant differences in the log-ratio
values between LGGs and HGGs (p = 0.28, r = –0.19; p = 0.84, r =
0.03; respectively).

The indices of class numbers 12 and 13 also revealed higher trends in
HGGs. The chart patterns of class numbers 12 and13were very different
from those of class numbers 14, 15 and 16. The highest FA values were
seen in class number 13. The variables of class numbers 12 and 13 in-
cluded low DWI values. Low values in MD, S0, L1, L2 and L3 were seen
in class numbers 12, 13, 14, 15 and 16.

4. Discussion

4.1. Study overview

In this study, we investigated a two-step procedure for predicting
glioma grade. In the first step, the unsupervised clustering method
with SOM followed by KM++ was used to obtain voxel-based DTcIs
withmultiple DTI-based parameters. DTcIs enabled visual grading of gli-
omas. In the second step, the validity of DTcIs for glioma grading was
assessed in a supervisedmanner using SVM. The 16-class DTcIs revealed
the highest classification performance for predicting the glioma grade.
The sensitivity, specificity, accuracy and AUC of the 16-class DTcIs for
differentiating HGGs and LGGs were 0.848, 0.745, 0.804 and 0.912, re-
spectively. The classifier in the 16-class DTcIs showed that the ratios
of class numbers 14, 15 and 16 were significantly higher and those of
class numbers 12 and 13 showed higher trends in HGGs than in LGGs.
Thus, these results indicate that our clusteringmethod of seven param-
eters can be useful for determining glioma grade visually, despite not
using a complicated combination of a high number of features from
many modalities.

4.1.1. Clustering method
The two-level clustering approachwas used in our study since it has

the following two important benefits: noise reduction and computa-
tional cost. Because of the character of KM++ mentioned in the
Materials and methods section, outliers extracted from DTI parameters
canmake its clustering accuracyworse.When BLSOM is applied prior to
KM++, outliers can be filtered out and the clustering accuracy will be
better. The AUC only with the KM++ algorithm without BLSOM was
0.646 with K = 16 and remarkably worse than that with the two-level
clustering approach. Another important benefit is the reduction of the
computational cost. In our study, the KM++was repeated 1000 times
to obtain more stable results. The computational time of the two-level
clustering approach for 1000 KM++ trials was 210 s (204 s for BLSOM
and 6 s for 1000 KM++ trials) for 117,232 input vectors in the study.
On the other hand, the computational time only for the 1 KM++ trial
without BLSOM was 305 s and around 85 hours for 1000 KM++ trials.
○) for log-ratio values of each class by 16-class diffusion tensor-based clustered images in
y exact Wilcoxon–Mann–Whitney rank sum tests.
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Fig. 7.Radar charts of seven DTI-based variables in each class by 16-class diffusion tensor-based clustered images. Shades surrounding dark-coloured lines represent bootstrapped 95% CIs.
DWI= diffusion-weighted imaging; FA= fractional anisotropy; L1= first eigenvalue; L2= second eigenvalue; L3= third eigenvalue; MD=mean diffusivity; S0= raw T2 signal with-
out diffusion weighting.

404 R. Inano et al. / NeuroImage: Clinical 5 (2014) 396–407
For these facts, the two-level approach can be effective especially for clus-
tering of a larger data set.

Deciding optimal parameters for SOM is not easy as previous studies
mentioned in their studies. Although we applied most of the parame-
ters according to previous studies (Vesanto and Alhoniemi, 2000;
Vijayakumar et al., 2007; Ehsani and Quiel, 2008; Chavez-Alvarez
et al., 2014) in the study, it remains unclear, as mentioned in the
Materials and methods section, whether these parameters for SOM
lead to the best performance or not. The parameters might be verified
by undertaking a prospective, randomized controlled study.

Our segmentation method does not need any initial segmentation
for defining tumour lesions because features were extracted from the
whole brain. Indeed, the DTcIs can segment the brain as some parts of
normal and abnormal areas unintentionally, but the method does not
need any initial segmentation for defining tumour lesions and it is an
important advantage of unsupervised clusteringmethods.When defin-
ing tumour lesions as an initial segmentation, it is needed to draw re-
gions of interest intentionally or decide automatically which voxel is
tumour, oedema, necrosis or normal tissue with a supervised clus-
tering method. However, it is impossible to decide the correct
boundary between normal and abnormal pathology on MRI. The
voxel out of the boundary may include tumour cells considered
from the infiltrative nature of glioma, which may influence grading
of gliomas. We think that clustering for images of gliomas without
an initial segmentation is an indispensable advantage and our meth-
od can satisfy this point.

image of Fig.�7
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4.2. Number of classes in DTcIs

The 16-class DTcIs had the best classification performance between
HGGs and LGGs in this study. It is assumed that brain tumour images
can be segmented at least into four classes (white matter, grey matter,
CSF and abnormality) (Rajini and Bhavani, 2012).Within abnormalities,
they can be consisted of tumour cells (high/low), gliosis, oedema, necro-
sis, haemorrhage, and the mixed structure of some of them. Therefore,
when we consider the combination of those, several kinds of classes
may be reasonable. Furthermore, we found the same cluster in grey
matter and in tumours. Class numbers 14–16 that had significantly
higher HGG values were seen in grey matter and showed low MD
values, which corresponded to increased cellularity (Lam et al., 2002;
Kao et al., 2013). This finding may indicate high cellularity within tu-
mour areas. However, it is difficult to say on the basis of our results
which class would fit to what tissue. Pathological studies of each class
in DTcIs by biopsy or resection could clarify the relationship.

4.3. Multiple parameters in DTI

Weselected L1, L2 and L3, that are the basis of DTI-related parameters,
in order to comparepreviouspathological studies using thoseparameters.
We also selected DWI, FA, ADC and S0 that are familiar to neurosurgeons
in order to compare previous studies that used one of those parameters as
a single parameter for glioma grading. In the previous study, Griffith et al.
researched the pathologies of MD [(L1+ L2+ L3)/3], L1 and radial diffu-
sivity [(L2+L3)/2] and compared each parameter. AlthoughMDwas cal-
culated from L1, L2 and L3, they have different information at least from
the viewpoint of pathology (Griffith et al., 2012). We therefore think
that each parameter has an important role clinically and pathologically
and selected these parameters in the study. Some previous studies used
one parameter, especially ADC, for tumour grading. Although one study
suggested that HGGs with lower ADC values corresponded to increased
cellularity (Kao et al., 2013), another reported that there was no signifi-
cant difference in ADC values between LGGs and HGGs (Lam et al.,
2002). These studies suggest that differentiating glioma grade on the
basis of only one parameter is difficult. In our study, we used seven DTI-
based parameters, including DWI, FA, MD, S0, L1, L2 and L3, and the re-
sults suggested that the DTI-based multiple parameters were useful for
predicting glioma grade. However, it remains unclear which parameters
have the most influence on clustering tumours. We identified unique
DWI and FA Component Planes that can be predictive of malignancy. A
previous study revealed no significant differences in DWI between LGGs
and HGGs and indicated that predicting tumour grade only by using
DWI had a limitation (Kono et al., 2001). Class numbers 14, 15 and 16
thatwere significantly higher inHGGs showed similarDWI values but dif-
ferent patterns of values in other DTI-based parameters. In addition to the
results, we also calculated the AUC if using the combination of only DWI
and FA, only DWI and only FA. However, the AUC of two parameters of
DWI and FA was 0.642, 0.645, and 0.637, respectively and they all were
much lower than the AUC of seven parameters. The additional analyses
also support the idea that combined multiple parameters could be useful
for predicting the grade of gliomas. Conversely, although FA values of
HGGs were higher than LGGs in a previous study (Kao et al., 2013),
class numbers 14 and 15 showed low FA values. Although general pat-
terns of MD, S0, L1, L2 and L3 Component Planes in SOM seemed similar,
their subtle differences revealed bymulti-variate pattern analysis may be
important for predicting grade. In fact, a pathological study using MRI re-
ported that higher astrocytosis correlated with higher ADC and L1
(Griffith et al., 2012). Most cases of reactive astrocytosis can be identified
from the infiltrating edge of an astrocytoma (Ironside, 1994), and it may
be difficult to distinguish diffuse astrocytoma from astrocytosis
(Camelo-Piragua et al., 2011). Axonal damage and cellular infiltration
led to a reduction of L1 (Boretius et al., 2012), and radial diffusivity
[(L2 + L3)/2] has been proposed as a marker of demyelination
(Klawiter et al., 2011). Furthermore, loss of oligodendrocytes
correlated with L2 and L3 but not L1 (Griffith et al., 2012). Although
we extracted seven parameters from DTI, it remains unclear which
combination of the parameters is the best or if additional parameters
can increase the accuracy for glioma grading. Several features other
than the seven parameters, for example, eigenvectors, might provide
better results if included. Further studies are needed to assess which
combination of parameters is best for glioma grading.

One of the limitations in our study was the influence of distortions
on voxel-based clustering. Original DWIs for DTI were acquired by
using EPI to reduce acquisition time and artefacts related to physiolog-
ical motion. Unfortunately, this fast acquisition scheme is highly sensi-
tive to eddy currents induced by the large diffusion gradients and to
another distortion induced by susceptibility artefacts (Mangin et al.,
2002). A prominent source of artefacts for EPI is the effect of inhomoge-
neities close to tissue–air and tissue–bone interfaces, such as those
around the frontal sinus and petrous bone (Jezzard and Clare, 1999).
To reduce artefacts by eddy currents, the data were corrected by using
the FDT program (Smith et al., 2004). Furthermore, the FUGUE program
was used to reduce susceptibility artefacts for EPI that depend on the
subject3s head geometry. Only DTI-based parameters were used for gli-
oma grading in our study, although conventional MRI sequences, such
as T1WI, T1WIce and T2WI, were scanned. The reason is that these con-
ventional images are spatially different from DTI because of distortions.
The differences requiremore accurate image registration between them
for calculating voxel-based images. Multiple parameters of DTI-based
parameters as well as conventional MRI parameters combined with an
accurate registration algorithmmay generate voxel-based clustered im-
ages that predict the grade of gliomas more accurately.

4.4. Ratio of DTI-based parameters in LGG and HGG

The ratios of class numbers 14, 15 and 16were significantly higher in
HGGs than in LGGs. Class numbers 14, 15 and 16 seemed similar with
regard to high DWI values. There was no significant difference between
LGGs andHGGs in a past study (Kono et al., 2001), suggesting that grad-
ing tumours only by DWI is controversial. In our study, class numbers 3
and 5, which were not different between LGGs and HGGs, also had high
DWI values. These results support the controversy regarding DWI and
suggest that glioma grading only by DWI may be difficult.

Class numbers 14 and 15 had low FA values. In contrast, class num-
ber 16 had high FA values. Some researchers have reported that changes
in FA in gliomas may indicate tumour cell infiltration (Schluter et al.,
2005; Kallenberg et al., 2013). A reduction in FA seemed to be the com-
mon denominator among structural abnormalities (Wieshmann et al.,
1999). Lower FA values were seen in LGGs in one study (Inoue et al.,
2005), whereas another study showed no significant differences be-
tween LGGs andHGGs (Goebell et al., 2006). In our study, both increases
and decreases in FA were seen in tumours. Particularly, class numbers
13 and 16 showed that high FA values were also included in HGGs.

Class numbers 14–16, which had significantly higher values in
HGGs, seemed to have lowMD values. However, most classes (numbers
2, 3, 5, 7, 8, 9, 10, 11, 12 and 13) with lowMD values were not different
between HGGs and LGGs. These results suggest that it is difficult to pre-
dict glioma grade only by using one parameter, such as DWI, FA or MD
as discussed in many previous studies.

4.5. Glioma grading

The current gold standard for determining glioma grade is histo-
pathological assessment. However, the limitations of histopathological
assessment because of the heterogeneity of gliomas are well known.
First, there is a possibility of sampling error. Because only a few small
pieces of tissue are assessed and we tend to examine T1-enhancing le-
sions, the most malignant tissue may not be obtained. Sampling errors
may occur especially for biopsy only (Law et al., 2006). Even if we resect
most tumours, a thorough investigation is not always made in the
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resected tumour, and this is a histopathological limitation at present.
Several studies have been conducted to evaluate more accurate selec-
tion of targets by using positron emission tomography (PET) images
with 18F-labelled fluorodeoxyglucose and 11C-labelled methionine to
reduce sampling errors (Levivier et al., 1995; Pirotte et al., 2004). How-
ever, the radiotracer injection in PET is invasive because of radiation ex-
posure. By using DTcIs, we can non-invasively predict the grade of
gliomas with accuracy and may perform regional grading of glioma,
which is useful for targeting biopsy. Gliomas are heterogeneous tu-
mours. If we can preoperatively predict the regional grading of a tu-
mour, we can know which region must be resected, including peri-
tumoural oedematous lesions. Second, some LGGs develop into HGGs,
and ≥10% of gliomas dedifferentiate into more malignant grades (Law
et al., 2006). We cannot know when tumour grade progresses. By
using regional grading based on DTcIs, we can clarify when LGGs prog-
ress into HGGs during follow-up and provide an appropriate adjuvant
treatment at the optimum time. The potential benefit of the proposed
method in thepresent study could be emphasized by undertaking a pro-
spective, randomized controlled study.

5. Conclusion

This study applied a two-level clustering approach, which consisted
of SOM followed by the KM++ algorithm, for unsupervised clustering
of a large number of input vectors with multiple features by DTI. The
greatest point of themethod is to enable obtaining novel clustering im-
ages calledDTcIs, that can give visual grading of glioma and be helpful in
differentiating between LGGs and HGGs without pathological informa-
tion. Our new approach could lead to more accurate non-invasive grad-
ing and more appropriate treatment.
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