1	Seed dormancy and germination traits of an endangered aquatic plant species, Euryale ferox
2	Salisb. (Nymphaeaceae)
3	
4	Ayumi Imanishi ^a and Junichi Imanishi ^b
5	
6	^a Faculty of Applied Sociology, Kinki University, 228-3 Shinkamikosaka, Higashiosaka, Osaka
7	577-0813, Japan
8	^b Graduate School of Global Environmental Studies, Kyoto University, Oiwake-cho, Kitashirakawa,
9	Sakyo-ku, Kyoto 606-8502, Japan
10	
11	E-mail addresses: AI, ayumi.imanishi@a.email.ne.jp; JI, imanishi.junichi.6c@kyoto-u.ac.jp
12	
13	Corresponding author: Ayumi Imanishi
14	Phone number: +81-6-4307-4168
15	
16	ABSTRACT
17	Populations of <i>Euryale ferox</i> Salisb. have declined throughout its global range because of habitat
18	loss and degradation. The present study aimed to evaluate the influence of storage temperature (4

m 0.5 cm)ur
)ur
nation
ger
on
ler and
ancy
olved in
°C.
on
n of light

15 and temperature

1 **1. Introduction**

 $\mathbf{2}$

3	Euryale ferox Salisb. (Nymphaeaceae) is a prickly annual aquatic herb with gigantic floating
4	leaves 0.3-1.5 m in diameter. It is distributed from northwestern India to Japan and inhabits meso-
5	and eutrophic water bodies such as lakes, ponds, reservoirs and rivers. In Japan, the species'
6	distribution ranges from Kyushu to the northern part of Honshu, but habitat loss caused by drainage
7	or land reclamation and water pollution has led to population decline and the species is classified as
8	"vulnerable" in the Red List of Threatened Plants of Japan (Ministry of the Environment of Japan,
9	2012). Moreover, its populations have declined throughout its global range (Schneider et al., 2003).
10	It is well known that natural populations of <i>E. ferox</i> are subject to considerable annual variation
11	in number of individuals (Miyashita, 1983; Kume, 1987). The species' seeds are believed capable of
12	remaining dormant, even over several decades, when the external environment is unsuitable for
13	germination (Wakita, 1959; Kadono, 1983; Ohtaki, 1987). This trait may influence annual variation
14	in population sizes. However, seed dormancy and the germination characteristics of this species are
15	poorly understood.
16	Seed dormancy is an adaptive mechanism to ensure that germination takes place in a suitable
17	location and in suitable conditions (e.g., Baskin and Baskin, 2001; Fenner and Thompson, 2005).
18	Temperature is regarded as the most important factor influencing seed dormancy (Bouwmeerster and

1	Karssen, 1992, 1993). Kumaki and Minami (1973) reported that about 30% of E. ferox seeds
2	germinated after prechilling at 2–3 °C for 1 month, whereas at constant room temperature no seeds
3	germinated. This result indicated that cold stratification breaks dormancy of the seeds. However,
4	since the optimum period of stratification varies among species (Baskin and Baskin, 2001), and thus
5	it is necessary to determine the optimal period of cold stratification for maximum germination and
6	the influence of extended seed preservation on germination.
7	After release of seed dormancy, environmental factors such as temperature and light promote
8	germination (Benvenuti et al., 2001; Penfield et al., 2005; Jha et al., 2010). A systematic quantitative
9	study has not been conducted on the effect of temperature and light on germination of <i>E. ferox</i> seeds,
10	but from field observations it is estimated that the seeds germinate between 20 and 25 °C and do not
11	require light for germination (Okada, 1935; Wakita, 1959).
12	In addition to temperature and light, seed size may play an important role in seed germination
13	for some species (Cideciyan and Malloch, 1982; Zammit and Zedler, 1990; Leverett and Jolls, 2013).
14	Seeds of <i>E. ferox</i> are about 1 cm in diameter and their size varies among populations (Okada, 1928;
15	Miyashita, 1983), among individuals in a population (Miyashita 1983; Hashimoto 1986), and even
16	within the same individual (Hagiwara 1993). The phenomenon that small seeds of <i>E. ferox</i> require a
17	shorter after-ripening period than large seeds has been observed (Okada 1935; Wakita 1959).
18	However, a quantitative study of the relationship between seed size and germination has not been

1	conducte	ed.

2	The aim of the present research was to quantitatively verify seed dormancy and germination
3	traits of <i>E. ferox</i> focusing on the influence of seed storage period, storage temperature, light
4	condition, germination temperature, and seed size.
5	
6	2. Materials and methods
7	
8	2.1 Seed collection and storage
9	Fresh fruits and floating fresh seeds with arils were collected from late October to early
10	November 2009 in the Hiranosawa pond, Kameoka, western Japan (35°04'03" N, 135°33'55" E).
11	Hiranosawa pond consists of three small ponds with a total area of about 10 ha. It has been used as
12	an agricultural reservoir. Genetic diversity of <i>E. ferox</i> is low within and among populations in Japan
13	and the genotype of <i>E. ferox</i> in the Hiranosawa pond is the most widely distributed one in western
14	Japan (the authors' unpublished data). Thus we considered that our samples are representative of the
15	genetic diversity in this region. Seeds were separated from the fruits and the arils were removed in
16	the laboratory. Small green- or skin-colored immature seeds were excluded.
17	The maximum diameter of collected seeds was measured with a digital caliper and seeds were
18	divided into five size groups: from 0.5 cm to less than 1.0 cm; from 1.0 cm to less than 1.2 cm; from

1	1.2 cm to less than 1.4 cm; from 1.4 cm to less than 1.6 cm; and greater than 1.6 cm. The number of
2	seeds in each size group was about 1,800 seeds, about 6,500 seeds, about 4,400 seeds, about 1,000
3	seeds, and 19 seeds, respectively.
4	Seeds of each size group were stored in separate plastic containers with four replicates wrapped
5	in aluminum foil in order to avoid seed deterioration caused by fungal infection. The containers were
6	filled with water and placed at either a constant low temperature (4 °C) to simulate the winter water
7	temperature or a constant warm temperature (20 °C) to simulate the early summer water temperature
8	in a small pond (Shimomura et al., 2010). Water was replaced regularly in complete darkness under a
9	green safelight.
10	
11	2.2 Germination tests
12	Germination tests were performed in light and darkness at constant temperatures of 10, 15, 20,
13	25, and 30 °C after 0, 90, 180, 270, and 360 days of stratification at 4 and 20 °C. Four replicates of
14	30 seeds each were placed in plastic containers and the seeds were submerged with water. The
15	containers were placed in an incubator (TG-280CCFL-5LD, NKsystem, Osaka, Japan). On the basis
16	of the number of collected seeds in each size group, four (from 0.5 cm to less than 1.0 cm), 14 (from
17	1.0 cm to less than 1.2 cm), 10 (from 1.2 cm to less than 1.4 cm) and two seeds (from 1.4 cm to less
18	than 1.6 cm) per container were sown, respectively. Seeds of greater than 1.6 cm diameter were not

1	used in germination tests because of the limited number of seeds available. We defined seeds from
2	0.5 to less than 1.2 cm diameter as small seeds and those from 1.2 to less than 1.6 cm diameter as
3	large seeds.
4	In the light treatments, seeds were exposed to warm white fluorescent light providing
5	photosynthetically active radiation of 20 μ mol m ⁻² s ⁻¹ for 12 h day ⁻¹ . For the darkness treatments, all
6	handling of containers was conducted in complete darkness under a green safelight and the
7	containers were wrapped with aluminum foil after seeding.
8	For the light treatments, germination counts were made at intervals of 2–3 days for 60 days. For
9	the darkness treatments, the containers were unwrapped at the end of the germination period (60
10	days), and the number of germinated seeds was counted. Seeds were recorded as germinated when
11	the protruding radicle was ≥ 1 mm in length as defined by Okada (1935).
12	
13	2.3 Data analysis
14	To examine the effects of light condition, germination temperature, and seed size on
15	germination, we analyzed germination of seeds stratified at 4 °C for 90 days by constructing a
16	generalized linear model with a binomial distribution with number of germinated seeds as the
17	response variable and three factors (light condition, germination temperature excluding 10 °C, and
18	seed size), three interactions of combinations of two factors (light condition \times germination

1	temperature excluding 10 °C, light condition × seed size, and germination temperature excluding
2	10 °C × seed size), and one interaction of the three factors (light condition × germination
3	temperature excluding 10 °C \times seed size) as explanation variables. We adopted the best model by
4	stepwise selection. For the statistical analysis, we used the glm and stepAIC functions in R ver. 3.1.0
5	(R Core Team, 2014) and set the significance level as $p < 0.05$.
6	
7	3. Results
8	
9	Few seeds germinated immediately after harvest (no stratification) (Fig. 1). Regarding the seeds
10	stratified at 4 °C, small seeds maintained high germination frequencies until at least 180 days (Fig.
11	1A and B). The germination frequency of large seeds was highest at 90 days and decreased at 180
12	days regardless of light condition (Fig. 1C and D).
13	With regard to the seeds stratified at 4 °C that germinated in light, the median germination time
14	(i.e., the number of days until at least 50% germination frequency was attained in all of the four
15	replicates within 60 days) was evaluated for the seven cases listed in Table 1. The shortest median
16	germination time was 5.5 ± 0.5 days (mean \pm SD) for small seeds stratified for 180 days and
17	germinated at 25 °C.
18	Regarding the seeds stratified at 20 °C for 90 days, mean germination frequencies in light were

1	0, 0, 1.7 ± 1.9 , 28.3 ± 7.9 , and 29.2 ± 10.7 % (mean \pm SD) at 10, 15, 20, 25, and 30 °C, respectively,
2	and in darkness were 0, 0, 12.5 ± 7.4 , 47.5 ± 18.9 , and 18.3 ± 8.8 % at 10, 15, 20, 25, and 30 °C,
3	respectively. After 180, 270 or 360 days of stratification at 20 °C, few or no seeds germinated.
4	The generalized linear model focusing on 4 °C stratification for 90 days revealed significant
5	effects of light condition, germination temperature, seed size, light condition \times germination
6	temperature interaction, and germination temperature × seed size interaction (Table 2). The light
7	condition \times germination temperature interaction was significant owing to higher germination
8	frequency at 30 °C in light (mean \pm SD; 44.2 \pm 6.9 %) than that in darkness (18.3 \pm 12.3 %), and
9	higher germination frequency at 15 °C in darkness (53.3 \pm 9.8 %) than that in light (31.7 \pm 9.8 %).
10	The germination temperature × seed size interaction was significant owing to higher germination
11	frequency of small seeds at 30 °C (37.5 \pm 8.0 %) than that of large seeds (21.9 \pm 12.3 %), and higher
12	germination frequency of large seeds at 15 °C (49.0 \pm 7.4 %) than that of small seeds (38.2 \pm 4.6 %).
13	
14	4. Discussion
15	
16	Our results indicated that seeds of <i>E. ferox</i> are in a dormant state when shed and stratification
17	for several months can break the dormancy (Fig. 1). Dormancy release was possible with 4 and
18	20 °C stratification, but was more strongly promoted by 4 °C stratification. With regard to seeds

1	stratified at 4 °C, the germination frequency of large seeds peaked at 90 days (Fig. 1C and D),
2	whereas small seeds maintained high germination frequencies until at least 180 days (Fig. 1A and B).
3	It was hypothesized that non-germinated seeds did not lose viability but dormancy was re-induced
4	because the embryos were white and hard when dissected after completion of the germination tests,
5	although the induction of dormancy was not investigated. The different germination responses
6	between small and large seeds may reflect a difference in the rate of induction of dormancy in annual
7	dormancy cycle.
8	Most flowers of <i>E. ferox</i> are cleistogamous, but chasmogamous flowers are also produced
9	(Okada and Otaya, 1930). In many species, germination responses differ between seeds from
10	cleistogamous and chasmogamous flowers (e.g. Weiss, 1980; Trapp and Hendrix, 1988; Ferreira and
11	Reinhardt, 1999). Kadono and Schneider (1987) reported that seeds of <i>E. ferox</i> from chasmogamous
12	flowers are slightly larger than those from cleistogamous flowers because fruits from chasmogamous
13	flowers contain significantly fewer seeds than cleistogamous flowers and seed size is inversely
14	correlated to the total number of seeds in each fruit. Although more research is required, it is
15	hypothesized that E. ferox may produce many small seeds, in which the rate of induction of
16	dormancy is relatively slow, from cleistogamous flowers and fewer large seeds that show relatively
17	rapid induction of dormancy from chasmogamous flowers.
18	Seeds of <i>E. ferox</i> germinated in both light and darkness (Fig. 1), which indicated that light is

1	unimportant for regulation of germination in this species. It is believed that E. ferox can form a
2	persistent seed bank (Wakita, 1959; Kadono, 1983; Otaki, 1987). A light requirement for germination
3	is a common feature among species that form persistent seed banks (Pons 2000). However,
4	germination in large-seeded species might be expected to be insensitive to light because seedlings
5	from large seeds can emerge successfully from a much greater depth that light cannot penetrate
6	(Pons, 2000; Milberg et al., 2000; Pearson et al., 2002; Fenner and Thompson, 2005). Seeds of <i>E</i> .
7	ferox are large (about 1 cm in diameter), which may be a factor in their not requiring light for
8	germination.
9	The present study quantitatively verified that the optimal temperature for germination was
10	25 °C because the median germination times at 25 °C were shorter than those at 20 °C (Table 1), and
11	the germination frequency was high at both 20 and 25 °C (Fig. 1). In some species, light interacts
12	with temperature to regulate seed germination (Baskin and Baskin, 2001). In the present study, the
13	generalized linear model focusing on 4 °C stratification of 90 days revealed that light condition \times
14	germination temperature interaction significantly affected germination (Table 2). The significant
15	interaction was due to higher germination frequencies at 30 °C in light than darkness and higher
16	germination frequencies at 15 °C in darkness than in light. The interaction between light and
17	temperature is considered to be beneficial for germination of <i>E. ferox</i> , as the seeds often sink to the
18	bottom of water bodies. If the temperature around the seed is low even though light reaches the

1	bottom of the water body, germination will be inhibited, which enables avoidance of an unsuitable
2	external environment for growth. On the other hand, germination could occur at a low temperature
3	when the seeds are buried at the bottom of a water body and do not receive light, which permits
4	increased opportunity for germination close to the level that would be observed if the seeds were not
5	covered by soil.

- 1 Acknowledgments: We are grateful to Mr. Ryuzo Hayashi in Kameoka city for collecting seeds.
- 2 This work was supported in part by the Osaka University Program for the Support of Networking
- 3 among Present and Future Researchers.

1	References
---	------------

\sim
• •
~

3	Baskin, C.C., Baskin, J.M., 2001. Seeds: Ecology, Biogeography, and Evolution of Dormancy and
4	Germination. Academic Press, San Diego.
5	Benvenuti, S., Macchia, M., Miele, S., 2001. Light, temperature and burial depth effects on <i>Rumex</i>
6	obtusifolius seed germination and emergence. Weed Res. 41, 177-186.
7	Bouwmeester, H.J., Karssen, C.M., 1992. The dual role of temperature in the regulation of the
8	seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia
9	90, 88-94.
10	Bouwmeester, H.J, Karssen, C.M., 1993. Annual changes in dormancy and germination in seeds of
11	Sisymbrium officinale (L.) Scop. New Phytol. 124, 179-191.
12	Cideciyan, M.A., Malloch, A.J.C., 1982. Effects of seed size on the germination, growth and
13	competitive ability of Rumex crispus and Rumex obtusifolius. Jour. Ecol. 70, 227-232.
14	Fenner, M., Thompson, K., 2005. The Ecology of Seeds. Cambridge University Press, Cambridge.
15	Ferreira, M.I., Reinhardt, C.F., 1999. The role of temperature in the germination of subterranean and
16	aerial seeds of Commelina benghalensis L. S. Afr. J. Plant Soil 16, 165-168.
17	Hagiwara, T., 1993. Euryale ferox Salisb. Bull. Water Plant Soc., Jpn 51, 32-34 (in Japanese).
18	Hashimoto, T., 1986. Euryale ferox Salisb. of Chizuka-pond in Fukuyama city. Bull. Water Plant

1	Soc.,	Jpn 26	, 6-11	(in	Japanese).

2	Jha, P., Norsworthy, J.K., Riley, M.B., Bridges Jr, W., 2010. Annual changes in temperature and light
3	requirements for germination of Palmer amaranth (Amaranthus palmeri) seeds retrieved from
4	soil. Weed Sci. 58, 426-432.
5	Kadono, Y., 1983. Natural history of Euryale ferox Salisb. Nat. Stud. 29, 63-66 (in Japanese).
6	Kadono, Y., Schneider, E.L., 1987. The life history of Euryale ferox Salisb. in south-western Japan
7	with special reference to reproductive ecology. Plant Sp. Biol. 2, 109-115.
8	Kumaki, Y., Minami, Y., 1973. Seed germination of "Onibasu" Euryale ferox Salisb. (II). Bull. Fac.
9	Educ., Kanazawa Univ., Nat. Sci. 22, 71-78.
10	Kume, O., 1987. Growth situation of <i>Euryale ferox</i> Salisb. in Kagawa prefecture I. Bull.Water Plant
11	Soc., Jpn 27, 16-19 (in Japanese).
12	Leverett, L.D., Jolls, C.L., 2013. Cryptic seed heteromorphism in <i>Packera tomentosa</i> (Asteraceae):
13	differences in mass and germination. Plant Spec. Biol doi: 10.1111/1442-1984.12011
14	Maeda, O., Nakamichi, T., Takahashi, G., 1983. Euryale ferox Salisb. in Shishitsuka-Oike. Tsukuba
15	no kankyo kenkyu 7, 80-85 (in Japanese).
16	Milberg, P., Andersson, L., Thompson, K., 2000. Large-seeded species are less dependent on light
17	for germination than small-seeded ones. Seed Sci. Res. 10, 99-104.
18	Ministry of the Environment of Japan, 2012. Red List of Threatened Plants of Japan,

1	http://www.biodic.go.jp/english/rdb/rdb_f.html [accessed 22 July 2013].
2	Miyashita, Y., 1983. Euryale ferox Salisb. of Sakata lagoon in Niigata prefecture. Bull. Water Plant
3	Soc., Jpn 11, 4-6 (in Japanese).
4	Otaki, S., 1987. Euryale ferox Salisb. in Japan. Nihon no seibutsu 1(4), 48-55. (in Japanese)
5	Okada, Y., 1928. Study of Euryale ferox Salisb. I. On the size of leaves, fruits, etc., with some
6	remarks on the mode of expansion of the leaf blade. Sci. Rep. Tohoku Imp. Univ., Ser. 4, 3,
7	271-278.
8	Okada, Y., 1935. Long-term dormancy of Euryale ferox Salisb. seeds. Seitaigakuteki kenkyu 1,
9	14-22 (in Japanese).
10	Okada, Y., Otaya, T., 1930. Study of Euryale ferox Salisb. VI. Cleistogamous versus chasmogamous
11	flowers. Bot. Mag. (Tokyo) 44, 369-373.
12	Pearson, T.R.H., Burslem, D.F.R.P., Mullins, C.E., Dalling, J.W., 2002. Germination ecology of
13	neotropical pioneers: interacting effects of environmental conditions and seed size. Ecology 83,
14	2798-2807.
15	Penfield, S., Josse, EM., Kannangara, R., Gilday, A.D., Halliday, K.J., Graham, I.A., 2005. Cold
16	and light control seed germination through the bHLH transcription factor SPATULA. Curr. Biol.
17	15, 1998-2006.

18 Pons, T.L., 2000. Seed responses to light. In: Fenner, M. (Eds.), Seeds: The Ecology of Regeneration

1	in Plant Communities (2nd edition). CAB International, Wallingford, pp. 237-260.
2	R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for
3	Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
4	Schneider, E.L., Tucker, S.C., Williamson, P.S., 2003. Floral development in the Nymphaeales. Int. J.
5	Plant Sci. 164, S279-S292.
6	Shimomura, H., Kamakura, T., Masuda, H., 2010. Seasonal variations of water quality and the
7	sediment quality of Benten pond in Joetsu University of Education: as one of the basic data to
8	utilize a small reservoir for an environmental education. Bull. Joetsu Univ. Educ. 29, 249-255
9	(in Japanese with English abstract).
10	Trapp, E.J., Hendrix, S.D., 1988. Consequences of a mixed reproductive system in the hog peanut,
11	Amphicarpaea bracteata, (Fabaceae). Oecologia 75, 285-290.
12	Wakita, H., 1959. Study on the fresh water plants in Nagoya and north-eastern part of Owari
13	province; including ecological study of Euryale ferox Salisbury. Chubu nihon shizen kagaku
14	chosadan hokoku 3, 5-7 (in Japanese).
15	Weiss, P.W., 1980. Germination, reproduction and interference in the amphicarpic annual <i>Emex</i>
16	spinosa (L.) Campd. Oecologia 45, 244-251.
17	Zammit, C., Zedler, P., 1990. Seed yield, seed size and germination behavior in the annual Pogogyne
18	abramsii. Oecologia 84, 24-28.

19

1 Figure captions

$\mathbf{2}$

3	Fig. 1. Germination frequency of <i>E. ferox</i> seeds stratified at 4 °C and germinated at five constant
4	temperatures ranging from 10 to 30 °C. (A) Small seeds germinated in light, (B) small seeds
5	germinated in darkness, (C) large seeds germinated in light, and (D) large seeds germinated in
6	darkness. Symbols and error bars represent the mean \pm SD ($n = 4$).

Table 1 Median germination time for *E. ferox* seeds, which is the days required for the germination frequency of all four replicates to reach at least 50% within the 60-day experimental period.

	Storage periods				
Germination	90 days		180 days	270 days	
temperature	small seeds	large seeds	small seeds	small seeds	
20 °C	20.8 ± 9.5	_	11.5 ± 6.1	-	
25 °C	10.8 ± 2.6	8.5 ± 1.5	5.5 ± 0.5	14.5 ± 1.7	
30 °C	—	—	8.0 ± 1.6	-	

Values are the mean \pm SD

"-" indicates that germination frequency of all of the four replicates did not reach 50% within the 60-day experimental period.

Table 2 Effects of germination temperature, light condition, and seed size on germination of *E. ferox* seeds

	Estimate	SE	z-value	Р
Germination temperature	-0.12	0.02	-5.087	< 0.001
Light condition (in light)	-2.83	0.56	-5.081	< 0.001
Seed size (small)	-1.17	0.57	-2.048	0.04
Germination temperature × Light condition (in light)	0.12	0.02	5.19	< 0.001
Germination temperature × Seed size (small)	0.05	0.02	2.14	0.03
Intercept	2.86	0.54	5.29	< 0.001

AIC (selected model/null model) : 437.9 / 441.1

Models that have the highest power of explanation are shown.